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Abstract

Let F(xp,....xe ) and G(xi....,x) = Fx,(x1)... Fx,(x¢ ), where Fy(x;), 1<i<k, are the one-dimensional marginal dis-
tributions of F, be two distribution functions on R*. Here, we obtain explicit bounds for the Levy—Prohorov distance
between F' and G using some general results due to Yurinskii (1975, Theory Probab. Appl. 20, 1-10).
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1. Introduction

It is known that if / and G are two distribution functions on the real line, then

sup  |F(x) — G(x)|< sup |P(B) — O(B)| <2 sup |F(x)—G(x)l, (1.1)
— 00 <X =00 Bet — 00 <X =00

where P and O denote the probability measures corresponding to the distribution functions F and G, respec-

tively (cf. Prohorov and Rozanov, 1969, pp. 160). Here % is the class of all convex subsets of the real line.

This result does not hold if class % is replaced by class 4, the class of all Borel subsets of the real line. See

the counterexample given below due to Babu (1998).

Example 1.1 (Babu, 1998). Let F be the standard normal distribution and G the discrete distribution which

puts mass & at each of the points z;4, 0, z34. and 3 where F(z,) =a for any 0 < g < 1. Then

sup |P(B) — Q(B)| =1

Be#
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as P and Q are mutually singular. But

sup  |F(x) — G(x)] <0.25.

—o0o <X <0

So
sup [P(B) — Q(B)|<2  sup |F(x)— G(x)|
Be# —00 <X <00

does not hold.

The question is whether there is a result analogous to (1.1) in higher dimensions connecting the difference
between two distribution functions and the total variation of the difference between the probability measures
generated by them. The problem arose in estimating the quantity:

/knguhuqxn——/;gdGubnqx»dth+hnqxw,
R¥ R

where F, G and H denote the distribution functions of (Xi,...,X;), (Xi,...,X}), and (Xj41,...,X¢), respec-
tively.

Remark 1.2. The relation between [, | f(x)—g(x)| dx and supgc , |P(B)—Q(B)|, where f and g are densities
of F and G with respect to the Lebesgue measure on R* and # is the c-algebra of Borel subsets of R, is
well known. Here F and G could be distribution functions on any finite-dimensional space R¥. It is known
that (cf. Strasser, 1985, p. 7)

1
sup |P(8) ~ 0B) = 5 [ 17x) — gt .
Be# Rk

Result (1.1) quoted at the beginning on the supremum over convex sets on the absolute difference of
probability measures generated by distribution functions on the real line does not hold even for the class of
convex sets in R?. The following example due to Babu (1998) demonstrates the point.

Example 1.3 (Babu, 1998). Let F' denote the distribution function corresponding to the uniform measure u
on the unit square. Suppose v denotes the measure that puts mass 0.1 at the upper right vertex of the unit
square, and distributes the rest of the mass 0.9 uniformly on the remaining part of the diagonal. Let G denote
the distribution function corresponding to v. Clearly,
0 if min(x, y)<0,
Fx,y)=< xy ifO0<x,y<]l,
1 if min(x, y)>1

and
0 if min(x, y) <0,
G(x,y)= ¢ 09min(x,y) if 0 <min(x,y) <1,
1 if min(x, y)>1.
Hence,

A=sup |F(x,y) — G(x, y)| = (045)".
Xy

On the other hand, if 4 denotes the open triangle below the diagonal in the unit square (i.e. 4 = {(x, y):
0 <y <x < 1}), then 4 is a convex set, v(4)=0 and u(4)=0.5. Consequently, 24 < 0.5 <sup |u(B)—v(B)|,
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where the supremum is taken over all convex sets. Hence the statement that sup{|u(B)—v(B)|: B convex} <24
is false.

However, it should be noted that in both the examples discussed above the two distributions are mutually
singular.

