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Abstract

The well-known Lyapunov’s theorem in matrix theory / continuous dynamical systems as-
serts that a (complex) square matrix A is positive stable (i.e., all eigenvalues lie in the open
right-half plane) if and only if there exists a positive definite matrix X such that AX + XA*
is positive definite. In this paper, we prove a complementarity form of this theorem: A is
positive stable if and only if for any Hermitian matrix Q, there exists a positive semidefinte
matrix X such that AX + X A* + Q is positive semidefinite and X{AX + XA* + Q] = 0. By
considering cone complementarity problems corresponding to linear transformations of the
form I — S, we show that a (complex) matrix A has all eigenvalues in the open unit disk of the
complex plane if and only if for every Hermitian matrix Q, there exists a positive semidefinite
matrix X such that X — AXA* 4 Q is positive semidefinite and X[X — AXA* + Q] = 0. By
specializing O (to — ), we deduce the well-known Stein’s theorem in discrete linear dynamical
systems: A has all eigenvalues in the open unit disk if and only if there exists a positive definite

matrix X such that X — AXA* is positive definite. © 2000 Elsevier Science Inc. All rights
reserved.
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1. Imntroduction

In connection with the (asymptotic) stability of the linear dynamical system
x(t) = Ax,

* Corresponding author. http://www.math.umbc.edu/~gowda. o
E-mail addresses: gowda@math.umbc.edu (M.S. Gowda), tps@isid.ac.in (T. Parthasarathy).

0024-3795/00/$ - see front matter @ 2000 Elsevier Science Inc. All rights reserved.
PI:S0024-3795(00)00208-1



132 M.S. Gowda, T. Parthasarathy / Linear Algebra and its Applications 320 (2000) 13]-144

Lyapunov [16] has proved that a (complex) matrix A is negative stable (i.e., all the
eigenvalues of A lie in the open left-half plane) if and only if there exists a positive
definite matrix X such that XA + A*X is negative definite. Gantmacher’s equiva-
lent reformulation of the above result [4, Chapter XV, Theorem 3], now known as

Lyapunov’s theorem, is the following:

Theorem 1. Let A be a complex square matrix and K be positive definite. Then A
is positive stable if and only if there exists a (Hermitian) positive definite matrix X
such that

XA+ A*X =K.

One of the objectives of the paper is to prove the following complementarity form
of the above theorem:

A is positive stable if and only if for each Hermitian matrix Q, there exists a
(Hermitian) positive semidefinite matrix X such that AX + XA* + Q is positive
semidefinite and

X[AX+XA*+ 0] =0.

Such a result for a real matrix A with both Q and X real and symmetric was proved
in [8] by considering a (linear) complementarity problem over the cone of symmetric
positive semidefinite matrices and by showing the equivalence of positive stability of
A and the so-called P-property of the linear transformation L 4(X) := AX + XAT:

X symmetric, XL 4(X) symmetric and negative semidefinite = X =0.

In this paper, we extend this analysis to the general case by considering linear
complementarity problem over the cone of (Hermitian) positive semidefinite ma-
trices and by showing the equivalence of positive stability of A and the so-called
P;-property of the linear transformation L4 (X) := AX + XA*:

X Hermitian, XLA(X) + LA(X)X negative semidefinite = X = 0.

In matrix theory/discrete dynamical systems, the following result is known as
Stein’s theorem.

Theorem 2. Let A be a complex square matrix and K be (Hermitian and) posifive
definite. Then all the eigenvalues of A lie in the open unit disk if and only if there
exists a (Hermitian) positive definite matrix X such that

X - AXA* =K.

By considering cone complementarity problems specialized to the cone of

Hermitian positive semidefinite matrices, we deduce the above result of Stein from
1ts complementarity form:
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A has all its eigenvalues in the open unit disk if and only if for each Hermitian matrix

Q, there exists a (Hermitian) positive semidefinite matrix X such that X — AX A* +
Q is positive semidefinite and

X[X — AXA* + Q0] = 0.

