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Abstract
Asymptotic optimality in the minimax sense of an approximate maximum likelihood
estimator and an approximate Bayes estimator of a parameter appearing nonlinearly
in the dnift coefficient of an Ito stochastic differential equation has been established
when observations are made at regularly spaced but dense time points.

1 Introduction

The study of statistical inference for diffusion processes which arise as the solutions of
Ito stochastic differential equations (SDE) is of great importance in view of its large
number of applications (cf. Prakasa Rao (1999 a,b)). There are a lot of contributions
to the problem of drift estimation in diffusion processes observed in continuous time.
But the assumption that the process can be observed continuously throughout a time
interval is actually impractical. In view of this, it is of utmost importance to know the
asymptotic behaviour of estimators of drift and diffusion parameters, when the process
is observed at a discrete set of time points.

letto =0 <t <3 <...<ty =T and suppose the process {X;,0 < ¢t < T}

AMS 1991 Subject Classification: 62M05.

Key Words and phrases : Stochastic differential equation, Diffusion process, Approximate maxi-
mum likelihood estimator, Approximate Bayes estimator, Local asymptotic normality.




122 B.N. Nishrae B.L.S. Prakssa fgy

is oberrved at the time points £,,0 € § € »n. An approximation of the maximym
kkelibood estimator (MLE) of the drift parameter in & lincar SDE when T is ined,
based on the process { X} obecrved over {0, T], by an estimator based on X, ,0 S i<
and A, w max{it,.; = 8,].1 €i < n} = 0asn =+ 00 has been studied in Le Bretog
(1976) and Mishra and Bishwal (1993). The weak cousistency of the least squares
estimator (LSE) when A, = 0 and T — 00 has boen studied in Dorogoveev (1976),
The asymptotic normality and the asymptotic efficency of the LSE have been studied in
Prakasa Rao (1983) when 7 ~+ 00 and J;-to.Comiﬂmcylnﬂuymptotkqu
of a minimum coatrast estimator of the drift parameter in nonlinear SDE when T - oo
and iy — 0 have been studied in Dacunha-Castelle and Florens-Zmirou (1986). They
have also studied the expansion of transition probability density function suitable for
their purpose. A comprehensive discussion on parametric and nonparametric inference
for stochastic process from sampled data is given in Prakasa Rao (1988) and more
recently in Prakass Rao (1999a,b).

In this paper we study the asymplotic properties of an approximate maximum
Ekelihood estimator (AMLE) and an approximate Bayes estimator (ABE) of a param-
eter in the nonlinear drift coefficient of an Ito SDE when the process is observed at
equidistant time points. The main tool of investigation is a suitable expansion of the
transition probabilily density function of the Markov chain { X, ,0 < i € n}. We prove
the local asymptotic normality (LAN) property of the model under some conditions.

The existence of LAN property implies consistency, asymptotic normality and
asympiotic efficiency of the estimator. It is worth mentioning that the asymptotic
propertios of the MLE and the BE of the drift parameter in homogenous nonlinear
SDE bave been studied in Kutoyants (1977) using the LAN property of the model
when the process is observed continucusly through out the time interval.

Through out the paper we shall write ¢ for a generic positive constant. The paper
Is organised as follows. Section 2 contains preliminaries, definitions and notations.
Section 3 describes the main results. Section 4 gives the proof of the main results.
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2 Notations, Definitions and Preliminaries

Let @ = RT where R denotes the real line and T' = [0, 00). Let B denote the o-algebra
generated by the class of all finite dimensional cylinder sets. Let P, be a probability
measure defined on the measurable space (£, B) such that the coordinate process X

is such that it is stationary and satisfies the stochastic differential equation

dX, = b0, X;)dt + dW,,t > 0, Xo = 1, (2.1)

where 5(0,.) is the drift coefficient, # € O open in R is the unknown parameter and
{W:,t 2> 0} is the standard Wiener process under the probability measure P;.. Let 8
be an arbitrary but fixed value of the parameter.