Our aim in this paper is to obtain bounds on the Levy—Prohorov distance between two probability measures
generated by a random vector X=(X{,...,X;) and another random vector Y=(Y},..., Y;) where the component
Y; has the same distribution as that of X; for 1<i<k but the components Y;, 1 <i<k are stochastically
independent. We will compute bounds in terms of the moments related to the joint distribution of X. Our
results are based on general results of Yurinskii (1975).

2. Preliminaries
2.1. Cumulants of functions of random vectors

We extend some results on cumulants of functions of random vectors along the same lines as that of Block
and Fang (1988). They are used later to prove the main results.

Consider a random vector (Xi,...,X,), where E|X;|" < oo, i =1,...,r.

Definition 2.1 (Block and Fang, 1988). The rth-order joint cumulant of (Xi,...,X,), denoted by
cum(X,...,X,), is defined by

cum(Xy,....X,)=> (=1)?"'(p—1)! (E HX,) (E HX,), (2.1)

JEu JEV
where summation extends over all partitions (vy,...,v,), p=1,2...,r, of (1,...,7).
For real-valued functions f;, i=1,...,r, assume that E| f;(X;)|"” < co. The proof of the following lemma is

along the same lines as the proof of Lemma 1 of Block and Fang (1988).

Lemma 2.2. If E|fi(X)|" < oo, then

m

ELAK) - fuXo)] = [TELAGOT =)~ cum(fi(Xi), & € 01)...com(fe(Xe), k € v)), (22)

i=1

where ) extends over all partitions (vy,...,v,), p=1,...,m—1, of {1,...,m}.
In particular, for m =3, we have

3
EL/i(X0) 2(0) f3(X:)] — [ [ ELA(O)]
i=1

=cum( f1(X1), /2(X2), f3(X3)) + E[/1(X1)]eum(f3(X3), f2(X2))
+ E[ f2(X2)]eum( f1(X1), f3(X3)) + E[ f3(X3)]cum( f1(X1), f2(X2)). (2.3)

Note that

cum( f1(X1), f2(X2)) = Cov(f1(X1), f2(X2)), (24)
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and if f] is differentiable, then

S1(Xy) —fl(O):[ SGD[e(xn) = L— oo (X1)] dxy, (2.5)

where

1 if x>0,
8(x) = {

0 otherwise

and f'(x) is the derivative of f(x).
Therefore,

ELA(X)] — /1(0) = [ FiGeDee) — Fy (x)] dai, (2.6)

where Fy(x;) is the distribution function of X;.
Then, from Fubini’s theorem, we get

E[(/itX1) = /1(0)...(/r (X)) = /(O] =E H/ f;‘/(xi)[g(xi)_I(—oo,x,]()(i)]dxi‘|
i=1Y 7>

- /OO /Oo E (H F1D[805) = I~ o) (X0)] dx,-)
e e i=1

r

:/OO /Oo TTA G (TTee) =D T eor)
- =1 i=1

J= k#j

+ > [[eoF (™) + -+ (=1YF(x)| dx;...dx,.

i<j k#j
(2.7)

Here x(1) represents (X1,..., Xi—1,Xi,+1--+> Xiy—1>Xi+15---,%,) and F(x{-)) is the distribution function
of X(il,...,ik).
Using the above results we can prove the following theorem.

Theorem 2.3. If E|fi(X;)|" < oo and f; is differentiable for i=1,...,r, then

cum( f1(X1),... ,fr(X,)),:/ / Hf,—’(xi)cum(x)(l (x1) s xx.(x))dx; ... dx,, (2.8)
- T =1

o0

where

1 if)(i>xia
xx(xi) = {

0 otherwise.

Proof. The proof follows from (2.7) and the fact that
cum(f1(X1),..., fr(X;)) = cum((/1(X1) — £1(0)),..., (fr(X:) — £:(0))).