2. Preliminaries

For a matrix A € C"*", we denote the operator norm (on C") and the spectral
radius by [|Al] and p(A), respectively. Throughout this paper, J#" denotes the space
of all n x n complex Hermitian matrices. For X, Y € 5", we define

(X,Y) =tr(XY),

where tr(XY) denotes the trace of the product XY. (Note that tr(XY) is real since
X and Y are Hermitian.) We recall that a complex matrix M is said to be positive
semidefinite (definite) if (Mx,x) > 0 (> 0) for all 0 # x € C" (where we assume
that C" carries the usual complex inner product). Note that positive semidefinite ma-
trices on C" are Hermitian, i.e., X* = X, where X* denotes the adjoint (= conjugate
transpose) of X. For a linear operator L : " — ", we denote its norm and the
spectral radius (with respect to the above inner product on ") by ||L| and po(L),
respectively. Let

H = (X € AH" : X is positive semidefinite}.
We use the symbol
X> (>)0

to say that X is Hermitian and positive semidefinite (positive definite); the sym-
bol X < 0 means that —X > 0. We list below some well-known matrix theoretic
properties that are needed in the paper:
() X >0 = UXU* > 0 for any matrix U of appropriate size.
b) X>0,Y>0= (X,Y)>0.
© X>0,Y>0,X,Y)=0= XY=YX=0.
(d) The cone X is self-dual, i.e., if X € #" and (X,Y) 2 O forall Y > 0, then
X > 0.
(¢) Given X and Yin #" with XY = Y X, there exist a unitary matrix U, real diag-
onal matrices D and Esuchthat X = UDU*and Y = UEU*.
For two matrices X and Y in J¢", we define the Jordan product by

XoY =XY+YX.

2.1. Semidefinite linear complementarity problems: P- and P\ -properties

Given a finite dimensional real Hilbert space (5%, (-, -)), a closed convex cone
A in 3¢, a linear transformation T : )¢ — J¥, and a vector g € ), we define the
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(cone) compiementarity problem CP(T, X', q) as the problem of finding a vector
x € J such that

xeX, y=Tx+qgeA”" and (x,y)=
where X%, called the dual cone, is defined by
*={ueH:{uz) 20Vze X}

When # = R", A = RY (the non-negative orthant), and (x, y) is the usual inner
product between vectors in R", the above complementarity problem reduces, for a
matrix M € R"*" | to the linear complementarity problem LCP(M, g): Find x € R”
such that

x20, y=Mx+q20 and {(x,y)=0,

where the inequalities are defined in the componentwise sense. With numerous ap-
plications to optimization, engineering, economics, etc., see [3,61, the study of linear
complementarity problem has received wide attention in the optimization commu-
nity. In the LCP theory [3], the uniqueness of solution in LCP(M, g) for all g is
addressed via the following equivalent conditions {3, Theorems 3.3.4 and 3.3.7]:
(1) Every principal minor of M is positive.

(11) Forevery non-zero vector x € R”, there exists an index i such that x; (Mx); > O.
(111) The implication

xeR', xxMx)<0 =2 x=0 (1)

holds, where x * (Mx) is the componentwise product of vectors x and Mx.
(iv) Forevery q € R", LCP(M, g) has a unique solution.

We recall from [5] that a matrix M € R"*" is a P-matrix (or is said to have the P-
property) if 1t satisfies condition (i) (or equivalently, either condition (ii) or condition
(11)). Thus, in the LCP setting, the uniqueness of solution in LCP(M, ¢) is described
by the P-property of the matrix M.

In this paper, we consider another important instance of the cone complemen-
tarity problem obtained by putting # = #" and ¥ = A", . Corresponding 10 a
linear transformation L : s#" — #" and a matrix Q € »#", the semidefinite linear
complementarity problem, SDLCP(L, Q), is to find a matrix X € 2" such that

X>0, Y:=L(X)+Q>0 and (X,Y) =0 (equivalently XY = 0).

