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ABSTRACT
We consider predicting domain totals in survey sampling by ‘composites’ 

of‘synthetic’ and ‘non-synthetic’ versions of generalized regression predic­
tors. Neither with ‘ traditional’ nor ‘alternative’ design-based variance and 
covariance estimators of the predictors one can be sure that ‘ the linear com­
binations’ may be ‘convex’ . But with an ‘asymptotic design-cum-model’ 
based approach for a specific model a truly ‘convex weighting’ procedure is 
developed. A simulation-based numerical illustration is presented to check 
bow the various procedures may work.
AMS subject classification: 62 D05.

1. INTRODUCTION
We consider sampling with unequal probabilities from a survey popu­

lation and using the sample to estimate the totals of a real variable for a 
number of its non-overlapping domains. An auxiliary variable with known 
population values is supposed to be available motivating the use of gen­
eralized regression (greg) predictors. For domains o f relatively small sizes 
sample representation becomes too inadequate leading to inefficient predic­
tion, if one restricts to the use of ‘direct’ predictors utilizing domain-specific 
sampled values alone for the variable o f interest. For an improvement one 
may employ ‘ indirect’ predictors using, in addition, sampled values outside 
the specific domains assuming similarities o f domains. A  linear compound of
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the two may be preferred with appropriate weighting. Optimal weights for 
the composite predictors usually involve unknown parameters as was noted 
in particular by Schaible (1978, 1992). If appropriate statistics are substi­
tuted for the latter the weights need not remain positive proper fractions. 
To get over this difficulty we apply Brewer’s (1979) asymptotic design-based 
analytic approach. Postulating a simplistic linear regression model we work 
out the optimal weight that minimizes the limiting design-cum-model expec­
tation o f the square error of the composite estimator and find the resulting 
composite a truly ‘convex’ combination o f the ‘direct’ and ‘indirect’ versions 
o f the greg predictors. The theory is briefly presented in section 2 and a 
simulation-based illustration of a numerical exercise to check how the proce­
dure works is reported in section 3. We close with a few concluding remarks 
in section 4. O f course with an empirical Bayesian or ‘mixed linear mod­
elling’ approach methods for convex weighting are well known but they do 
not relate to design-based procedures.

2. CONVEX WEIGHTING OF ‘DIRECT’ AND ‘INDIRECT’ 
GREG PREDICTORS

We consider a survey population U =  (1, • • •, t, • • •, N )  consisting of D non- 
overlapping domains of sizes Nj, d — 1,•••,£). On it is defined a real 
variable y  with unknown values y, with a total Yd for Ud, d =  1, • • •, D. An 
auxiliary variable x  with known values X{, t 6 V  with domain totals Xj is 
also available. The problem is to estimate Yd, d =  1, on drawing 
a sample s o f  size n from U with a probability p(s), adopting a suitable 
design p. We assume the inclusion-probabilities tt,- for i and t f o r  i , j  to be 
positive. We assume y to be so related to x  that a super-population model 
may be plausibly postulated permitting us to write

yi =  PdXi +  €,,«' G Ud, d =  1, • • •, D  . (1)

Here /?j’s are unknown constants and e,’s are ‘independently’ distributed 
random variables with means and variances

=  0, and Vm(ci) =  a f  .

If we are justified further to ‘suppose the domains to be alike’ then we may 
take

0d =  l 3 , V d = l , - - - JD .  (2)

The model (1) will be denoted by M j  and that under (2) by M_. Choos­
ing suitable constants Q ,(>  0) we may employ Sarndal’s (1980) generalized



regression predictors for Yj recognizing their two versions - ‘non-synthetic’ 
‘direct’ m otivated by M j  and ‘synthetic’ ‘indirect’ motivated by M_- appli­
cable in the present situation described below. We shall throughout write
Y,i T,T. to denote sums over i in U and i , j  (i < j )  in U, those
respectively in 5 and Idi = 1 if t 6 Ud and 0, else. Let

_ r'v,r,Q.Id, y\

e i, =  y i - f a x i , EU = y; -  B-iXi , : G U ;

0-2 y]'yiZiQx 
~  £ '« ? *  ’

b 2
~  i 1

Z2i -  Vi -  f o i , E2i = Vi -  B 2Xi , i e  u  .