Remark 2.4. Using properties (i) and (iv) in Block and Fang (1988), we can extend the above results to
complex-valued functions f;.
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2.2. Yurinskii’s bound

We first discuss some general results on Levy—Prohorov distance due to Yurinskii (1975).
Let F, G and H be probability distributions on R* and let | .| be some norm in R¥. Let L(F, G) be the Levy—

Prohorov distance between F and G corresponding to |.|, that is, the lower bound of all positive numbers ¢
such that for any closed set 4 € R and for its e-neighbourhood 4? in the sense of the norm |.|,
ur(A) < pe(A®) +&  pg(d) < up(4°) + e, (2.9)

where up denotes the probability measure corresponding to F'.
Suppose that G has a density g(x) satisfying the condition

/ lg(x +h) — g(x)|dx<T|h|, hecRF (2.10)
Rk
for some constant I" > 0. Yurinskii (1975) proved that
LF,G)<ci(1+ F)/ |x|H(dx)+ ¢; L(F « H,G x H), (2.11)
Rk

where ¢; and ¢, are absolute constants and * denotes the convolution operation.
Suppose F and G are distribution functions such that

: k
/ |x|"F(dx) < oo, / |x|/G(dx) < o0, /= H + 1. (2.12)
Rk Rk 2
Further suppose that H is a fixed distribution function on R* with density 4(x) such that
/ |x|“h(x)dx < oo (2.13)
Rk
and the characteristic function
0= [ expite, et dx 2.14)
Rk

vanishes for |¢|>1. Then it follows from Yurinskii (1975) that there exists an absolute constant C, possibly
depending on the choice of H but not on F or G, such that

p 1/2
14T ;
LF.G)SCQ ——+ ( /| Lo =0F + 317t - y(t>>|2]dt> : (2.15)
<7 1
where
12
Z'wt)= | > [D*w(t) (2.16)
llocl|=i
and
Allllyy(e)
Dw(t)y= ————— 2.17
w(t) 6“1t1...6°‘ktk’ ( )
where ¢ and y are the characteristic functions of F' and G, respectively, ¢ = (¢1,...,#) and a = (ay,...,%).

Here ||a||=a1 +- - - +a. Throughout the following discussion, the absolute constant may depend on the choice
of H but not on F or G.
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3. Bound in the bivariate case

Suppose F is a bivariate distribution function and it has the density f with marginal distributions Fx and
Fy and densities fx and fy, respectively. Let G(x, y) = Fx(x)Fy(»).
It is easy to see that

(i, 1) = o(11,0)p(0, £2)

and hence
oy(t1, ) 0p(t1,0)
6t1 - 5t1 ()0(0, t2 )a
ay(tl)tz) _ a(/)(oa 12)
atz - (P(tlao) atz
and

*y(t1,)  99(11,0) 3p(0,12)
0t10ty o o Oty

whenever they exist.
In particular, there exists an absolute constant C such that

14T do(t, ) 09(t,0 2
wrey <cd / (11, 12) — (11, 0)p(0, ) + |C212)  00(:0) iy 4
T 1| <T oh o

) 1/2
] d,> } 61

2 Pe(tn)  9(11,0) 0p(0,6)

0t 0t ot oty

0p(t,t 00(0, 1
+‘ QD(‘\I 2)_@01’0) ¢(0,2,)
oty oty

Note that
0(11,12) = 9(1,00p(0, ) = E[e"* 7] — E["V]E[e" ] = Cov(e™™¥, "),

t t . : : . . .
0oltn.tr) _ 2001:0) 4 1, = Eixe ¥ 6T ] B[ Xel|E[e"] = Cov(i XX "),

oh o
a(p(tl’ tz) o Qo(tl, O) a(p(or tz) _ COV(CHIX, iYeith)
ot ot

and

Po(ti,n)  0¢(t1,0) 0p(0,1)
0110t ot ot

under some moment conditions. Let £(#;,%,) be the integrand under the integral sign on the right-hand side
of inequality (2.15). Note that

E(t, 1) = |Cov(el"Y, eV + |Cov(iXe X, eV )2 4 |Cov(e¥,ivel)|?