Dealing with the space &" of real symmetric n x n matrices (and the cone &,
of real symmetric #n x n positive semidefinite matrices), a similar complementarity
problem was formally introduced, in a slightly different form, by Kojima et al. [14] to
describe a model unifying various problems arising from systems and control theory
and combinatorial optimization. In this setting (of %"), to address the uniqueness
issue—when does SDLCP(L, Q) have a unique solution for all Q—two analogs of
condition (iii) above, called the P- and the P|-properties, were introduced in Defini-
tions 2 and 6 of {8] by replacing the componentwise product x * (Mx) by the Jordan
product X o L(X) and the cone R’ by the cone &” . It was shown in [8] that the
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uniqueness in SDLCP(L, Q) for all Q implies the P-property and that the converse
holds under an additional condition. Now, since our focus here is the space J#", we
slightly modify the definitions in [8] and state the following.

Definition 3. For a linear transformation L : " — 5", we say that:
(i) L has the P;-property if

XoL(X)<0 = X=0, (2)
(ii) L has the P-property if
Xand L(X) commute, XL(X)<0 = X =0. (3)

Thus, (2) and (3) can be considered as non-commutative and commutative analogs
of (1) for " with respect to the cone 7, . We note here that (1) and (2) are two
instances of a more general Py-property that can be defined on any Euclidean Jordan
Algebra (8].

It is clear that the P-property implies the P-property. While we show that these
two properties are the same in some particular instances (see Theorems 6 and 11), in
general they are different. This can be seen in the following example.

Example 1. Define the transformation L on ¢ 2 by

| a U+ 1v _la—u a+1v
X"[u—iu b ] — L(‘X)"[a—iv u+b]‘

where a, b, u, and v are real. In the particular case,

0 1 -1 0

we have Z o L(Z) < 0. Hence L does not have the P)-property. Now to check the
P-property, suppose XL(X) = L(X)X < 0. Then the (1, 1) component of XL(X),
being real and non-positive, yields @ = v = 0. Simple algebraic manipulations show
that b = 4 = 0. Thus X = 0 proving the P-property of L.

It can be shown, as in Theorem 7 of [8), that if SDLCP(L, Q) has a unique solu-
tion forall Q € ", then L has the P-property. Since our focus here is the study com-
plementarity forms of theorems of Lyapunov and Stein, we consider the solvability
of SDLCP(L, Q). In this regard, we recall a result of Karamardian [13] specialized

to the cone 7} .

Theorem 4. Consider a linear transformation L : H#" — H". If the problems
SDLCP(L, 0) and SDLCP(L, E), for some positive definite E € ", have unique
solutions (namely zero), then for all Q € H# " SDLCP(L, Q) has a solution.

As a consequence, we have:
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Corollary §. IfL : " — " has the P-property, then SDLCP(L, Q) has a solu-
tion for all Q € #".

Proof. Suppose X is a solution of SDLCP(L, ¢t7), where I denotes the identity ma-
trix in )" and ¢ € {0, 1}. Then

X>0, X[LX)+tI]l=[L(X)+1tI]X =0,
and hence
XLX)=L(X)X=—tX <0.

By the P-property, X = 0. Thus the problems SDLCP(L, 0) and SDLCP(L, I) have
unique solutions (namely zero). The result now follows from the above theorem. [

3. A complementarity form of Lyapunov’s theorem

For a matrix A € C"*", we define the transformation L4 : #" — " by
La(X) = AX + XA* (4)

In the following theorem, we refer to the equivalence of (a) and (d) as the comple-
mentarity form of Lyapunov's theorem.

Theorem 6. For A € C"*" and the corresponding L 4, the following are equivalent:
(a) A is positive stable.

(b) L4 has the P-property.

(c) L4 has the P-property.

(d) For each Q € ", SDLCP(L 4, Q) has a solution.

(e) For each positive definite Q € X", there exists a positive definite X € H#" such
that AX + XA* = Q.