In this paper, we are concerned with the inference based on the process {X;,t > 0}
when it is observed at equidistant time points ¢; = kn~1/2, 0 < k < n. Thus denoting
Aty = t; — tx_y, we have nAt, — oo and At, — 0. All the limit statements seen
here after are to be considered as n — co. Let X = {Xi,,k=0,1,2,...n} be the
stationary Markov chain that we observe.

On {f,,{™}, denote the measure generated by the chain X™ by P,("') where
Q, = R*,((™ is the o-algebra generated by {X(k-1)n-212,k = 1,2,...,n + 1} and
0 € ©. Let (" be the o-algebra generated by {X,.

'_l)n_*,i =1,2,...,k}. We assume

that the following conditions hold:

(Al) b(8,z) is a known real valued function continuous on © x R, such that -aig;—"'l,
ﬂaﬁ—‘l, 32—2%51 and 3"?—;};&1 denoted as b,, by, bge and bzg9 respectively exist and are
differentiable with respect to # on © x R having uniformly bounded derivatives
for § € O©.

(A2) by and b.ge are Lipschitz in @ with respective Lipschitzan functions. g;(z) and
g2(z) satisfying Eegf(X) < oo and Eyg2(X) < oo

(A3) For all 0 and 6, # 0; in ©, Ey(b(61, X, _3) — b(02, X, _3))* #0.
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(A4) For the stationary Markov chain X ™ = {X,,,0 < k<n},

I ...
im = 52(8, X:,_,) = Esb3(8,7) =7 >0

o0
nmeon k=1

a.s. under P;-measure as n — oo uniformly for 6 € ©.

In addition to the conditions (A1)-(A4), we suppose that sufficient conditions hold
(cf. Lemma 3 of Dacunha-Castelle and Florens-Zmirou (1986)) to ensure the expansion
of the transition density function of the Markov chain {Xj, 4,0 < j < n}. Let gy(,, )

" be the transition density function of this Markov chain.

Let
(n)

dP
(n)) — __8thn"1Ay71R2  xr(n)
Zn,ﬂ(hi-x ) = dPo(") (X )’
Recall that the sequence of families of probability measures { P}“’, #cO,n>1}is
locally asymptotically normal (LAN) at a point 8, € O if the following conditions are

satisfied:

(i) there exists a sequence {A,4,,n > 1} of ((™-measurable random variables such

that

n 1 s
log Z, g,(h, X ( )) - hA, 9, + §h2 2 0in Ps, -measure
as n — 0o, where
1 n
Ando = n1/47§ ;El lFM(%’X(J'c-l)mr.'*)AW""'

and

AW = W -—Whv_%
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(ii) the sequence {A,4,} converges in distribution under P( )_measure to N(0, 1) as

- n - 00.

If the family {P,("),G € O} is LAN at every point 8 € ©, then it is LAN in © and
if the conditions (i) and (ii) are satisfied uniformly in 8 € ©, then it is uniformly LAN
in O.

Using the expansion of the transition probability density function of a Markov chain

as in Lemma 3 of Dacunha-Castelle and Florens-Zmirou (1986), we write the expansion

of the transition probability density function gy(.,.) of the Markov chain X{™ as

S1( X, Xez1)  So(Xx,Xxa1) 1 :
vn n vn n :
x [1+ 4 _— ]+--—-n_:_R xv,,;,xk.ﬂ)
' (2. 2)

with |R(z,y)| < cé%(z,y) uniformly with respect to 8, where ¢.(z) = sup{1, |6(6p, z)|")
. 1
for 7 > 0,¢.(z,y) = [ ¢.((1 — u)x + uy)du, 51, S; are as defined below and
0

G(z) = j b(0o, u)du

This can be seen as follows. By the Ito formula

N kn—h _ a4
G(x kn)-G(Xk..l) _ ] _ b(G,X,)dX,+% k/ b.(8, X.)dt
i (k=1n—% (k=1)n=%

o b(a,ka—_l__)AXk + ——=b(9, Xk-l) (2. 3)

2«/_

Following Dacuna-Castelle and Florens-Zmirou ((1986), page 272), we write

1 * —_— 2 k — R 1 .
S, (x:,:,x%.:l) = ——=$(6, Xs1) (6, Xazt),  (24)

vn 2\/_ \/-
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and
25, (Xa X ) =~ {806 Xisa) + (8, Xesa )owa(6, X |
1
= gan oo (0 Xo2) (2. 5)

Substituting the approximations (2.3)-(2.5) in (2.2), we obtain an approximation of
the transition density function gg(-,:). We assume that sufficient regularity conditions
hold justifying the validity of this approximation of the transition density function
gs(*y+).