Then, the ‘direct,’ greg predictor for Yd is

h  = where

and the ‘ind irect’ greg predictor for Yd is

h  =  E - 5 2 , ,  where 
Jr«-

By Ep, Vp, Cp we shall mean the operators for design-based expectation, 
variance and covariance. We follow Sarndal (1982) to approximate 

j  =  1 ,2  by the respective formulae

V, =

Writing



Two variance estimators each for tj, j  =  1,2, also following Sarndal (1982) 
respectively are

M l )

-■ * = 1,2 ; an =  1, a2i =  gu , i € s

-V*(2) =  /  E 'E 'A ij { ^ b ki -  2 & L h j y ,

<* =  1, 2 ; 6i, =  1, bn =  52m * € * .

Doubting the appropriateness of M_ against M j  especially, if D  is large, 
one may prefer the composite predictor which is a ‘convex’ combination of 

and t?, namely.
tc =  ati -f (1 — a)t2 , (3)

with a  suitably chosen in [0,1]. Noting that

cp(h,t2) = T T  aa n - 1 ^
V ** J \ Xj J

=  C, say , 

one may estimate it by four alternatives

k =  1;2 and r =  1,2 .

We shall illuovi^v^ >_>mj m in  m u t 22- i<ji simplicity, we shall write 
vi , v2 fox vk( l ) , v k(2) respectively and c for cn ,c 22. As Vp(tc) we shall take

V -  c?Vx + fl -  a)2v, +  2a(l -  a)C .

Then, the obvious ODtimal choice o f a  is

V2 - COtQ =■ ------ -------------- .
V, + V2 - 2 C  

This, in application should be replaced by

q0 =  p2 ~ c }
vt +  v2 -  2c w

But this may go outside [0,1] and



tc -  Sotl +  (1 -  So) <2 ,

need not be a ‘convex’ combination of t\ and t2.
To get over this difficulty we adopt the “measure o f error in tc as a 

predictor of Yj” as

lim EpEm (tc -  Y i f  =  M, 6ay . (5)

The meaning o f the operator lim Ep is given below following Brewer (1979).
According to Brewer (1979), U along with Y_ = (y i, • • •, y,, • • • ,jw)>

X = (xu - - - ,X i , - - - , x N) , Q -  ( Q i , - - - , Q , v , Q n )  etc., is supposed to con­
ceptually re-appear T (>  1) times. On each re-appearance an ‘independent 
sample of the type a adopting the design p is drawn. The samples so drawn 
are amalgamated into a pooled sample, denoted by s j .  The resulting design 
giving the selection probability for s j  is denoted by p x ■ If e =  e(s) based 
on s be a predictor for Yd then e (sj-) should predict TYd and so

lim EPt f ^ e ( s j ’)') , abbreviated as “lim Ev (e (s ))” 
r —oo \I )

should be close to Yd- Introducing this asymptotic approach one may apply 
Slutzky’s (vide Cramer (1946)) limit theorems on sequences o f functions to ' 
conveniently derive useful asymptotic results. In our present case, for the 
models M-d and M  we further assume that

c]  =  a2fi ,  with o (>  0, unknown) and /;(>  0 , known), t t  v  ,

and denote the respective models by M ^ (/)  and M ( f).  Then the choice of 
a that minimizes M  in (5) is

_  ________ lim EpVm(t2) - l i m EpCm (< i,t2)
“ m “  lim EpVm (t j)  -f lim.EpVn, (t2) — 2MmEpCm ( t i ,t 2)

Obviously,

+  (1 — «m)<2 (7)

ls a ‘convex’ combination of ( h , t 2). For Vp(tm) we shall employ the esti­
mator



Vk (tm) =  <*mvk (1) +  (1 -  a m)2 vk (2) +  2am (1 -  o m) c kk, k = 1,2.

Alternatively, 6ince vk (j ) ,  k =  1, 2; j  — 1,2 are not known to have any 
specific properties we prefer to employ their two sets of modifications, under 

and M ( / ) l  namely,

v'k(j) =  ~ V: (iFj)Vhl Jl  and lim EpEmvk ( j )

„ . .. : (^ m EpEm ( tj — Y ) } Vk (j )
vt ( j )i = '  ------------------------------ ----------

lim ( j )

* =  1, 2; j  =  1, 2 .

genesis o f these variance estimators may be found in Chaudhuri and 
Maiti (1992) and in the chapter one o f this thesis. Numerical illustrations 
appear in table 2 o f section 3. Also we may replace ckk, k =  1,2 by

J — - EmCp(ti,t2)  , , n
. kk c kkTl Ty «  , k  —  1,2 .

lim EpE/ynCkk

However replacing vk( j )  by v,k( j) ,v% (j)  and ckk by c'kk in (4) one need not 
necessarily get a ‘convex’ combination o f  t\ and t2. So, our recommendation 
is in favour o f (7).