(f) There exists a positive definite X in " such that AX + X A* is positive definite.

Proof. (a)=> (b): Let A be positive stable and suppose that there is a non-zero X €
A" such that X o L(X) < 0. We write X = UDU*, where U is a unitary matrix and
D is a real, non-zero, diagonal matrix. We define

E:=U*[LA(X)IU and B :=U*AU
so that
E=BD+ DB*, EoD =<0 and B is positive stable. (5)

We first consider the case when D is invertible. Then we have D~ !(E o D)D-!' <0
and so

B+ B*+(D"'BD) + (D"'BD)* < 0.
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This implies that 4 Re tr(B) < O contradicting the fact that B is positive stable. Now,

we consider the case of D being singular (but still non-zero). In this case, we may
write without loss of generality

Dy O B, B Ey. E;
D= . B = -
[ 0 0] [B3 34] e [133 E4|’
where D is invertible, the sizes of B; and E| agree with that of Dy, and E3 = (E,)*.
Now E = BD + DB leads to

Ey=B1D\+ DB and E; = D\B;*
while E o D < 0 gives
EioD| <0 and E; =0.

We see that B3 = O; since B is positive stable, By is also positive stable. We thus
have

E] = B] D] -+ Dlﬁl*, E] O Dl ~ 0 and Bl is positive stable. (6)

As 1n the first case, (6) leads to a contradiction. Thus X = 0 proving (b).
The implication (b) = (c) is obvious. The implication (c¢) = (d) follows from Corol-
lary S.

(d) = (e): A proof of this can be given along the lines of the proof of Theorem
J 1n [8]. For the sake of completeness, we provide an alternate, shorter proof (due
to a referee). Assume that (d) holds and let Q € #" be positive definite. Let X
be a solution of SDLCP(L4, —Q) sothat X >0, Y = AX + XA*- Q0 >0 and
XY = 0. We claim that X is non-singular. In fact, if Xu = 0 with u € C", then

0 < (Yu! u) = _(Qu! u)'

Since Q is positive definite, we have ¥ = 0. Now from the non-singularity of X and
the equality XY = 0, we get Y = 0 proving AX + XA* = Q. Thus we have (e).
The implication (e¢) = (f) follows immediately from putting Q = 1.
The implication (f) = (a) is well known, see {11, Theorem 2.2.1]. [J

Remark 1. By working with a real A, the space " of symmetric n x n matri-
ces, and the cone of n x n symmetric positive semidefinite matrices, we can modify
the proof of (a) = (b) and show that A is positive stable if and only if Lo(X) =

AX + X AT has the Py -property:
Xed", XoLx(X)<0 =2 X=0.

This result improves Theorem 5 in [8], where it was shown that A being positive
stable is equivalent to the P-property of L 4.

Remark 2. We note that item (e) asserts the existence of a positive definite X. When

A is positive stable, because of the Pj-property, the transformation L4 is invertible.
Thus the solution X in (e) is unique. If one is interested in a positive semidefinite
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solution of AX + XA* = Q, there is a shorter, elegant proof due to Osman Guler:
Assume that (d) holds and let Q € #" be positive definite. Let X be a solution of
SDLCP(L4, —Q).Since X > 0,Y = AX + XA* — Q > Oand XY = 0, we easily
verify that Y3 = YYY = —Y QY. Since Y is positive semidefinite and Q is positive
definite, It follows that Y = 0 implying Y = 0.

A slight modification of the above argument shows the following (known fact):

When A is positive stable, for any positive semidefinite Q, there exists a unique
posttive semidefinite X such that AX + XA* = Q.

4. A cone complementarity result

Before considering a complementarity form of Stein’s theorem, in this section we
consider a few results on cone complementarity problems. First we recall two results
of Schneider, who in [18], unifies and extends the results of Lyapunov and Stein.