Using (2.3) - (2.5), we write the log likelihood function of X™ as

log k=196 (X k=t X 5;)

- S (2) L E (1) + b0 0
_5% g (0, X, 1\ -4)
12n Z{b*(a Xe-1a-t) 00, X, _ -t )000(6: X\ 1))
— Elbm(ﬂ > SRy ZRa( i~ X hynt) (2. 6)

The log likelihood ratio is given by

log ﬂ':=1 qaz (X(k-l)ﬂ-} ’ an-& ) - ]'Og W;:=1q01 (X(k_l)n_'} ? an_%)

= g{b(az, X(k—-l)ﬂ.'*) - b(al,x(k_l)u_})}AWk
o /m E{b(az: X(k_l)n,-}) — b(b,, X(k_l)n—})}z
12,n{Z:( 502, X 1\ -4) AU SY)

N kz=:1 (bo(62, X(k-nn'* )bes (02, X(k-l)ﬂ'* )
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n

- ; (66(61, X(k-l)n"* )bes(%1, X(k—l)“-* )}

k=1
1 T
1 & L s
nt g e, (X#,X%_%) ~at k=1 . (XVJIE’X%'%) all

Using the condition (Al), let us denote

(%) Sgp 165(0, z)bgs (8, z)| = $r(x)
(%) By 656 (8, ) + be(8, z)bges (0, 2)| = ¢o()
(222) sup |02066(0, )| = d3(x)

and max{¢:1(z), d2(z), #3(z) = ¢4(z). Assume that
(A5) J Tiay B{a(X22)I(:%)} = 0(1) a5 n — oo.

3 Main results

Theorem 3.1 Let the conditions (A1)-(A5) hold, and {X;,t 2> 0} satisfy (2.1). The
sequence of probability measures {P{™,0 € ©,n > 1} generated by X ™) satisfy the
LAN condition uniformly in § € © with the normalizing sequence n~ty 4.

Let the loss function L(z),z € R be continuous at zero, symmetric, L(0) = 0, the
subset {z : L(z) < c} be convex for all ¢ > 0 and suppose that for any A > 0, L(z)
as |z] = oo does not increase faster than exp(h|z|?). We state the Hajek inequality in
Theorem 3.2 below for the scheme of observations X ™ and the loss function L(u). The

proof of this result follows as in Ibragimov and Hasminskii (1981) due to the property
of LAN for X{*) as shown earlier.

Theorem 3.2 Let the conditions (Al)-(A5) hold. Then for any family of estimators
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{§o.n 2 1} and the loss function I{-) and for any & > 0, the inequality.
, nd 1 o
liminfae sup Eo{L(n¥/y'(d, - )} 2 75 l L(z)e~*" Py
holds.

Remark 3.1 For 6 C R.thcimqmlityinTheomaap'mmmMm.m,

i and oaly if vint(d, — 6) ~ Aa g — 0 in P{)-measure as n — co. Note that this

condition holds for an approximate MLE and an approximate Bayes estimator of the

parameter § based on the discrete set of observations , {Xy,,ts = kn-$,0 < & < n},.
In discussing the properties of the Bayes estimators, we shall consider a quadratic

loss function and a prior density x(@) which is continuous, bounded and positive on 6.
We shall use the following lemmas for the proof of our main result.

Lemma 3.1 Let the conditions (Al)-(A5) hold. Then there exists a constant ¢ > 0
such that

sup Eo(Zus(bs, XN = 2,5k, XN < olby - o)’
whenever b, € Hy, = {A: 0+ An-ty-d €O} fori = 1,2.

Lemma 3.2 Let the conditions (Al)-(A5) hold. Then

l‘:g P.{Z.,(k, X“,) > C-“'} < G'd'

where A € Hyn = {h: 0+ hn-ty-} € ©),a = /6y and B = inf,., by(6, 2).