If X{- values are not available for * outside s, though X j  is known, an 
appropriate alternative may be to estimate a m by

o™ =  - ______

i w  S W
wmcn satisfies

lim Epa m =  a m (8)

and proceed to estimate M  treating it as a measure o f error o f tc. For this, 
writing

M  = a 2lim EpVm ( * , ) + ( ! -  a )2lim EpVm (t2) + 2 a (1 -  a )l im E pCm (tu h ) -V m(^'

(9)

an estimator lor it may be taken as

M  =  a 2 |a2mA +  (1 -  Sm)2 B  +  2am (1 - 8 m) D -  (l0)



where,

*  ■  r f y *  *  ( s / «  -  ? / « ) ’

*  -  E 'E 'a « ( i f / * - * / « ) ’

x r %

Then we have the 
Theorem:

lim EPM  =  M

Proof: Follows applying Slutzky’s limit theorem, on noting Em (a2) =  a2, 
lim EpEm {Z2A)  =  lim ^ V ^  (*i), lim E pEm (a2B) =  \imEpVm (<2), 
limETEm {d2D)  =  lim f^ C m (t,,*2), lim EpEm [ a2T ! =  Vm (Yd). The 
resulting estimator tc with q  replaced by a m will be denoted by tm.

3. NUMERICAL STUDY OF PROCEDURES BY SIMULATION
In order to examine efficacy of a predictor e for Yj  paired with a variance 

estimator v we assume the distribution of the pivotal quantity

y/V

to be close to that of the standardized normal deviate r  with the N  (0,1) 
distribution. Then, with a choice o f 7 in (0, 1),

e ±  T^y/v

provides a confidence interval (C l) for Yd with a nominal confidence coeffi­
cient 100(1 — 7 ), denoting by the 100^% point on the right tail area of 
N (0,1). In our numerical illustration we shall take 7 =  .05 and we shall
illustrate only the choice Qi =  i £ U. We tried Q{ =  Q, — 1 to 
get comparable results but got poor results with Qi =  i & U.

For a simulation study we draw random samples of X{ from the expo­
nential density

f ( x / A) =  ^ c z p (—1 / A ), A > 0, x  >  0 ,



taking A =  7.0. Taking a? =  o 2z\ with a =  1, g =  0.4 and 1.6 and drawing 
random samples of e, from N  (0, erf) we generate y,'s subject to (1), choosing 
/3 =  5.5, taking N =  767. Generating Z{ from /  (x/X) with A =  15.0, we take 
i d ,- =  5 +  2,- as size-measures of i to draw samples of size n — 183 following 
Lahiri’s (1951) scheme o f sampling. We divide U =  (1, • • • , » , into 
D =  19 disjoint domains, each consisting of consecutive units in succession 
o f various sizes Nd, d =  1, - • •, D. We take R =  500 replicates of s a m p le s  and 
each time we identify the domains to which the sampled units re sp e ctive ly  
belong.

To examine the relative efficacies o f various choices of (c, r) we evaluate 
the following criteria, denoting by ^  the sum over the replicates: (I) ACP

r
(Actual coverage percentage) =  the percent of replicates for which the Cl’s 
cover Yd - the closer it is to 95 the better.

( I I )  A C V  (Average coefficient o f variation) =  ^  - this reflects the
r e

length o f the Cl - the smaller it is the better.
e - Y j

( I I I )  A R E  (Absolute relative error) =  | —77—  |-
r ^

( I V )  A R B  (Absolute relative bias) =| |, where e =  j? ^  e.
_________

(V ) P C V  (Pseudo coefficient o f variation) =  ~  ^)2> 

where v =  y.
r

For live data in table 3 we present all these criteria but in tables 1 and 
2 which do not use the live data we present only the criteria I  and II fa 
brevity.

As a term o f reference for relative performances we take the Horvitz- 
Thompson (1952) estimator for Yd, namely,

for which the variance estimator due to Yates and Grundy (1953) is

In tables 1 and 2 below we present the numerical evaluations for a few 
selected domains. In table 3 we illustrate performance o f tm paired with M 
in (10) by referring to certain live data described below. For this we take 
f i  =  1 in (6) and use ^ instead o f 5 2 , noting by Cauchy inequality
that it is a conservative estimator for a 2.



Table 1
Relative performances of (e,v) for various alternative choices.

Values for g = 1.6 are separated by slashes following those for g =  0.4.