= Cov(iXe¥,ire)

+|Cov(iXxe™, ive! ). (3.2)

It is known that if /4; and 4, are real-valued differentiable functions such that Cov(/;(X),/,(Y)) exists, then

Cov(n(X ). hy(Y)) = [ [ I, (OO (3) iy (r, ) dx d .,
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where
Hyy(x,y)=P(X >x,Y > y) = P(X >x)P(Y > y)
=P(X<x, Y<y) - PX<x)P(Y <)

(cf. Newman, 1980; Prakasa Rao, 1993). It is easy to see that the above result extends to complex-valued
functions 41(x) and A,(y) provided that the real and imaginary parts are differentiable. Let

hi(x)=(ix)e™ and hy(y)=(iy)’e”’,
where »>0 and s>0. Then

Hi(x) = (ix)ite™ + r(ix) i,

Ry(y) = (iy)'ine™ + s(iy) e,

where we interpret the second term on the right-hand side of the above equations as zero whenever » =0 or
s = 0. Hence,

COV(/’I](X) hz(Y))—/ / 1t1x+lt2yHXy(x y)[ r+b+2xryst1t2+r51r+a r— lys I_’_1r+5+lxry5 'tls

+ i s dxdy. (3.3)

In particular,

o0 o)
|Cov(hi(X),ha(Y))| < / / [ ytita| + Xy s + X7 s + Xy r] | Hy y (x, v)| dx dy.
—o0 J —00

34)
Hence, we have
. . (o) o0
Ji1= |Cov(e"¥,eT)] <|m2\/ / |Hy y(x, y)| dxdy,
Jr=|Cov(iXe¥, el < / / {Ixtit2| + 2| }|Hx. v (x, y)| dx dy,
J3= |Cov(e"¥,ive?)| < / / {lyt1t2] + |t1|}Hyx.y(x, )| dxdy (3.5)
and
. . o0 o0
Jy=|Cov(iXe™™ ive") < / / [xytita] + |xt1| + | vt2| + 1]|Hy y(x, y)| dx dy. (3.6)
Let
Ay = / / 37 | Hy v (r, )] dx . (3.7)
Then

|t1t2‘AX Y
Jr < |11t2\AX,Y + |t2\A?((3y,

J3 < |tlt2‘A8(}y + |t \A?(?Y
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and
L<|tnldyy + 614y + |6|4Yy + A%y (3.8)
In particular, it follows that
2
&) <{[nnlf + (6l + 06’ + (0] + [06]? + (66| + 6] + || + 17} | max 47, | (3.9)
i=0,1
j=0,1
Suppose the norm |¢| is the Euclidean norm |¢| = (7 + #3)'/2. Note that
£+ 1
120 S
and hence T2/2>tt, if |t|<T. Similarly, for T>1,
2 2, 22 , It 54
(o] + 0 <2(5 +66)<2 (T 7 <§T,
(In] + [nn|P <31
and
(Innl + 0]+ |0l + 1)’ <4@G5 + 65 +5+1)
4
<4<+T2+T2+T2>
<1371
Therefore,
2
f(l],l2)<C0T4 max Aéj(;y
i=0,1
j=0,1
for T'>1, where C, is an absolute constant and hence, for 7> 1,
2
/ E(t, k) dt < C0T4 max A;éY C 72
lt|<T i=0,1
J=0,1
2
= GT° | max 4%, |, (3.10)
i=0,1
J=0,1
where C; is an absolute constant. Relations (3.1), (3.5) and (3.6) show that, for every 7 >1,
14T y
L(F,G)<C; % +7° max Ay, ¢, (3.11)

i=0,1
j=0,1
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where Cj is an absolute constant. It is clear that (3.11) holds trivially for 0 < 7' < 1. Suppose T is chosen

so that
1+T i
—— =T max Ay ,.
r i=0,1
j=0,1

Then it follows that
1/4

and
1/4

L(F,G)<Cy{ (1+T)¥* | max 47, , (3.12)

i=0,1
Jj=0,1

where C4 is an absolute constant.
Hence the following theorem holds.