Definition 3.1 : Let the family of measures {P{™,0 € ©) be LAN in ©. Then as
estimator 8] is called asymptotically efficient if for every 6, € O,

E‘-‘%N,.?,}’K, -1/41-113)’ = 1.
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Theorem 3.8 Let the assumptions (A;)-(A;s) hold. Let 8, be the approximate maxi-

mum likelihood estimator of the parameter 8. Then 0, possesses the following properties

uniformly for 6 € © asn — o0 :
(i) 0, is consistent in Ps-measure;
(ii) nY/441/2(4, — ) is asymptotically standard normal :

(ili) all the moments of the random variable n'/441/2(d, — ) converge to the corre-

sponding moments of the standard normal distribution and
(iv) limp—co Supgeg [n/47/3(6 — 8) — An o] = 0 in P{™-measure.
Further from above discussions, it is easy to prove the asymptotic efficiency of 4,.

Remark : For a detailed proof of these results, see the proof of Theorems 1.1, 1.2
and 1.3 of Ibragimov and Hasminskii (1981, Chapter III) .

Theorem 3.4 Let the conditions (A,)-(As) hold. Let 8, be the approximate Bayes
estimator of the parameter # with quadratic loss function and a prior density function

#(6). Then 0n possesses all the properties of §, enumerated above as in Theorem 3.3.

Remark : For detailed proof of these results, see Theorem 2.2 and Theorem 2.1

of Ibragimov and Hasminskii (1981, Chapter III).

4 Proofs of main results :

We now give a proof of Theorem 3.1. From (2.7) we have the log likelihood ratio
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h’r-l, zn‘lf . z bg(ﬂ, X (k=1)n—2 f&)‘AWk

k=1

2,~1 N

S () AL -h"r""-'” Y buo(B, Xp-ya-sr) AW
N =y k=1

h3 -3/2 n

n5/4 Z ba (51 X (Jc-.l)r.t-lﬂl )bﬂﬂ (3, X (k—1)n™? }z)

/
E{bee(e X -1)n-312)506(8; X (x—1yn=112)

k=1

+be(0, X1 1),.-1-12)5009(9 X(Ic-l)n""")}

h ~-1/2 n
_2Zn5/4 3 beooo (6, Xp-n-1n2) + 5/4 b (Xgoryprrs Xini)- (4 1)
k=1

The above relation is a consequence of the Taylor’s expansion of
b(0+ h'y'llzn'l/‘, X(k-l)ﬂ,-lf’)
at @ and note that |0 — 8] < hy~Y/ 214,

In the above expression (4.1), the third term tends to zero in probability uniformly
for § € © as n-— oo by Prakasa Rao (1983). All the other terms except the first and
second are bounded by ¢4(X(x—1yn~2/?) uniformly for § € ©. Again

1 n 1 e n
W,§1¢‘(X(k_1)n-i) 'n_s'/'i' Z{¢‘(X(k-1)n-i) — B9 X -1l (o

n5/4 Z E(¢4(X X1 )IC(")

k=1
Jl + Jz (sa.y).

Note that EJ; = 0 and Var J; = n=3/2 %, Var (q(X hv-,;,)) = —3pn Var (¢4(X0)) -
0 as n — oo by stationarity of {X,,t > 0}. Hence J; = 0,(1).

By the condition (As), J; = 0,(1) as n — oo. Therefore J; + Ja = 0,(1) as n —
uniformly for 8 € ©. Hence



Zno(h, X (ﬂ)) = h’lf_mn_m Z bs (8, X(k-l)ﬂ_m)ﬁwk
ko=

—h27_1 n , '

I Z by (9, X(k-l)n"lﬁ) + op(l)'

k=1

This verifies the first condition of LAN. In order to verify the second condition, we

shall prove that A, 5A uniformly for 8 € ©, where A is a standard normal random
variable. Note that

n
Ape = n~Y 4’7_1/ : Z be (4, X(k—l)n-lﬁ AW,

k=1

il’%m (say).

k=1

‘Here {Yin, ¢ ,(:)1 , 1 £ k £ n} is a martingale difference sequence for every n > 1.
In order to use the martingale central limit theorem, we verify the following conditions

mentioned in Brown and Hewitt (1975) and in a most convenient form in Brown and

Eagleson (1971). Observe that

E(Yk.rlld:.)l) =0 almost surely

and

- 1
BE(Y2.1¢Y,) = ;‘,753(9: X(k-1)a—1/2) almost surely.

