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for all −∞¡t; s¡∞. We claim that ��(t) 6= 0; −∞¡t¡∞. In other words ��(:) is nonvanishing on

the real line. On the contrary suppose that ��(t) = 0 for some t = t0. Then it follows from (1:2) that

��(t0 + s) = 0; −∞¡s¡∞:

Hence ��(t) = 0, −∞¡t¡∞ which is impossible since ��(0)= 1. Let  (t) = [��(t)]
−1. Then  (t) is well

de�ned since ��(t) is nonvanishing. Note that  (t) is continuous,  (0) = 1 and  (t) =  (−t). Eq. (1.2) can

be written in the form

 (t) (s)−  (t + s) =−ts; −∞¡t; s¡∞:

De�ne  (t)=A(t)+ iB(t). Then A(t)=A(−t) and B(t)=−B(−t) since  (t)=  (−t). Furthermore, A(t) and

B(t) are both continuous with A(0) = 1 and B(0) = 0. The above equation implies that

(A(t) + iB(t))(A(s) + iB(s))− (A(t + s) + iB(t + s)) =−ts; −∞¡t; s¡∞: (1.3)

Equating the real and imaginary parts of this equation, it follows that

A(t)A(s)− B(t)B(s)− A(t + s) =−ts; −∞¡t; s¡∞ (1.4)

and

A(t)B(s) + B(t)A(s)− B(t + s) = 0; −∞¡t; s¡∞: (1.5)

Replacing s by −s in (1:4), we have

A(t)A(−s)− B(t)B(−s)− A(t − s) = ts; −∞¡t; s¡∞ (1.6)

or equivalently

A(t)A(s) + B(t)B(s)− A(t − s) = ts; −∞¡t; s¡∞ (1.7)

since A(s) = A(−s) and B(s) =−B(−s). Adding (1:4) and (1:7) lead to the equation

2A(t)A(s)− A(t + s)− A(t − s) = 0; −∞¡t; s¡∞ (1.8)

or equivalently

A(t + s) + A(t − s) = 2A(t)A(s); −∞¡t; s¡∞; (1.9)

where A(t) is continuous, A(0) = 1, and A(t) = A(−t). Applying the theorem on p. 120 of Aczel (1966), it

follows that the function A(t) has to be of the form A(t) = 0 for all t or A(t) = cosh bt or A(t) = cos bt for

some real constant b. The solution A(t) = 0 for all t is not possible since A(0) = 1.

Replacing s by −s in (1:5), it follows that

A(t)B(−s) + B(t)A(−s)− B(t − s) = 0; −∞¡t; s¡∞: (1.10)

Adding (1:5) and (1:10) and using the fact that A(t) = A(−t) and B(s) + B(−s) = 0, we have

2B(t)A(s)− B(t + s)− B(t − s) = 0; −∞¡t; s¡∞ (1.11)

or equivalently

B(t + s) + B(t − s) = 2B(t)A(s); −∞¡t; s¡∞; (1.12)

where A(t) and B(t) are continuous with A(0) = 1 and B(t) = −B(−t). Applying Theorem 1 on p. 170 of

Aczel (1966), the most general continuous solutions of (1:12) are of the form

B(t) = 0 for all t and A(t) arbitrary

or

B(t) = c cos bt + C sin bt and A(t) = cos bt
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or

B(t) = c cosh bt + C sinh bt and A(t) = cosh bt

or

B(t) = c + Ct and A(t) = 1 for all t;

where b; c and C are arbitrary real constants. In view of the earlier remarks, the last three cases are the only

possible solutions of (1:9) and (1:12).

If the second case holds, then it follows that A(t)=cos bt where b is not zero and B(t)= c cos bt+C sin bt.

Since B(t) =−B(−t), it follows that B(t) = 2c cos bt; −∞¡t¡∞. Since B(0) = 0, we have c = 0. Hence

B(t) = 0 for all t.

If the third case holds, then it follows that A(t)=cosh bt where b is not zero and B(t)=c cosh bt+C sinh bt.

Since B(t) =−B(−t), it follows that B(t) = 2c cosh bt; −∞¡t¡∞. Since B(0) = 0, we have c= 0. Hence

B(t) = 0 for all t.

