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THE STABLE LAWS REVISITED
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SUMMARY. An altornative dorivation is givon for tho familiar closod-form formulas
for the stablo charaatoristic functions.

TWo recall that a non.degenerato distribution function F on R is called stable
if, for cvory n e Z* (tho sot of positive integers), tho n-fold convolution of F with
itsolf belongs to tho samo ‘type’ as F, i.o., if thore exist a, > 0 and roal b, such that

Fre=F ( i) for oll ne Z*, ()

al

If f be the charactoristio function (c.f.) of F, then (1) is equivalont to
U =fla)e"  for all neZ+teR e (9

for somo a, > 0 ond real c,.

Tho sequenco of relations (2) lead to the following explicit formula for ¢ = log f
(f is nocessarily non-vanishing on R! and s continuous version of log f vanishing at
tho origin oxists) :

{.‘a;—a-(1+.'o) if al; ... (38)
for £ 0, @) =

igt—ci(l+idlogt) if a=1, e (3b)

the Hermitian property : ¢(t) = §(—!) taking caro of values of ¢ < 0. Tho para-
metors in (3) aro subject to tho following rostrictions: 0 <2 2, witha=2
corresponding to {and only to) tho normal laws; a, 0 ond A are real;
¢>0; |0} < tan(maf2)and [A| < 2/n.

For a comploto exbibition of the equivalence of (2) and (3), the usual—and only
known— procedure is to first noto that (2) implics tho infinite dirisibility of f (and
henco in particular its non-vanishingness and tho existenco of ¢ on R1); then identify
the exact forms of the Levy functions in the Lovy canonical representation for ¢;
and finally compute the integrals involved in that ropresentation to obtain (3);
also, conversoly, a complox-valued function ¢ given on R! by (3), with tho paramoters
restricted as stated, nceessarily corresponds to an infinitoly divisiblo o.f. f which
satisfies (2) with @, = #' and a suitable rcal c,. Tor details, refer for instanco to
Gnedenko and Kolmogorov (1968, Sections 33 and 34).
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Tho prosent Noto has a mnodost aim : to point out a *“quick” (and moro trans-
parent) derivation of (3) from (2). Instead of going into the infinito divisibility argu-
ment, wo appeal to tho fact (provablo from first principles by a probabilistic-analytic
argument as in Feller (1071, p. 170) that, if (2) holds, then a, = n'/* for somo a > 0.
[or, denoting 1f|* by g, so that g > 0 in particular, wo have g(amn {) =
glam.aat) for all t, from (2), so that gy 1 iinplics that amm = ap.a,  Also,
glansy 1) = glan 1).9(t) < glan 1), also from (2), 8o that g 1 again implics that
ax € @nyy (if Gagpfan =2 <1, thon g() D g(A) > ... Dg(AM) - g(0)=1 as
n— ). Now appoal to the fact that if the function A defined on Z*, tho set
of positivo integers, has the propertica: (i) A(mn) = k(m). kI(n), mne Z* and
(i) b is non-decceasing, thon (A O or h y 1 or) thero exists an 2> 0
such that & (n) =n1/* for all n e 2+

Let us then take it for granted that a, = »"* with & > 0, in (2). Ifa > 2,
then log | f(t,)| /t3=»0 a3 n— oo, and if @ = 2, thenlog | f(t,)| Jt = log |f(1)] whero
ty=n7 It follows from Ramachandran and Rao (1908) that F is degencrato
(contrary to assumption) if @ > 2, so that a 2, and that F is normal if a = 2,
Our proof that (3) holds for 0 < @ < 2 would then imply also that F is normal only
if @ =2. Incidentally, the abovo argument tacitly uses tho Lévy-Cramér theorem
on tho decomposition of the normal law.

