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ABSTRACT L
We consider predicting domain totals in survey sampling by ‘composites’

of ‘synthetic’ and ‘non-synthetic’ versions of generalized regressmn predlc-
tors. Neither with ‘traditional’ nor ‘alternative’ design-based variance and
covariance estimators of the predictors one can be sure that the lmear com-
binations’ may be ‘convex’. But with an asymptotlc de51gn -cum- model’ ,‘
based approach for a specific model a truly ‘convex weighting’ procedure is
developed. A simulation-based numerical illustration is presented to check
how the various procedures may work.

AMS subject classification: 62 D05.

1. INTRODUCTION

We consider sampling with unequal probabilities from a survey popu-
lation and using the sample to estimate the totals of a real'variable for a
number of its non-overlapping domains. An auxiliary variable with known
population values is supposed to be available motivating the use of gen-
eralized regression (greg) predictors. For domains of relatlvely small sizes
sample representation becomes too inadequate leading to meﬂicxent predic-
tion, if one restricts to the use of ‘direct’ predictors utilizing doma.m-spec1ﬁc
sampled values alone for the variable of interest. For an 1mprovement one
may employ ‘indirect’ predictors using, in addition, sampled values outside
the specific domains assuming similarities of domains. A linear compound of
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the two may be preferred with appropriate weighting. Optimal weights for
the composite predictors usually involve unknown parameters as was noted
in particular by Schaible (1978, 1992). If appropriate statistics are substi
tuted for the latter the weights need not remain positive proper fractions.
To get over this difficulty we apply Brewer’s (1979) asymptotic design-based
analytic approach. Postulating a simplistic linear regression model we work
out the optimal weight that minimizes the limiting design-cum-model expec-
tation of the square error of the composite estimator and find the resulting
composite a truly ‘convex’ combination of the ‘direct’ and ‘indirect’ versions
of the greg predictors. The theory is briefly presented in section 2 and 2
simulation-based illustration of a numerical exercise to check how the proce
dure works is reported in section 3. We close with a few concluding remarks
in section 4. Of course with an empirical Bayesian or ‘mixed linear mod-
elling’ approach methods for convex weighting are well known but they do
not relate to design-based procedures.

2. CONVEX WEIGHTING OF ‘DIRECT’ AND ‘INDIRECT’
GREG PREDICTORS

We consider a survey population U = (1,---,¢,-+-, N) consisting of D non-
overlapping domains of sizes Ny, d = 1,---,D. On it is defined a real
variable y with unknown values y; with a total ¥; for Uy, d = 1,-+-,D. An
auxiliary variable z with known values z;, { € U with domain totals X, is
also available. The problem is to estimate Yy, d = 1,---,D, on drawing
a sample s of size n from U with a probability p(s), adopting a suitable
design p. We assume the inclusion-probabilities 7; for i and x;j for 4,5 to be
positive. We assume y to be so related to z that a super-population model
may be plausibly postulated permitting us to write

yi=Pizite,i€Uy,d=1,.--,D. (1)

Here f4’s are unknown constants and ¢;’s are ‘independently’ distributed
random variables with means and variances

En(&) =0, and V() = o7 .

If we are justified further to ‘suppose the domains to be alike’ then we may

take
Ba=B,V¥d=1,---,D. (2

The model (1) will be denoted by M, and that under (2) by M. Choos
ing suitable constants Q;(> 0) we may employ Sirndal’s (1980) generalized
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regression predictors for Y; recognizing their two versions - ‘non-synthetic’
‘direct’ motivated by M, and ‘synthetic’ ‘indirect’ motivated by M - appli-
cable in the present situation described below. We shall throughout write
7, LY to denote sums over iin U and 1,5 (i < j)in U, 3', 'Y, those
respectively in s and Iy; = 1if i € Ug and 0, else. Let

3 _ 'wriQila _ viziQilaimi

A = S 22Qily ! B = £}Qilaimi

€1 = Y -511,', Ey = yi—-Bzi,i€eU;
a "vizi Qs YiTiQi 7

o= S Bo- MR

ez = yi-bezi, Ex = yi—Byzi,i€U.