If the last case holds, then A(t) = 1 for all t and B(t) = c + Ct. Since B(0) = 0, it follows that c = 0 and

hence B(t) = Ct; −∞¡t¡∞.
Hence a complex-valued function  (t) = A(t) + iB(t) with  (0) = 1 and  (t) =  (−t) is a solution of the

functional equation (1:3) if and only if  (t)=cos bt or  (t)=cosh bt for some constant b di�erent from zero

or  (t) = 1 + iCt for some real constant C.

Since  (t) is the reciprocal of a characteristic function, it follows that | (t)|¿1 for all t. Clearly this

implies that  (t) cannot be equal to cos bt for some constant b not equal to zero. On the other hand suppose

that  (t) = cosh bt where b is not equal to zero. Then it follows that

(e−bt − ebt)(ebs − e−bs)

4
=−ts; −∞¡t¡∞

from Eq. (1.3). Let s=−t. Then it follows that

(e−bt − ebt)2 = 4t2; −∞¡t¡∞

where b is not equal to zero. This is impossible. Hence

 (t) = 1 + iCt; −∞¡t¡∞

for some real constant C. Let s= t in Eq. (1.4). Then we have

A2(t)− B2(t)− A(2t) =−t2; −∞¡t¡∞: (1.13)

Since A(t) = 1 for all t and B(t) = Ct, it follws that −C2t2 =−t2 or C2 = 1. Hence

 (t) = 1 + it

for all t or

 (t) = 1− it

for all t.

This proves that either

��(t) = {(1 + it)−1} (1.14)

or

��(t) = {(1− it)−1}: (1.15)

Hence either � or −� is a standard exponential random variable. This completes the proof of the theorem.
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Remark. (1) It is evident from the proof of the theorem that it is su�cient if identity (1:1) holds for functions

of the type f(x) = eit x ; g(x) = eisx ;−∞¡t; s¡∞ for the validity of the theorem.

(2) Suppose � has an exponential distribution with parameter �, that is, the density function of � is given

by

p�(x) = �e−�x ; 0¡x¡∞;

p�(x) = 0 otherwise

for some �xed �¿ 0. It is easy to check that for any two absolutely continuous functions f and g such that

E|f(�)|2¡∞ and E|g(�)|2¡∞,

�2 Cov[f(�); g(�)] = E[f′(�+ �)g′(�+ �)]; (1.16)

whenever �; � and � are independent exponential random variables with parameter �¿ 0. It is easy to show

that the above relation holds for all such f and g if and only if �; � and � are independent standard

exponentials with parameter |�| or −�, −� and −� are independent standard exponentials with parameter

|�|. In general for any absolutely continuous functions f; g and h with �; �; � standard exponential random

variables such that E|f(h(�))|2¡∞ and E|g(h(�))|2¡∞,

Cov(f(h(�)); g(h(�)) = E[f′(h(�+ �))h′(�+ �)g′(h(�+ �))h′(�+ �)]: (1.17)

Conversely, if this identity holds for �; � and � i.i.d. for all absolutely continuous functions f; g and a �xed

absolutely continuous function h with h′(x) not equal to zero almost everywhere, then h(�); h(�) and h(�)

are i.i.d. where �; � and � are i.i.d. standard exponentials or −�, −� and −� are i.i.d. standard exponentials.

This can be seen by an application of the theorem for the functions f(h(:)) and g(h(:)).

2. Extensions

We assume that all the expectations of random variables discussed in this section exist and E�;Cov�, etc.

denote the expectation and the covariance etc. with respect to the distribution of �.

Suppose that �1 and �2 are independent random variables with �1 as a standard exponential random variable.

Let f(x; y) and g(x; y) be real-valued functions such that fx=@f=@x and gx=@g=@x exist almost everywhere.