Let us thon consider the cases 0 < a < 2. Sciting g = l/a, we may writo
(2) in the form

(RN = S - 9)

(4) is casily scen to imply that f is non-vanishing on R!, so that wo may speak of
¢ =log f (chosen to bo continuous on R with ¢(0) = 0). Let M(t) = | f(t)] and
o) = log M(t)+iA(t), 20 that A is also continuous on R! with A(0) = 0. Sinco
(4) implics that

(M) = M(n®t) forall ne Z¥, Le Y we (9)
wo havo for all m, n € Z+,

M(n®) =[M()]» and  M(mP[n®) = [M(m®)Pin = [M(1)]™/"

wheneo, by the conlinuity of Af,

M) =M for 1>0,

or, M(t) = oxp{—c|t]|*®) for all teR; ¢ >0 ... (6)
Also, nA(t) = A1)+t
30 that mnA(l) = A(mPn"t) +cmnt

= mA(n?t)—cyp.nPl+Connl

= m[nA()=cpt)—CmnPl+Cmnt
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80 that Cmn = MCy+emnf = nepm+cam® by symmotry
wheneo emln—nd) = c,(mn—m8B) for m,neZ*. w (D)
In the case # 3 1 (cquivalently, & 5 1), we thorefore havo
¢y =a{n—nf) for all ne 2+

whero a is a resl constant. Sotting y(f) = A(t)—at,
wo have ny(t) = y(nfit) for te R' and ne 2%,
which easily loads, as in tho caso of relation (5), to

py==*k for t>0 (z%1). o (8)
(3a) followa at once from (6) and (8).

If f=a=1,(7) doos not help any; however, noting that now nA(l) =
A(nt)+cqt, we seo casily that

A(mnt)—mA(nl)—nA{mt)+maA{t) = 0.

Sotting o£(1) = A(t)/t and £(r) = L(e¥), wo have for all real u, with a, = log = for all
nezt,
futamta,)—éutam)—E(u+a,)+4(u) = 0.

If we fix me 2+ and sct y(u) = é(u+am)—£(z), then y(u+a,) = y(x) for all real u
and n e Zt, whence #(pa,+qap) = 5(0) whatover bo tho integers p, ¢, r, », with r
and n positive. Choosing and fixing r and » such that a,/a, is irrational, and noting
that then the set {pa,+qa, : p, g€ Z) is denso in R, wo sco that y(u) = y(0) =
£{am)—£(0), so that

futam) = &(u)+£(am)—£(0)
for all ue B! and m e Z*+. Setting x(u) = £(u)—£(0),

wo havo yu4an) = x(u)+xlam) for all we R, me 2+
s0 that x(e+pam+qa,) = x(u)+pxlam)+9xia,)
= x(1)+x(pam+qa,)

which in turn implics that
xlu+v) = x(uy+x(v) for all real z and v.

Thig is the familiae Cauchy functional oquation and, in view of the continuity of
X, leads to : x{u) = ku or ¢(u) = ku4l, or

A(l) = at—ct.log t. e (9)
Rolation (3b) followa from {6) and (9).

Remark : Tho restriction |0] & ma/2 in formula (3a) can bo obtained in tho
caso 0 < a < 1 (taking a = 0 thero without loss of generality) by oxpressing tho
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condition that p(0) > 0, whero p = F' js tho continuous version of tho donsity
function of F (tho oxistenco of which version is guaranteed by tho alsolute
integrability of f).  1f  is tho uniquo valuo of tan='0 in (—in, {n), then

np(0) = Ro;foxp(—c'l'.c”)dt = Ro foxp (=c'yf). eHrim gy,

tho last oquality boing easily justificd via contour integration, and the last expression
is non-negative if and only if cos (yfa) > 0,ie., |y/a| < im0, |0]  tan({na).
Such a simplo argument dues not appear availablo for tho cases @ > 1. In any
ovont, as statod at tho outsot, for proving tho (nccessity and) sufficiency of theso
rostrictions in order that the ¢ given by (3) correspond to c.f.’s, thero scems to bo
no alternative to tho Lovy ropresentation approach. Tho derivation given in this
Noto does appear, howevor, to clarify bettor why tho oxplicit formula for ¢ = log f
takes different forms for tho cases @ = 1 and @ 3 1.
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