Then, the ‘direct’ greg predictor for Yy is

.
h = Zi—;gufdh where

g1 1+ (Xd - E,%Idg) _I'—Q'W'__

Y'22Qily

and the ‘indirect’ greg predictor for Yy is

i
2 = Z-ﬂ_—:gg,’, where

92i I + (Xd _ Zlgfdi) z;Qim;

Y'2iQi

By E,, V;, Cp we shall mean the operators for design-based expectation,
Variance and covariance. We follow Sirndal (1982) to approximate
Vi{t;), 7 = 1,2 by the respective formulae

2

Eyilyi  Eg1g
i o= ZEA:&‘W( . -—# ’
Exly  Epils\’

sddi 2;5ddy
V2 = EZA:':'*-';(—,‘——-;T"’) ,

writing Ty — Xis
Aij= -2 .J,i,jEU.

x5
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Two varlance estlmators each for t;, 7 = 1,2, also following Sarndal (1982)
respectlvely are

- e 7. T 2
(1) = DT A (e, - Wltey)”,

}'c;=;1,2 jai=1,ax =01, t€S

erili . \2
-v(2) Z 2 Au (J:r_mb %{-,Labkj) ’

,k—l 2 bl,—-l by = g2nies

Doubtmg the appropnateness of M against M, especxally, if D is large,
one may prefer the composite predictor which is a ‘convex’ combination of

t; and ty, namelv. - N
le=aty+(1-a)y, @

~ with a suit}ablyrchosen'.iﬁf;[o,‘ 1].Noting that

’{4 i) ‘J‘ . 7["' 7['1' 7ri W].

C;) (t1,12)

= C, say,
one may estimate it by four alternatives

: gy 81'14"‘ vel‘Id' el ey
= 33 Aij( ——ay; - —2ay; by — 2,5 |,
Fii: e . W .7 y

Kl ERants J

k=12and r=1,2.

We shall iltouewee woco viny v vy anu 2. ror simplicity, we shall write
vy, v for vi(1),vx(2) respectively and € for ¢;1, cp2. As Vp(t.) we shall take

V=a+(1- iV + 2a(1 - a)C .
Then; the obvious optimal choice of a is

Q, ““—L—C
" Wi+v-2C”

This, in application should be replaced by

~ Spg—-¢
“hp = ——— 4
« v1+v2—~23 ()

But this may go outside [0, 1] and
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1. = aot; + (1 = @o)t2,

need not be a ‘convex’ combination of t; and 3.
To get over this difficulty we adopt the “measure of error in 1. as a
predictor of Yy” as

lim E,En (1. - Ya)* = M, say . (5)

The meaning of the operator lim E;, is given below following Brewer (1979).

According to Brewer (1979), U along with Y = (Y1y "3 ¥ir "y UN)s
X=(z1,--, 20y, 2N), Q@ = (Q1, -+, Qi -+, @) etc., is supposed to con-
ceptually re-appear T(> 1) times. On each re-appearance an ‘indepéndeﬁt‘
sample of the type s adopting the design p is drawn. The samples so drawn
are amalgamated into a pooled sample, denoted by s. The resulting design
giving the selection probability for s7 is denoted by pr. If e = ’e(s) based
on 8 be a predictor for Yy then e (s1) should predict TY; and so. . ‘

. 1 . . -
Th_'uéo E,. (Te(sr)> , abbreviated as “lim E, (e(s))

should be close to Yy. Introducing this asymptotic approach one may apply

Slutzky’s (vide Cramér (1946)) limit theorems on sequences of functions to:
conveniently derive useful asymptotic results. In our present case, for the’

models M; and M we further assume that B

o? = 0% f;, with o(> 0, unknown) and f;(> 0, known), 1 c v , L\Y)
and denote the respective models by M (f) and M(f). Then the choice of
o that minimizes M in (5) is -

lim E,,Vm (tg) —lim E,,Cm (tl,tg) .
lim Eme (tl) + lim Eme (tg) —2lim EPCm (tl,tz)

> JizlQix;
Ep(3"'=1Q:)

3 5ie3Q3x; + Y fi2Quimi

Ex(Y'22Qi) Ey(Y.'72Qila)

a, =

Obviously,
tm = @ty + (1 = an) by (M

is a ‘convex’ combination of (t;,12). For V,(t,,) we shall employ the esti:
Mator ’
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U (tm) = @206 (1) + (1 = am)? vk (2) + 26m (1 = @) ik, k= 1,2.

‘Alternatively, since v, (4)» k=1,2; j = 1,2 are not known to have any
specific properties we prefer to employ their two sets of modifications, under

M (f) and M(f); namely,
e EmV (t')vk(j)
v (7) = lim E}‘;EJ,,,vk () and
(lim B, Em (8 - Y)?) 0 ()
lim Ep E v (5)

b

vk (7)

E=1,27=12.

The genesis_of these variance estimators may be found in Chaudhuri and
Ma.m (1992) and.in- the chapter one of this thesis. Numerical illustrations
‘appear in table 2 of section 3. Also we may replace ¢, k = 1,2 by

me (t17t2)

Fm B Brcyy k=1,2.

ok = Ckk
However replacmg vk(]) by vi(7), v{(j) and cix by c}, in (4) one need not
necessarily get a ‘convex’ combmatlon of ¢; and ¢3. So, our recommendation
is in favour of (7). ‘
If z;- values are not available for i outside s, though Xy is known, an
appropnate a.lternatxve may be to estimate a,, by

Z !.'-tzl- Q?