Then

Cov[f(�1; �2); g(�1; �2)] = E�2 [Cov�1(f(�1; �2); g(�1; �2))]

+Cov�2(E�1f(�1; �2); E�1g(�1; �2))

= E�2 [E�1 ; �1 ; �1[fx(�1 + �1; �2)gx(�1 + �1; �2)]]

+Cov�2(E�1f(�1; �2); E�1g(�1; �2)) (for �1; �1; and �1 are i:i:d: as �1)

= E[fx(�1 + �1; �2)gx(�1 + �1; �2)]

+Cov�2(E�1f(�1; �2); E�1g(�1; �2)): (2.1)

In general if �1 and (�2; : : : ; �k) are independent and �1 is a standard exponential random variable, then

Cov[f(�1; �2; : : : ; �k); g(�1; �2; : : : ; �k)] = E[fx1(�1 + �1; �2; : : : ; �k)gx1(�1 + �1; �2; : : : ; �k)]

+Cov�2 ;:::;�k (E�1f(�1; : : : ; �k); E�1(g(�1; : : : ; �k)) (2.2)

for functions f and g with fx1 and gx1 �nite almost everywhere. This can be seen by following the above

arguments using conditioning on (�2; : : : ; �k) and the fact that �1 is a standard exponential random variable.
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Special cases: (i) Let f(x1; : : : ; xk)=f0(x1+· · ·+xk) and g(x1; : : : ; xk)=g0(x1+· · ·+xk) where f0 and g0 are

di�erentiable almost everywhere. Then fx1(x1; : : : ; xk)=f′

0(x1+ · · ·+ xk) and gx1(x1; : : : ; xk)= g′0(x1+ · · ·+ xk)

where f′

0 and g′0 denote the derivatives of f0 and g0, respectively. Hence

Cov[f0(�1 + · · ·+ �k); g0(�1 + · · ·+ �k)]

=E[f′

0(�1 + �1 + �2 + · · ·+ �k)g
′

0(�1 + �1 + �2 + · · ·+ �k)]

+Cov�2 ;:::;�k (E�1f0(�1 + · · ·+ �k); E�1g0(�1 + · · ·+ �k)); (2.3)

whenever �1; �1 and �1 are i.i.d. standard exponential random variables, �1 is independent of (�2; : : : ; �k) and

f0 and g0 are absolutely continuous functions with E|f0(�1+ · · ·+ �k)|
2¡∞ and E|g0(�1+ · · ·+ �k)|

2¡∞.

(ii) Let f(x1; : : : ; xk) =
∑k

i=1 xi and g(:) as in (i). Then fx1 ≡ 1 and applying (2:2), we have

Cov

[

k
∑

i=1

�i ; g(�1; : : : ; �k)

]

= E[gx1(�1 + �1; �2; : : : ; �k)]

+Cov�2 ;:::; �k

(

E�1

(

k
∑

i=1

�i

)

; E�1g(�1; : : : ; �k)

)

; (2.4)

whenever �1 is independent of (�2; : : : ; �k), and �1 and �1 are independent standard exponential random

variables and g(x1; : : : ; xk) is a function such that gx1 exists almost everywhere. Hence

Cov

[

k
∑

i=1

�i ; g(�1; : : : ; �k)

]

= E[gx1(�1 + �1; �2; : : : ; �k)]

+Cov�2 ;:::; �k (1 + �2 + · · ·+ �k ; E�1g(�1; �2; : : : ; �k))

= E[gx1(�1 + �1; �2; : : : ; �k)]

+

k
∑

j=2

Cov�2 ;:::;�k (�j ; E�1g(�1; · · · ; �k)): (2.5)

(iii) Suppose that �1; : : : ; �k are i.i.d. standard exponential random variables. Then Zk = �1 + · · ·+ �k has a

gamma distribution with density

pZk
(z) =

z k−1e−z

�(k)
; z¿0;

pZk
(z) = 0 otherwise:

(2.6)

Applying the result obtained in (i), we have

Cov[f(Zk); g(Zk)] = E[f′(Zk + �1)g
′(Zk + �1)] + Cov�2 ;:::; �k (E�1(f(Zk)); E�1(g(Zk)) (2.7)

for any integer k¿1 where �1 and �1 are independent standard exponential random variables independent of �1.

Let f(x) = eit x and g(x) = eisx. Then

Cov[f(Zk); g(Zk)] = �Zk
(t + s)− �Zk

(t)�Zk
(s);

E[f′(Zk + �1)g
′(Zk + �1)] =−ts �Zk

(t + s)��1(t)��1(s)

and

E�1 [e
itZk ] = eit(�2+···+�k )��1(t):

Hence,

Cov�2 ;:::; �k (E�1(f(Zk)); E�1(g(Zk))) = ��1(t)��1(s)[��2+···+�k (t + s)− ��2+···+�k (t)��2+···+�k (s)]: (2.8)
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Identity (2:5) reduces to the equation

�Zk
(t + s)− �Zk

(t)�Zk
(s) =−ts �Zk

(t + s)��1(t)��1(s)

+��1(t)��1(s)[��2+···+�k (t + s)− ��2+···+�k (t)��2+···+�k (s)]: (2.9)

Note that �Zk
(t) = (1− it)−k ; ��1(t) = (1− it)

−1 = ��1(t) and ��2+···+�k (t) = (1− it)
−k+1.