Therefore, uniformly for § € ©, limu—.e Loy E(Y,(E-;) = 1 almost surely by (A4)

Also, writing M{z) for the probability that a xi— random variable exceeds z, we

have,

néE

" 1
E (mnlm’k.nlztlld:-)l . ;‘jr'bg(a! X(k—l)n-ll?)M (m)
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Then, by condition (A4) and the fact that M(z) | 0 as z T 0o, we obtain that
uniformly for 8 € O,

e Z E(Y2, I[le.nlzle(‘:)l) = () almost surely (4.2)

N=+00 K.—l
for £ > 0.
These conditions ensure that Y p., Yin 4N (0,1) as » — oo uniformly for 6 €

where = denotes convergence in distribution.

In the proofs of the Lemmas 3.1 and 3.2, we have followed the procedure adopted
in Kutoyants (1977).

Proof of Lemma 3.1.We know that Pa(:' ) P("') and Pg ") are equivalent from (A2).
Let us write

Va = exp — 26* o —ZS::AW}., + 0,(1))
n =1 2 =
where
br = b(02, X(k1)n—112) — (61, X(k_1)n-a1))
Therefore,
E¢((Znp(h1, X2 — Z, 5(hg, X )22
dPM dPy) dPy)
= Eq d P(n)) EG( (n)) 2Ee (— 5 P(,.) )1,2
< 2-2E,V..
If

f-llﬁi . — —Z&kAWk+0p(l)) 2 0,

k=1 k—l
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then

2(1 - E,, V,,) < 2Ea:{( Z & — = Z Sk AWL) + 0p(1)}
k—l

(since l-e <z when z > 0),

= —fEal {Z 6k + 0p(1)) (4. 3)

4\/_26’—-26,,Awk+o,,(1) < 0,

k=1 k=1
then

2(1— Eo,V,) = 2(1— E,, exp( Y 6 AW, — —= 382 + 0,(1)

2 = 4f =1
1 —exp( \/—E& {Z 5k + 0,(1)}

k=1
(by Jensen’s inequlity )

< 2\/—E01(E 8k + 0p(1)). (4. 4)

k=1

IA
N

From (4.3), (4.4) and using (A2), we get

2Eg (1 - V,)

IA

Eﬂ:(z 6 + 0,(1))

k=1

> \/7—1(91 —~ 0,)° Z Eo, (#3(X(x=1)n-0m))

k=1

C(hg = hl)g.

IA

IA

Thus

sup 2Eg, (1 — Vi) < ¢(ha — hy)?,
8€®©
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Proof of Lemma 3.2. Let us write

Ne = b(a + hﬂ._lﬂ‘j_llz, X(k_l)n-(llﬂ) - b(aix(k—l)n'(”’))‘

Let a = -& and f = infy . b5(0, z) as before. From (4.4), we obtain that

PV {Zpo(h, X™M) > e~oW)
= Pa‘“’{(exp(Z N AW; — \/-Zm, +0,(1))) > e~}

k=1
h2

= PM{s (z:nmwk an)+°p(l)>—a = h

k"'l k-l

Again,

k);l{(b(e + hn~ Y12 X iya-am) = (0, X (p—yyn-0r2))}?

h2 n
w4 Z b2(6, X (k=1m-0/) (by Taylor’s formula)

> KL,
»

Using the Chebyshev’s inequality and (4.5) we get,

Pe("){(% ,?inmwk = ,,Z’he - I{mﬁ) + 0,(1))) > _ah’}
< exp{-K(;- ~ P} Erexpl; E; AW, — kz:_l(’-’ﬁ)* o, (0)

= exp{-K(5 - P}
(since E, exP{gﬂkAWk = U'Ek-l(m'“)2 +0,(1))} < 1)

~ah?

- €

(4. 5)
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