Theorem 3.1. Suppose F and G are distribution functions on R> with G(x,y)= Fx(x)Fy(y) where Fy and
Fy are the marginal distributions of F. Further suppose that G has a density function satisfying (2.10) and

/ |x[*F(dx) < oo, / |x[>G(dx) < .
R? R?

Let L(F,G) be the Levy—Prohorov distance between F' and G. Then,

1/4

L(F,G)<C{ (1+I)* | max 4, ,
i=0,1
j=0,1

where C is an absolute constant.

Remark 3.2. If the random variables X and Y are associated then, it is easy to check that there exists an
absolute constant C such that
1/4
(3.13)

L(F,G)<C{ (1+I'y* | max 4, ,

where
A5 :/ / x|yl Hy,y(x, y)dxdy.
—oo J—o0
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Note that

ASoZ/ / Hy y(x,y)dxdy = Cov(X,Y)>0.

—00 J OO

It is known that bound (3.13) ensures the fact that
1/4
sup |ur(A4) — ug(4)| <C < (1 4+ I)** | max A , (3.14)
A€ot

i=0,1
J=0,1

where .o/ is the class of Lipschitz sets (cf. Yurinskii, 1975) with respect to F' or G. Recall that G(x, y) =
Fyx(x)Fy(y) where Fx and Fy are the marginal distributions of F. It is plausible that the bound in (3.14)
cannot be obtained from the bound given in (3.15) below due to Bagai and Prakasa Rao (1991), from the
examples discussed at the beginning of Section 1.

Theorem 3.3. Let X and Y be associated random variables with bounded continuous density function fy
and fy, respectively. Then there exists a constant C depending on fx and fy such that

sup |[P(X <x,Y <y) — P(X <x)P(Y <y)|<C Cov'3(X, Y). (3.15)

X,y

4. Bound in the trivariate case

Suppose F is a trivariate distribution function and it has the density f with marginal distribution Fy, Fy
and F; and marginal densities fx, fy, and f7, respectively. Let G(x, y,z) = Fx(x)Fy(y)Fz(z). It is easy to
see that

Yt t2,13) = @(11,0,0)0(0,2,0)9(0,0,%)
and hence

0yt 12, 13) _ 0(11,0,0)
o ol

¢(0,2,0)9(0,0,4)

and

(1,1, 13) _ 09(11,0,0) 0¢(0,1,0)
0110t ot ot

¢(0,0,13)

whenever they exist.
Similarly, we have 0y(t1,1,13)/0t, 0y(t1,12,13)/0t3, 0*)(t1,12,13)/01301, and 0*y(t1, 12, 13)/0t, Ot3.
Relation (2.15) implies that

1+T
L(F:G) < C {T + (/ [|¢(t19t23 ZL3) - (p(tlzoa 0)(10(09 t29 O)QD(0,0, t3)‘2
|t <T

2

Op(ti,00,13) — 0¢p(11,0,0
+‘ (p(é 28)  dp(h )go(o,tz,O)qo(O,O,ts)
t o
op(t1, to,t 9¢(0,,0 2
4| Golntnt) 0,0y 000 20) g 4y
atz 51‘2
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2
| Q0 8) o 0,0)p(0,1,0) O %01
613 6t3
Pt b,1)  00(11,0,0) p(0,1,0) ?
Y e, on o, P0.0.6)
Aot h,t3)  0¢(1,0,0) 0¢(0,0,13) 2
- t,0)——22>2
+ 0t10t3 o (p(o’ 2’0) otz
Po(ty, 12, 83) 20(0.4.0) 90(0.0.5) >\
1’ 27 3 9 25 9 b 3
CAIB) 51,0,0 dr .
5t25t3 q)( 1, Y, ) atz 5t3 > }

Note that, by Lemma 2.2,
@(t1,12,13) — @(11,0,0)9(0,22,0)(0,0,73)
_ E[eit1X+it2Y+it3Z] _ E[eith]E[eitZY]E[eit3Z]
— Cum(eith, eith’ eit;Z) + E[eith]COV[eitZY, eith]
+E[eith]C0V[eit1X eith] +E[eit3Z]C0v[eit1X eith]

do(t,1,13)  09(11,0,0)
Ot] 6t1

= Cum(iXe"", e, %) + E[i X" [Covle™”, e"]