It is easy to see that the functional equation (2:9) is satis�ed by the above solution which in turn gives an

alternate proof for (2:7) by the bilinearity in f and g on both sides of (2:7) (cf. Bobkov and Houdre, 1997).

(iv) Suppose Z is a random variable such that Z=�+W where � and W are independent random variables.

Further suppose that the characteristic functions of Z; � and W satisfy the functional equation

�Z(t + s)− �Z(t)�Z(s) =−ts �Z(t + s)��(t)��(s)

+��(t)��(s)[�W (t + s)− �W (t)�W (s)] (2.10)

for −∞¡t; s¡∞ where ��(t) denotes the characteristic function of �. Further suppose that the characteristic

function of W is nonvanishing. It is easy to see that the functional equation (2:10) reduces to

��(t + s)− ��(t)��(s) =−ts ��(t + s)��(t)��(s) (2.11)

for −∞¡t; s¡∞ which characterizes the standard exponential distribution for � by the results obtained in

Section 1. It can be checked that the functional equation (2:10) holds if and only if for every two absolutely

continuous functions f and g such that E|f(Z)|2¡∞ and E|g(Z)|2¡∞,

Cov(f(Z); g(Z)) = E[f′(Z + �)g′(Z + �)] + CovW (E�(f(�+W )); E�(g(�+W )); (2.12)

where �; � and � are i.i.d. standard exponential random variables and Z = �+W .

3. Covariance identity for the geometric distribution

Suppose X is a discrete random varible with the geometric distribution P(X =k)=pq k−1; k¿1; q=1−p;

0¡p¡ 1. It is easy to check that

p2 Cov[f(X ); g(X )] = qE[(f(X + Y )− f(X + Y − 1))(g(X + Z)− g(X + Z − 1))] (3.1)

for any two functions f and g such that E|f(X )|2¡∞ and E|g(X )|2¡∞ where X; Y and Z are i.i.d. as X .

This can be seen by checking the identity (3:1) for functions of the type f(x) = eit x and g(x) = eisx where

t and s are arbitrary real numbers and then using the bilinearity (cf. Bobkov and Houdre, 1997). For such

functions, we have the functional equation

p2[�X (t + s)− �X (t)�X (s)] = q(1− e−it)(1− e−is)�X (t + s)�X (t)�X (s) (3.2)

and it can be easily checked that

�X (t) = peit(1− qeit)−1; −∞¡t¡∞

is a solution of (3:2).

Let us now suppose that X; Y and Z are i.i.d. nonnegative integer valued random variables such that the

identity (3:1) holds. Let f(x) = t x and g(x) = s x where t and s are real. Then the identity (3:1) reduces to

p2[m(ts)− m(t)m(s)] = q(t − 1)(s− 1)(ts)−1m(ts)m(t)m(s); 0¡t¡∞; (3.3)

where m(t) is the probability generating function of X . It is easy to see that m(t) is nonzero for all t. De�ne

�(t) = t m(t)−1, 0¡t¡∞ and 
(u) = �(eu); −∞¡u¡∞. Then Eq. (3.3) can be written in the form


(u+ v) = 
(u)
(v)− �(eu − 1)(ev − 1); −∞¡u; v¡∞ (3.4)
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with 
(0) = 1 and �= qp−2¿ 0; q= 1− p; 0¡p¡ 1. It is clear that


(u) = (1− qe−u)p−1; −∞¡u¡∞ (3.5)

is a solution of (3:4) and hence

m(t) = pt(1− qt)−1; 0¡t¡∞

is a solution of (3:3) which is the probability generating function of the geometric distribution with parameter

p. The problem that it is the only solution of (3:3) remains open. We conjecture that it is the only solution

following the analogy of the characterization of the standard exponential distribution discussed in Section 1.
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