Lemma 7 [18]). Let X be a (pointed) closed convex cone with interior X° in a
finite dimensional real (topological) vector space V. Let R and S be linear trans-
formations on V satisfying the conditions S(X) € A" and either R(HX°) D X ° or
RXAYNA® =@0.IfT = R — S, then the following are equivalent:

(i) R is non-singular, R~ (X)) € X and p(R71S) < 1,

(it) T is non-singularand T~ (X °) € H°,
(311) There exists u € X° such that Tu € X°°.

Theorem 8 [18). Ler A, Cx (k= 1,2, ..., 5) be complex n x n matrices, which can
be simultaneously triangulated. Suppose the eigenvalues of A and Cy under a natural

correspondence are «;, yi(k), i =1,2,...,nandk=1,2,...,5. For X € }#", let
\)
T(X) := AXA* - ) CiXC}.
1

Then the following are equivalent:

M) lei2 =3 1y P2 > 0foralli =1,2,...,n

(2) For every positive definite Q € K", there exists a unique X € #" such that
T(X)=0.

(3) There exists a positive definite X € #" such that T (X) is positive definite.

Motivated by the complementarity version of Lyapunov’s theorem, we may ask
whether it is possible to have complementarity versions of Lemma 7 and Theorem
8. The following example answers this in the negative. It also shows that various
generalizations of Schneider’s theorem given in [191 do not have comnlementarity
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Example 2. Let

A= [_é (1)] and Q = [_(1) _(1)] :

Let X = X and define R, S, and T on #? by
R(X)= AXA*, §=0 and T=R-S.

We eastly verify that
(1) Ris invertible (because R~ (X) = A~'X(A*)~!)and p(R™!S) < 1.

(2) R(X°) 2 A° (because A~ X (A*)~! is positive definite whenever X is).

(3 T~ Y(H°) c .

Clearly, condition (1) in Lemma 7 and condition (1) in Theorem 8 hold. However,
routine, simple algebraic manipulations show that SDLCP(T, Q) has no solution. In

spite of this drawback, we present a positive result for transformations of the form
al - 8.

We now turn our attention to cone complementarity problems. We recall from the

complementarity theory [9] that solutions of CP(T, X, q) are precisely the zeros of
(the so-called fixed-point map)

F(x):=x-Hy(x—[Tx+q)),

where I (x) denotes the projection of x onto J¢". For some recent literature on the
vast area of complementarity theory, see [6].

Theorem 9. Let X~ be a closed convex cone in a finite dimensional real Hilbert
space ). Let S : H —> K be a linear transformation satisfying the conditions:

SHUX*YCH and p(S) <a.
Then forall q € 3#, the complementarity problem CP{al — S, X, q) has a solution.

Proof. We assume without loss of generality that & = 1. We first show that zero

is the only solution of CP(I — S, X", 0). Clearly, zero is a solution of this problem.
Suppose that x is any solution of CP(I — S, J¢, 0) so that

xe€eX, y=(I-8xeX* and (x,y)=0.
Since y = (I — $)x and p(S) < 1, we may write

x=(I~8)"y= (ZS")y=y+Ay,
0

Where A := Y "1° §". Since S(X U X™) C A and y € X, we have Sy € A" and
hence $"y € A forall n > 1; we see that Ay € ). Now

0=(x,y) = (y + Ay, y) = IyI* + (Ay, ) = Iyl



140 M.S. Gowda, T. Parthasarathy / Linear Algebra and its Applications 320 (2000) 13]-144

since (Ay, y) 2 0 (which follows from y € X™ and Ay € K). We see that y = ()
and hence x = 0. For ¢ € [0, 1], by working with 1§ instead of S, we see that zero is
the only solution of CP(I — 1§, X, 0).

We now fix a g € . To show that CP(I — S, X", ¢) has a solution, we consider
the corresponding fixed-point map

F(x):=x—-Hylx - {( - S)x +q]]

and show that F(x) has a zero in H via some standard degree theoretic arguments
[7,15]. Define, for x € o and ¢ € [0, 1],

$(x,t) :=x = ylx — {(I —1tS)x +tq}].
Clearly, ¢ (x, t) defines a homotopy between the identity map ¢ (x, 0) = x and
¢(x,1) = F(x).

