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Abstract
A convergence result for kernel type density estimators, proved by

Devroye and Gyrofi (1985), is extended to stationary Markov processess
satislying G-condition introduced by Rosenblatt (1970).

1. INTRODUCTION

Nonparametric density estimation for independent and identically distributed
observations is extensively studied and a comprehensive survey of various
methods of density estimation and the properties of estimators is given in
Prakasa Rao (1983). One of the main methods that has been extensively used
m practice is the kernel type density estimation. Silverman (1985) gives sev-
eral examples. - Since the observations obtained over time are dependent in
general, it is of intg:reét to study density estimation in the stochastic processes
frame work. Prakasa Rao (1977, 78, 79, 83) discussed generalization of kernel
type methods and orthogonal series methods etc. for density estimation to
stationary stochastic processes which are Markov or mixing in some sense.
More recent work in the area is due to Bradley (1983), Hart (1984), Ioannides
and Roussas (1987) and Tran (1989 a,b, 1990). For earlier work and more
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references, see Prakasa Rao (1983). Yakowitz (1989) discussed nonparamet-
ric density and regression estimation for Markov seqauences without mixing
assumptions.

It has been observed that the standard kernel type density estimator is
not recursive in nature. Acquisition of additional observations necessitate
computation of the estimator all over again. In order to avoid this prob-
lem, recursive kernel type density estimators were studied for the case of de-
pendent and identically distributed observations. For a detailed survey. ses
Prakasa Rao (1983), Chapter 5. It turns out that these type of estimators are
amenable to analysis in the dependent case and have been found applicabilizy
in the recent literature on nonparametric inference for time series analysis.
See Prakasa Rao (1994). More work in the area of recursive type density esti-
mation for stationary processes is due to Nguyen (1979, 1981), Bosq (1937
Abdul-Al (1988), Isogai (1989), Tran (1989, 1990), Gyorfi and Masry (1990
and Hernandez-Lerma (1991) among others, Gillert and Wartenburg (1984
studied density estimation for non-stationary Markov processes.

In his study of density estimation for stationary Markov processes, Rosen-
blatt (1970) introduced the G;-condition. Density estimation for continu-
ous time stationary Markov processes was discussed in Nguyen (1979) and
Prakasa Rao (1979). Chapter IV in Gyorfi et al. (1988) discusses recursive
estimation when the stationary stochastic process satisfies a mixing condi-
tion.

Our aim in this paper is to extend a result on strong L,-consistency of
recursive kernel type density estimators, obtained by Devroye and Gyorfi
(1985) in the i.i.d. case, to the case of stationary Markov process when the
Markov process satisfies the Rosenblatt’s G,-condition. Proofs are analogous
to those in Devroye and Gyorfi (1985), p. 194.

2. PRELIMINARIES

Suppose ¥;,1 < i < n are independent and identically distributed obser-
vations with a common density function f. One type of recursive estimator
of the density f based on ¥;,1 <i < n is of the form

ho= sk ()

i=1

where K (-) is a suitable kernel and h,, is a suitable bandwidth sequence with
0 < h, — 0 as n — oo (cf. Prakasa Rao (1983)). Deheuvels (1974) proposed
a variation of this estimator of the type
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z Y

f"(z)zglx’( . )/gh;

and studied its properties (cf. Prakasa Rao (1983), p. 314).

Devroye and Gyorfi (1985), p. 194 investigated certain equivalence rela-
tions on Ll-cohve}gencje of the estimator f,.

Here we propkoAse tp:obtain a similar result for stationary Markov processes
satisfying the G,-condition.

Let {X,,n > 1} be a stationary process and define the transition operator
H, by

(Hng)(z) = Elg(Xns1)| X1 = 2]
where ¢ is any bounded measurable function defined on the real line. Define
|Hulo = sup E'*(Hag)*/E'(g?)
. l9:Eg(X1)=0]
{cf. Prakasa Rao’(1983), p. 322).