P (Z'=3i)
m > '-f.'rf Q7 > lf.'rzl- Q¥ Iy
(C=0) T (S ata)
which satisfies.

lim E &, = oy (8)
and proceed to estlmate M treating it as a measure of error of ¢.. For this,
wrmng

M = a?im E,Viy (1:)4+(1 = a)? lim EpVim (t2)42a (1 = a)lim EyCry (t1,£2)Ve (H:

(9)

an estimator lor.it'may be taken as

M =752 [agni;{*;ﬁ(i —&m)? B+ 28, (1 - &m)D - Zf,i} (10)
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where,
_ iy '22Q2 fil4i 1t A i, -4 \?
4= Sl (T (2 5e)
5 Q2 z =)
2
'S
D = Yhl; o= = :
" (ne2)y T 0L
(X'=29:)
Then we have the
Theorem:
limE,M = M .

I
Proof: Follows applying Slutzky’s limit theorem, on noting E., (6%) = o2,
lm E, By, (62A) = lim E,Vin (11, lim Ep Ery (52B) = lim E, Vin (t2),
lin E, B, (52D) = lim E,Cpm (11, t2), lim By Epn (525 24) = Vi (Ya). The

resulting estimator ¢, with a replaced by &,, will be denoted by tm.

3. NUMERICAL STUDY OF PROCEDURES BY SIMULATION
In order to examine efficacy of a predictor e for Yy paired with a variance
estimator v we assume the distribution of the pivotal quantity

e-Yy
NG

to be close to that of the standardized normal deviate  with the N (0,1)
distribution. Then, with a choice of 7 in (0, 1),

e:i:‘l’%\/;

t=

provides a confidence interval (CI) for Yy with a nominal confidence coeffi-
cient 100 (1 — ), denoting by 7 the 1002% point on the right tail area of
N(0,1). In our numerical illustration we shall take v = .05 and we shall
llustrate only the choice Q; = o 1€ U. Wetried Q; = r_.-l_xT’ Q; = 1;—:-'1 to
get comparable results but got poor results with @; = ;l:—, 1€ U.

For a simulation study we draw random samples of z; from the expo-
tential density

1

f(z/X) = Xezp(—x/,\), A>0,z>0,
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taking A = 7.0. Taking 07 = 0?27 with o =1, g = 0.4 and 1.6 and draving
random samples of ¢; from N (0,0?) we generate y;’s subject to (1), choosing
f = 5.5, taking N = 767. Generating z; from f (z/A) with A = 15.0, wetake
w; = 5+ 2; as size-measures of i to draw samples of size n = 183 following
Lahiri’s (1951) scheme of sampling. We divide U = (1,---,4,---,N)into
D = 19 disjoint domains, each consisting of consecutive units in succession
of various sizes Ny, d = 1,---, D. We take R = 500 replicates of samples and
~each time we identify the domains to which the sampled units respectively

belong.
To examine the relative efficacies of various choices of (e, v) we evaluate

the following criteria, denoting by Z the sum over the replicates: (1) ACP

.
(Actual coverage percentage) = the percent of replicates for which the Cl’s
cover Yy - the closer it is to 95 the better.

(II) ACV (Average coefficient of variation) = ;;Z ‘/TE - this reflects the
length of the CI - the smaller it is the better. ;

| . 1 €— X4
(I1I) ARE (Absolute relative error) = 5 Xr: [ Y, ]

"(IV) ARB (Absolute relative bias) =| 5}:—" |, where =% D _e.
r

(V) PCV (Pseudo coefficient of variation) = 1 /%) (v - )3,
r
where ¢ = 71; E v.

For live data in table 3 we present all these criteria but in tables 1and
2 which do not use the live data we present only the criteria I and II for

brevity. »
* As a term of reference for relative performances we take the Horvitr

Thompson (1952) estimator for Y3, namely,

for which the variance estimator due to Yates and Grundy (1953) is

2
vy = Z,Z,A;J' (ﬁfd; - gjffdj) .
T x;
In tables 1 and 2 below we present the numerical evaluations for a fe¥
selected domains. In table 3 we illustrate performance of ,, paired with M
in (10) by referring to certain live data described below. For this we take
fi = 1in (6) and use ;1:5"'eZ; instead of 5% , noting by Cauchy inequality
that it is a conservative estimator for o2.
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] Table 1
Relative performances of (e, v) for various alternative choices.
Values for ¢ = 1.6 are separated by slashes {ollowing those for ¢ = 0.4.