We now claim that as ¢ varies over [0, 1], the zero sets of ¢(-, t) are (uniform-
ly) bounded. Suppose there exist sequences {x*} in s and {tx} In [0, 1] such that

¢ (x*, %) = 0 for all natural numbers k, and |[x*|| — oo. Then x* solves CP(J —
WS, X, trqg) and so

x* e, yk = (I — . 8)x* + thg € X* and (x*, y"‘) = (. (7)
We may assume that f; —> ¢* and (xk/ Ix*1) = x*. It follows from (7) that
x*ed, y'=(I-t*S)x*eN*, and (x* y*) = 0.

Since x* has norm one, it is a non-zero solution of CP(I — 1*S, )¢, 0) contradicting
an earher observation. Thus we have the claim. Now let Q be a bounded open set
in ) containing the zeros of ¢ (-, t) as ¢ varies in [0, 1]. (Note that 0 € €2.) By the
homotopy invariance property of degree [15, Theorem 2.1.2,], we conclude

deg(F(x), 2, 0) = deg(¢ (-, 1), 2, 0) = deg(¢(-, 0), 2, 0).

Since ¢ (-, 0) is the identity map and zero belongs to 2, we see that deg(¢(-,0), 2,0)
= 1 by Theorem 1.1.4 of [15]. Thus,

deg(F(x), 2,0) = 1,

and by Theorem 2.1.1 of [15], F has a zero in Q. This zero solves CP(/ —
S, X ,q). L]

Corollary 10. Let X" be a pointed (meaning X N —-H = {0)), self-dual (mean-
ing X" = X') closed convex cone in a finite dimensional real Hilbert space X,
S:H# — H be linear with S(X°) C H". Then forT =al — S, the following are
equivalent:

(1) p(S) < a.

(2) CP(T, X, q) has a solution for all q € #.

(3) There exists u € A° such that Tu € X°.

Proof. The implication (1) = (2) follows from the previous theorem. To see (2) =
(3), first note that X"° # @ (since X" is pointed and self-dual). Take ¢ € X ° and
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consider a solution x of CP(T, X", —e). Thenx € X and Tx — e € X". We see that
Tx € X +X° C X°; by perturbing x we produce u € X™° with Tu € X°. The
implication (3) = (1) is immediate from Lemma 7. O

Remark 3. When 5 = R" and X" = R?, the above corollary gives some well-

known equivalent properties of non-singular M-matrices (which are matrices of the
form A = s/ — B, where B 2> 0 and s > p(B)), see Chapter 6 in [2).

5. A complementarity form of Stein’s theorem

In this section, we fix a matrix A € C"*” and define transformations S and S$4 on
X" by

S(X) =AXA® and Si(X)=X - AXA*.

Theorem 11. The following are equivalent:

(@) p(S) < 1.

(b) p(A) < 1, i.e., all eigenvalues of A lie in the open unit disk.

(¢) Sa has the Py -property.

(d) S4 has the P-property.

(e) For each Q € X", SDLCP(S4, Q) has a solution.

(f) For each positive definite Q € X", there exists a positive definite X € ™ such
that X — AXA* = Q.

(8) There exists a positive definite X in " such that X — AX A* is positive definite.

Before giving a proof of this result, we note that the equivalence of (a), (¢) and
(g) follows from Corollary 10. The (perhaps well known) equivalence of (a) and (b)
IS easy to see. Thus we have the complementarity form of Stein’s theorem, namely,

the equivalence of (b) and (e). However, in the proof below, we derive the comple-
mentarity form via the Py- and P-properties.

Proof. (a) = (b): If Au = Au for some non-zero vector  and a scalar A, then for the
matrix X := uu*, we have S(X) = A(uu*)A* = (Au)(Au)* = |A)2X. Thus, when
P(S) < 1, we must have p(A) < 1.