Definition 2.1. ;Tihe transition operator H, is said to satisfy Ga(m,«)

condition of Rosenblatt if there exists a positive integer m such that
H,ls € a with 0 <'a'< 1.

f{X,}isa stationary Markov process satisfying the condition G,(m, @),
then it can be checked that

Hm+n = HmHn = HnHm

and for every n > m'> 1,

Hy<f*/a where f§=al™ ¢ (0,1).

PF is well knpwﬁ that if a process satisfies G-condition, then it is expo-
ne.nt.lally strong mixing (cf. Rosenblatt (1971)). Moment bounds for strong
mixing sequences have been discussed recently in Kim (1993).

3. MAIN RESULT

' Let.{Xn}ibe a strictly stationary Markov process. Let f(-) be the one-
dimensional marginal density of X; assuming that it exists. Suppose the

pro'cess is observed up to “time” n. Then F(z) can be estimated by a recursive
estimator of the type
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.t——X,‘

F) = 2 K (57) Ik

where K () is a bounded density and {%,} is a bandwidth sequence decreasing
to zero.

Theorem 3.1 : Suppose the process X, is a strictly stationary Markov
process satisfying the condition Gy(m,a). Further assume that K(-) is =
bounded density function satisfying the condition

y(u)du < oo where y(u) = sup K(z),u >0 (3.0

lzl>w

O\'g

and the sequence {h,} satisfies the condition

h, | 0 and Zh,-:n’ where 3/4 <r <1

=1
as n — oo. Then the following statements are equivalent :
(A) fu(x) = f(z) almost surely, almost all z, all f ;

(B) fu(z) — f(z) in probability, almost all z, some f ;

(C) lim 3 (ki > €)/3 hi =0 for all £ >0;

=1 =1

(D) _}o |fu(z) — f(z)|dz — O almost surely, all f ;

(E) _}o [fu(z) — f(z)|dz — O in probability, some f.

We first state and prove some lemmas which will be used in the sequel.

Lemma 3.1 : If K is a bounded density function satisfying (3.0) and A,, | C.
then

Lo (255)] s ] o o

for almost all z and all p > 0.
Proof : See Devroye and Gyorfi (1985), p. 195.

Lemma 3.2 : Let V,(i) = K (5%) ~ E[K(55)], 1< < nand
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Zh Suppose g(n) ~n" as n — oo where r > 3/4. Then

i=1
— ZV,(i) — 0 as n — oo almost surely,
g(n) =

for almost all x

Proof : We follow the technique employed by Loeve (1960), p.

@ <n < (d+1)? and

1 n
n)=—-—= Y V.(z).
W(n) g(n),.; (¥)
Then
YY) winy — 2y _
SV~ W) dZZHV()
= Y(d,n) (say).
Let
U(d) =  sup |V(d*n)
: @ <ng(d+1)?
1 (d+1)?
S !
1=d?
Hence
(d41)2 :
b 2\12 <
BV < Gy | 3 0 >|]
1 {d+1)? )
- 5 dz){z_Zd?ElV()l
‘ (d+1)? (d41)2
+ Y Y EVLG )V(J)|}
A= a2 ¢ j=q2
- o1 [y ,
- d2){ gz E‘V(Z)l
. d41)? (d41)?
+ 3 Y (EIVz(i)IQEIVz(j)IZ)I/z}
1=d2 =42

. . (d41)2 2
% Q(d"’ [Z {var(V, ))}1/2:'

1=d?
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(3.1)

487. Let

(3.2)



586 MISHRA AND PRAKASA RAQ

Note that

1 1 T — X;
hs j < h, ’2 <——1)] h
i var(Va(i)) < 58 [A - (33

and the term on the right side of (3.3) has a limit as ¢ — oo for almost zll

by Lemma 3.1. Hence there exists a function L*(z) < oo a.e. such that

1
™ var(V,(:)) < L*(z) < oo aee. foralli > 1. {34

Here a.e. refers to that the statement might not hold in a set of Lebeszu:
measure zero. Therefore, it follows from (3.2) and (3.4) that

2 2
EU(@®)} < 212L%ﬂr§?wﬂ
g%(d?) Py’
(d+1)?