@(09 t, 0)(/)(09 Oa t3)

+E[¢"]Cov[iXe"¥, 7] + E[¢"#]Cov[i Xe"¥, "],

Op(t1,0,13) 0¢(0,1,0)
6t2 afz

= Cum(e"",ive™” %) + E[e"" Cov[iYe™" "]

QD(tl,0,0) 90(0503 t3)

+E[iYeCov[e"", e"7] 4 E[“#]Cov[e"¥,iY e ],

Op(ti,t,t3) (11.0.0)0(0. t2’0)0<p(0, 0,13)
6t3 6t3

— Cum(&, 7, i) + E[e"V]Cov[e™,iZ64]
+ E[Cith]COV[eit]X, iZeitzZ] + E[iZeit,zZ]CoV[eith’ eith],

Po(tib,t)  09(11,0,0) d¢(0,1,0)
0t 0ty o 0ty

=Cum(iXe"¥,ive" %) + E[i X" ¥ ]Cov[iY e, e7]

@(09 0: t3)

+E[iYe™ |CovliXe"¥, e?] 4 E[e*?]Cov[iX e, ive™ ],

Po(t,t,t5)  09(11,0,0) 0¢(0,0,23)
0t 0t ot o0t

= Cum(iXe"¥, ¢, iZe"”) + E[i X e ]Cov[e'”,iZe"]

QD(O, b, 0)

+ E[e?YCov[iX e, iZeB?] + E[iZe?]Cov[i X ¥, ei?]

115

4.1)

(4.2)

4.3)

(4.4)

(4.5)

(4.6)

4.7)



116 L Dewan, B.L.S. Prakasa Rao | Statistics & Probability Letters 48 (2000) 105—-119

and
Po(tit) (11.0.0) 99(0,1,0) d¢(0,0,13)
0t 0t ot 0t
=Cum(e"¥,iY e, iZe'"?) + E[¢"¥|Cov[iYe",iZe']
+ E[iYel2Y|Cov[e,iZe"?] + E[iZe#]Cov[e, iYeT], (4.8)
under certain moment conditions.
Let
Js = E|Z|],
Jo = E|Z|)»
and
J; = E|Z|Js. (4.9)

Then, following the arguments of the previous section and applying (3.5), (3.6) and (4.1), we have for an
absolute constant C:
7

S <c{nnl + (| + (a6 + (ol + [aa])? + (1 + 0] + o] + [66])*} max (45, )% (4.10)
2
Further, we have
00 00 00 3
(Cum(hy (O (V) < [ ) | ) / D eumGus o zeldndvaz. @)

Using Theorem 2.3, it follows that there exists an absolute constant C such that
|Cum(e™¥, el e!5%)|2 4 |Cum(i X e, e, %))
+|Cum(e™,ive™?, e5%)|2 4 |Cum(e¥, e2!,iZe"%)|?
+[Cum(iXe"¥,iye™", %)) + [Cum(iXe¥, ", iZe'?)|* 4 [Cum(e™,iY e, iZe™ )2
<C{nos + [unlf +u6 + o6 + 6 + |6 + (6} ,max | A%z Y (4.12)
where for, r1,7,,73 = 0,1, we define

Ay = / / / ™y 2| Cum (), v (1), 22(2))| dx dy dz. (4.13)

Let &(t,t,13) be the integrand under the integral sign on the right-hand side of inequality (2.15). Then,
following the arguments of the case k =2, we have

ij ij ij ijk
&t 13)<C R T* max {(4Y ) (4%, (47, + T° 4imka>(§1(A)j(’Y’Z)2 (4.14)
i=0,1 L, ],k=0,
j=0,1

for T>1, for some absolute constant C, where Ag{ , and Al,f , are defined analogous to Azy.
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Hence, for T >1, there exists an absolute constant C such that
14T Ny . . .
L(F,G)<C {—; + 77  max. {A;j(kyz’A;j( ys A% 747 7 } .
1,7,k=0, T ’ ’ ’

Following the arguments in Section 3, we have
N T A
L(F,G)sc{(l + )’ <‘r‘rl1€a>él{A;J(kYZ,Agéy,A;’(Z,A’§Z > } (4.15)
i k0, Y, g s \

and the result given below.