(e,t) Domain size 5 Domain size 9 Domain size 161

ACP 10°ACV ACP 10°ACV ACP 10°ACY

{s,vn) | 1007100 | 673/681 | 91.4/87.7 | 629/631 | 93.0/92.6 | 202/211
(1) |59.6/59.6 | 17/74 | 54.3/457 | 10/36 | 91.8/884 | 5/20

)| 96.6/91.0 | 28/120 | 88.7/90.2 | 15/58 | 93.8/91.0 |- . 5/19
)| 96.6/91.0 | 28/119 | 88.3/89.6 | 15/58 | 95.0/91.8 |  5/19

(t,w(1)) | 47.8/58.4 | 9/35 |509/39.9 | 8/27 |94.2/91.0| 5/20 -
(e (2)) ]97.2/91.0 | 28/121 | 88.7/90.2 | 15/59 | 94.8/918 | 5/19
(hn(2) |97.2/91.0 | 28/120 | 88.3/90.2 | 15/58 | 94.8/92.0 | 5/19

)

)

Table 2
Relative efficacies of ‘traditional’ and ‘alternative’ procedures.
Values for g = 1.6 are separated by slashes following those for ¢ = 0.4.

(e,9) Domain size 8 Domain size 10 Domain size 125
ACP |10°ACV | ACP | I10°ACV | ACP T10°ACV
(tr,vg) | 71.8/70.8 | 719/723 | 76.4/71.8 | 688/695 | 91.2/91.0 |- 230/239
(taw(2) | 93.6/77.2 | 32/118 | 95.8/84.0 | 18/67 | 95.4/92.2 | ~5/22
(tv1(2)) | 93.8/77.8 | 32/119 | 95.8/84.4 | 18/68 | 95.4/92.4 | 5/22
(b,f(2)) | 93.8/78.4 | 32/120 | 96.2/85.0 | 18/68 | 95.6/92.6 | 5/22,
(tav2(2)) | 93.6/77.4 | 31/117 |96.0/84.2 | 18/67 | 95.6/92.6 | 5/22
(tv3(2)) | 93.8/77.8 | 31/118 | 96.0/84.8 | 18/67 | 956/92.8 | 5/22
(t2vy(2)) | 93.8/78.8 | 32/119 | 96.2/85.2 | 18/68 | 95.6/92.8 | 5/22°

The live data relate to N = 1184 workers of Indian Statistical Instituta,
Caleutta, in April, 1992 divided into 39 disjoint ‘units’ taken as domains,
treating y;,2;, 2; as their last month’s dearness allowance (DA), gross pay
ad basic pay respectively. We take 500 replicates of samples of size n = 200
€ach by Lahiri’s (1951) scheme and take Q; = ;lz—

4. CONCLUDING REMARKS AND RECOMENDATIONS

From table 1 we note that for small sizes 5 and 9 of domains (i) the
‘direct” greg predictor is poor and as such the composite cannot improve
Upon the ‘synthetic’ greg predictor, the latter two being close performers and
both quite good and far superior to the basic Horvitz-Thompson estimator.
But when the domain size is large, the ‘direct’ does not really lag behind
the ‘synthetic’ one though the model suits the latter and the composite fares
Vell. Between vy, (j) for k = 1,2 with j fixed at 1,2 there is little to choose.
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Table 3 o
Relative performances of ({y, v, (1))}, (12, v2(2)), (t,M) with values given
successively downwards.

Domain Size | ACP [ 105ACV [ 10°ARE [ 10°ARB | PCV
69 63 72.6 18 750 6.569
92 56.8 15 174 0.905

98 74.4 15 52 0.344

13 43 134.4 434 14648 2.022
94 127.3 10 288 0.981

94 1374 7 247 0.537

6 36 2444 27 46495 | 12.599
51 118.7 64 3870 1.089

88 745.3 63 3818 0.486

50 57 93.7 24 3378 13.159
89 61.9 26 2 0.565

94 56.8 26 113 0.368

10 68 164.0 21 568 1.853
77 106.3 19 2093 0.879

100 273.4 19 1768 0.547

21 61 110.2 59 .4907 2.386
87 59.8 12 110 1.025

100 123.3 14 27 0.524

30 77 139.9 1 1879 1.698
86 99.2 26 356 0.639

98 126.3 25 201 0.451

From table 2 we see that the Horvitz-Thompson estimator is bad asit
should be as it does not use z;’s at all. Our v} (2) and v} (2), k = 1
provide improved confidence intervals. The ‘direct’ greg predictor fares
badly with our simulation that we do not show its performances and it is
not worth trying the composite t,,.

Our recommendations are therefore that (1) the composite ¢y, should
be reckoned with in small domain estimation if one like Sirndal (1992)
is in favour of a ‘design-based’ approach and (2) the variance estimators
v (4), v} (j) should be tried as possible improvements on v (), k = 1,2, ] 7
1,2.
With reference to table 3 we find that even though the direct estimator
is worse compared to the synthetic predictor the copmosite is found better
for varying domain sizes in respect of every criterion except ACV. So, ¥

may recommned that (fm,ﬁ) is a viable alternative.
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