(b) = (c): Suppose (b) is true and X € X" is a non-zero matrix satisfying X o
SA(X) < 0. We write X = UDU*, where U is unitary and D is real, non-zero, and
diagonal. Letting

E:=U*Sx(X)U and B:=U*AU,
we get

E=D-BDB*, EoD=<0 and p(B) <. 8
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We first consider the case when D is invertible. Then from D~!(E o D)D™1 <0,
we get

21 - {BDB*D~! + D" 'BDB*] < 0. (9)

Since det(BDB*D~!) < 1, there is an eigenvalue o with |i] < 1 and a non-zero
vector v such that (BDB* D~ !)v = pv. From (9), we get 2||v||? — 2Re(u)|lv]|2 < 0
which contradicts {i| < 1. Thus D is not invertible. We write without loss of gener-

ality,
-~ |Dy O _|B1 B | Ey Ep
D—[O 0], B_[B3 34] and E_[E3 E4]’

where D is invertible. Now D o E < 0 gives

DioEy <0 and E; =0. (10)
On the other hand, the equation £ = D — BDB™ gives
E1 =Dy —B|D13T and B}D]B; = 0. (1D

We claim that B is non-singular. If this is not the case, let B}« = 0 for some non-
zerou. Then EFyu = Dijuandso0Q < (Dlzu, u) = (D E1u,u) = %((Dl o Eyu,u) <
0 leading to a contradiction. Hence B, is non-singular and by (11), B3 = 0. It fol-
lows (from p(B) < 1) that p(B)) < 1. This, together with (10) and (11), as in the
first case, leads to a contradiction. Thus D and hence X must be zero proving the
P;-property of S4. The implications (¢) = (d) = (e) = (f) = (g) are similar to the
corresponding ones in the proof of Theorem 6. Finally, the proof of the implication
(g) = (a) follows from Corollary 10. [

Remark 4. By working with a real matrix A and the cone of real, symmetric, pos-
itive semidefinite n x n matrices in the space %" of real symmetric n x n matri-
ces, one can state a result similar to Theorem 11 for the transformation X +—» X —
AXAT : " — ", We omit the details.

Remark 5. In matrix theory, it is well known that the theorems of Lyapunov and
Stein are equivalent in the sense that each can be deduced from the other by means
of certain transformations. In fact, the transformation A — B :=({ + Ay~ -
A) converts matrices with all eigenvalues in the open unit disk to matrices with all
eigenvalues 1n the open right-half plane and shows that the equations

Y=BX+XB*+ Q
and
JI+AY(U+AY) =Y =X—AXA*+Q

(with O = (I + A)Q(I + A*)) are derivable from each other. Moreover, Y is posi-
tive definite if and only if Y is so.
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Unfortunately, this transformation does not allow us to transform the comple-
mentarity form of Lyapunov’s theorem into a complementarity form of Stein’s theo-
rem because under this transformation, we cannot go from the condition XY =0to
XY = 0. We do not know if this conversion can be done by some other means.

Motivated by the equivalence of (a) and (c¢) in the previous theorem, we may
ask whether such an equivalence holds for any linear transformation S : #" —
H" with S(H'}) C A", Note that in view of Corollary 10, this amounts to asking
whether I — S has the Py-property when S(H#,) C o] and p(S) < 1. While we
do not have an answer for this question, we have the following:

Proposition 12. Suppose S : " — " is linear with ||S|| < 1. Then I — S has
the P\-property.

Proof. Suppose X is non-zero and X o [X — S(X)] < 0. Then
(X, X) < (X, §(X)) < I X ISX)]

by the Cauchy—-Schwarz inequality. We see that || X} < [|5(X)|| and hence || S|} 2 1.
This contradicts our assumption and so X = 0, proving the P, -property. U
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For further reading

The following references are also of interest to the reader: {1,10,12,17,20].
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