Theorem 4.1. Suppose F and G are distribution functions on R> with G(x, y,z) = Fx(x)Fy(y)Fz(z) where
Fx,Fy and F7 are the marginal distributions of F. Further suppose that G has a density function satisfying
(2.10) and

/ |x[2F(dx) < oo, / |x|>G(dx) < .
R3 R3
Let L(F,G) be the Levy—Prohorov distance between F' and G. Then,
N o\
L(F,G)<C {(l + )1 (pll{a)él {A}kYZ,A;’(wA;’(Z,A’{,Z ) }, (4.16)
1,7,k=0, o ’ ’ ’

where C is an absolute constant.

5. Bound in the general case

Suppose we have a random vector X =(X1,...,X;). Then, using (2.15) to (2.17), and arguments analogous
to those given in the bivariate and the trivariate case, we get that there exists an absolute constant C such
that

1+T

L(F,G)<C {T + T2 max{Cix, ico,) - -- C(Xl.,[@p)}} , (5.1)
where the maximum is taken over all partitions (vi,...,v,), p=1,....,k—1 of {1,2,...,k}, and for X;,..., X,
corresponding to the subset v = (iy,...,i),

C(X[,iev) = max A/r\,lt”r/X‘ } (52)

Flyom 17 =0,1 1Ay
with
o) [e%e) 4
A;(l,’l,:(j/ = / / Hx:ﬂ,/ ‘Cum(XX,l (xil )9'~~9XX;'/ (xi/ ))| dxil e Xipe (5.3)
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Hence, there exists an absolute constant C such that
L(F,G)< C{(1 + ¥ D (max{Cxjen) - - - Coico, )7 (5.4)
We have the following theorem.

.....

Fx,(x1)...Fx,(xx) where Fx, 1<i<k are the one-dimensional marginal distributions of F. Further, sup-
pose that G has a density function satisfying (2.10) and

/|x|fF(dx)<oo, /|x|fG(dx)<oo, /mﬂ_
R R 2

Let L(F,G) be the Levy—Prohorov distance between F' and G. Then
L(F,G)<C{(1 + I D(max{Crxjcr) - - - Corpico,y 1,

where C is an absolute constant.

6. Remarks

(1) If G(x, y,z) = Fx(x)F(v,z)(»,z), then it is easy to see that there exists an absolute constant C such that
, o\
L(F,G)<C {(1 + )yt (II}{agl {42 A% v A% 2 ) } (6.1)
1,7,k=0, e ’ ’

It should be noted that the expression A’; , does not appear on the right-hand side of the above inequality.
The general case dealing with a bound for L(F, G) when
G(-xl: e :xk) = FX[,...,X,(xla e ’xr)FXy+l,...,Xk(xr+1’ e :xk)

needs to be investigated.
(ii) If Xj,...,X; are associated, then using an inequality due to Lebowitz (1972) and Theorem 3.3, it is
easy to see that

k
0 < P >xi=1,....k - [ PlXi >x)
i=1

< Z Hy, x,(xi,x;)

1<i<j<k
<C Y cov'ix.x)). (6.2)
I<i<j<k

A set A4 is called an upper set if x € 4 and y>x implies y € 4. Then, following the approach in Theorem 2
of Newman (1984), we can extend (6.2) to upper sets. In other words, there exists a constant C such that

k
0 < PLX; € 4, 1<i<k] - [[ PLX: € 41]

i=1

<C Y Ccov'Px.x)) (6.3)

I<i<j<k

uniformly for all upper sets 4;, 1 <i<k.
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