1) [ ) hi} (d+1) — &)

IA

9%(d?) —
(By Cauchy-Schwartz inequality)

= L)@ 1) - gl + 17 - @
g*(d?)

L} (z)(2d + 1)d**(2d + 1)

< alz) e

L(x)

< efx) 72

for some functions ¢;(z) and c,(z) depending on z for almost all x and hence
Y EUd)]* <o
d=1

since 7 > 2 by hypothesis.

Therefore by Tchebysheff’s inequality and Borel-Cantelli lemma, it folloss
that

Ud)—0 as as d— o0

for almost all z. In particular it follows that

g(n) _ 2 s d— oo 5
g(dz)W(n) W(d*) -0 as. as d . (3.3

Now,

0 —_— ) 1 d? 2
;ElW(d W = ;::1 ‘g2(d2)E,;V’(z)l
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d? 42

1 . .
( (@) {Z Seov(Va(i), vr(m}.

[
gk

d;

i=1 j=1
But there exists a function Lg(z) < co a.e. such that
cov(Va(i), Vi(3)) < B9 Lo(x) for all i and j

by computations similar to those described in Prakasa Rao (1983), p. 323-
324. since the process {X,} satisfies the Ga(m,a) condition and K(-) is a
bounded kernel. Hence there exists a function L;(x) < oo a.e. such that

0 . 2 42
SEW@)P < [z e {dz Zﬂ""“H Li(z)
d=1 d=1 =1 ;=1

> 1

which is finite, provided 4r —2 > 1 or r > 3/4, for some function Ly(z) < oo
a.e.

It is now easy to see as before that
W(d?*) — 0 a.s. for almost all z as d — co. (3.6)
Relations (3.5) and (3.6) imply that

g(n)
g9(d?)

W(n) — 0 a.s. as d — oo.

Since

—g—mal as d — oo,

g9(d?)
it follows that

W(n) — 0 a.s. for almost all £ as n — oo.

This proves the relation (3.1).

Lemma 3.3 : Let f, be a density estimator and f be a density on R. If
falz) — f(z) in probability (almost surely) as n — oo for almost all z, then

_f |fa(2) — f(z)ldz — 0 in probability (almost surely) as n — oo.
Proof : See Glick (1974).

Proof of Theorem 3.1 : Obviously (A) = (B). Lemma 3.3 shows that (B)
= (E). Hence (A) = (B) = (E). It follows again that (A) = (D) = (E). It

is sufficient to prove that
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(C)=(A) and (E)=(C).
Assume that (C) holds. Let ¢ > 0. Define
n _ ‘Yi n
fi@) =3 K (z " )I(h.Se)/th~
; i i=1

=1

Then, it follows by (C) that

Miﬂh;)s)
|fa(z) = fil(2)] £ —F—— = o(1)
Sh

=1

where M is a bound on the kernal X'(-). Note that
|fa(z) = f(2)]
n Y. —- X
S (255) -2 (525 o
i=1 4 1

<

< Zhi
=1
> hi |[E(h711\" (z ZX» - f(z)] Tihi<e)
=1 1
>k
i=1
‘f'Ehif(-T)I(h»e)/Zhi-
=1 i=1
== T] + Tg + T3 (say).
Note that X
T, < sup |E (h;lK (z—_——‘)) — f(z)
k| <e h;

and Lemma 3.1 implies that T, — 0 as n — oo for sufficiently small = for
almost all z. Condition (C) implies that T3 — 0 as n — oo. It is sufficien:
to prove taht Ty — 0 a.s. for almost all = to conclude that (C) = (A). Note
that

in(i)I(h,- <e)

Sh
i=1

and the last term tends to zero a.s. by Lemma 3.2. This proves (C) = (A}

T, =
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We complete the proof by showing that (E) = (C). The condition (C)
I: a consequence of the arguments similar to those in Devroye and Gyorfi
'1983). p. 198 by noting that the characteristic function of E(f,) is

S hup(t)B(hit)
oall)= 2 teR

ihi
i=1

where () is the characteristic function of the marginal density f and f(¢)
Is the characteristic function of the kernel A(-). We omit the details.
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