M Domain size 5 Domain size 9 Domain size 161
ACP 10-MCT ACP W A C V ACP lOMCV'

(te.Wf)
(<i.Mi))
M O ))
( W 2))
M ( 2))

Om))
(tnMtm))

100/100
59.6/59.6
47.8/58.4
97.2/91.0
97.2/91.0
96.6/91.0
96.6/91.0

673/681
17/74
9/35

28/121
28/120
28/120
28/119

91.4/87.7
54.3/45.7
50.9/39.9
88.7/90.2
88.3/90.2
88.7/90.2
88.3/89.6

629/631
10/36
8/27
15/59
15/58
15/58
15/58

93.0/92.6
91.8/88.4
94.2/91.0
94.8/91.8
94.8/92.0
93.8/91.0
95.0/91.8

202/211 
5/20 
5/20 
5/19 
5/19 

• , 5/19 V 5/19

Table 2
Relative efficacies of ‘traditional’ and ‘alternative’ procedures. 

Values for g =  1.6 are separated by slashes following those for g =  0.4.

(e,«) Domain size 8 Domain size 10 Domain size 125
ACP W A C V ACP 10MCU ACP W A C V

(*»>#») 
to. M2)) 

(2)) 
M '( 2)) 
( W 2)) 
M ( 2)) 
M ' ( 2))

71.8/70.8
93.6/77.2
93.8/77.8
93.8/78.4
93.6/77.4
93.8/77.8
93.8/78.8

719/723
32/118
32/119
32/120
31/117
31/118
32/119

76.4/71.8
95.8/84.0
95.8/84.4
96.2/85.0
96.0/84.2
96.0/84.8
96.2/85.2

688/695
18/67
18/68
18/68
18/67
18/67
18/68

91.2/91.0
95.4/92.2
95.4/92.4
95.6/92.6
95.6/92.6
95.6/92.8
95.6/92.8

230/239 
5/22 
5/22 
5/22 , 
5/22 
5/22 
5/22

The live data relate to N =  1184 workers of Indian Statistical Instituta, 
Calcutta, in April, 1992 divided into 39 disjoint ‘units’ taken as domains, 
treating Z{ as their last month’s dearness allowance (D A), gross pay 
ai>d basic pay respectively. We take 500 replicates of samples of size n =  200 
ê h by Lahiri’s (1951) scheme and take Qi =

4. CONCLUDING REMARKS AND RECOMENDATIONS
From table 1 we note that for small sizes 5 and 9 of domains (i) the 

direct’ greg predictor is poor and as such the composite cannot improve 
uPon the ‘synthetic’ greg predictor, the latter two being close performers and 

quite good and far superior to the basic Horvitz-Thompson estimator, 
when the domain size is large, the ‘ direct’ does not really lag behind 

the ‘synthetic’ one though the model suits the latter and the composite fares 
WeU- Between vk ( j )  for k =  1,2 with j  fixed at 1,2 there is little to choose.



Table 3 ^
Relative performances of (<i, v2 (1)), (<2, 2̂ (2)), (t, A/j with values given 

successively downwards.

Domain Size ACP 10 3ACV W A R E 10 bARB PCV
69 63 72.6 18 750 6.569

92 56.8 15 174 0.905
98 74.4 15 52 0.344

13 43 134.4 434 14648 2.022
94 127.3 10 288 0.981
94 137.4 7 247 0.537

6 36 244.4 27 46495 12.599
51 118.7 64 3870 1.089
88 745.3 63 3818 0.486

50 57 93.7 24 3378 13.159
89 61.9 26 2 0.565
94 56.8 26 113 0.368

10 68 164.0 21 568 1.853
77 106.3 19 2093 0.879
100 273.4 19 1768 0.547

21 61 110.2 59 4907 2.386
87 59.8 12 110 1.025
100 123.3 14 27 0.524

30 77 139.9 1 1879 1.698
86 99.2 26 356 0.639
98 126.3 25 201 0.451

From table 2 we see that the Horvitz-Thompson estimator is bad as it 
should be as it does not use x , ’s at all. Our v'h (2) and r£ (2 ), k = 1,2 
provide improved confidence intervals. The ‘direct’ greg predictor fares bo 
badly with our simulation that we do not show its performances and it is 
not worth trying the composite tm.

Our recommendations are therefore that (1) the composite tm should 
be reckoned with in small domain estimation if one like Sarndal (1992) 
is in favour o f a ‘design-based’ approach and (2) the variance estim ators 

v'k O ')» vk 0 )  should be tried as possible improvements on vk ( j ) , k = 1,2,1 '  
1 , 2 .

With reference to table 3 we find that even though the direct estim ator 

is worse compared to the synthetic predictor the copmosite is found better 
for varying domain sizes in respect of every criterion except A C V .  So, *e 
may recommned that is a viable alternative.
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