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S. THANGAVELU 

(Communicated by J. Marshall Ash)

A b s t r a c t .  It is proved that the Riesz means S ^ f , S > 0 ,  for the Herm ite 
expansions on 1 " ,  n >  2 ,  satisfy the uniform estimates | |5 ^ / | |p <  C \\f \\p 
for all radial functions if  and only if p  lies in the interval 2n/(n +  1 +  2<5) < 
p  < 2n /(n  — 1 -  2(5).

1. I n t r o d u c t i o n

Consider the Hermite polynomials Hk(t) for k  =  0 , 1, 2 . . .  on the real line 
defined by

(1-1) Hk {t) = { -  1 )V 2 ( £ ) V ' 2)-
We define the normalized Hermite functions hk (t) by setting 
(1-2) , hk {t) — {2k\ f n k \ y xl2H k(t)e~tll2 .
Then the family {hk} form a complete orthonormal system for L 2(R ). On R” , 
n > 2 , we define the normalized multiple Herm ite functions 0 „ ( .x ) , x  e R” , 
v a m ulti-index by

(1-3) <t>u(x) = f [ h Uj(Xj).
j =i

These functions <J>„ are then eigenfunctions o f the Hermite operator H  = 
( - A + |x |2) with eigenvalues {2\v\ + n) and the family { 0 (/} forms a complete 
orthonorm al system for L 2(Rn) .

For a function f  in Z /(R ”) , 1 < p < oo, we define the Fourier-Hermite 
coefficients f { v )  o f the function /  by
(1.4),. / ( ! / ) = / "  f { x ) ® v ( x ) d x .

‘ J  E"

We then have the Hermite series
(i-5) n x )  = Y Jm < s > A x )
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where the sum is extended over all the multi-indices u . For p = 2 , the series 
converges to /  in the norm, but for other values of p  the series need not 
converge. Therefore, we are led to consider summability methods for the series
(1.5). In this paper we are concerned with the Riesz summability o f the above 
series.

In order to define the Riesz means it is convenient to introduce the projection 
operators Pk associated to the Herm ite operator H . These are defined by
(1.6) Pkf  =  £  /(i/)® „

M =*

for fc =  0 , l , 2 , . . . .  We observe that P  ̂ is an integral operator with kernel 
(1-7) $>*(*, jO =  <M * ) <M } ')-

M=k
For any <5 > -1  and R  > 0 we define the Riesz means f  o f order 5 o f  the 
functions /  by

d - 8 ) : s J /  =  £ ( i - ^ ) % ( / .

The uniform  boundedness o f on Lp , 1 <  p  < oo, have been studied by 
the author in [9]. There it was proved that if  5 > (n -  l ) / 2 , n >  2 , then one 
has the uniform estimates
(1.9) | |S | / | |P < C ||/ | |„ ,  \ < p < o o ,
and, moreover, if  p < o o , then S ^ /  converges to /  in the norm as R —* oo .

We are interested in knowing what happens when 3 < {n -  l ) / 2 .  As a 
consequence of a transplantation theorem of Kenig-Stanton-Tomas [4] one has 
the conjecture that for 0 < S < (n -  l ) /2  the uniform estimates (1.9) hold iff 
2 « /(«  +  1 + 23) < p  < 2n / (n  -  1 -  25) . O f course, when 5 =  0 the Riesz m eans 
are bounded only on L 2{R") in view o f Fefferman’s celebrated theorem  on the 
multiplier problem for the ball.

In an earlier paper [10] we proved the above conjecture on R2” for the radial 
functions. There we showed that when /  is radial the Hermite series reduces 
to a Laguerre series. Here we do the same on R” for radial functions. We 
prove the following theorem.
Theorem 1.1. Let f  e  Lp(Rn) be radial and n > 2 .  Then the uniform estimates

ll-Sl/li,, < c\ \ f  \\p
hold i f  and only i f  2 n/{n + 1 +  25) < p < 2n/{n  -  1 -2<5).i ,

As in the case of even dimensions we show that for radial functions the 
Hermite series reduces to a Laguerre series. Then we can either apply known 
results for Laguerre series or follow the procedure used in the case o f even 
dimensions. The procedure, essentially due to Fefferman-Stein and developed 
by Sogge [6], uses the L p — L 1 restriction theorem for the projections . For 
those projections we have proved in [11] the estimates

\\Pkf h  < c k ^ l^ ' / 2̂ 2\\f\\p , l < p < 2 .



But on R2" , if  /  is radial we have improved the above estimates to give
(1.10) | | n / | | 2 < ^ n(1/p- 1/2)- 1/2| | / | | P , 1 < p < 4 n / ( 2 n +  1).
This was done in [10] and was the main ingredient in proving the conjecture on 
the Riesz means. In this paper we get estimates for Pk on Lp{Rn) .

Proposition 1.1. Let  f  G L P{W) be radial. Then for  1 < p < 2n / (n  +  1) we 
have the estimates
(1.11) \\Pkf h < c k n^ p~ l^ 2~ l/2\\f\\p .

It would be interesting to see if  the above estim ates (1.11) are true for all 
functions. Once we have (1.11) we can combine that with certain kernel esti
mates to follow the recipe o f Sogge to prove Theorem  1.1. This procedure is 
carried out in full detail in [10] and here we will not go into it.

In the next section we show that for radial functions the Herm ite series re
duces to Laguerre series. Actually we prove a form ula for Pk analogous to 
the Hecke-Bochner formula for the Fourier transform . In the third section we 
prove our main theorem and the estimates for the spectral projections.

2 . H e c k e -B o c h n e r  t y p e  i d e n t i t y  
f o r  t h e  H e r m i t e  p r o j e c t i o n  o p e r a t o r s

Let /  be a function on R” o f the form f ( x )  — fo(\x\ )P(x)  where P is a 
solid harm onic of degree m  . Then the Hecke-Bochner identity for the Fourier 
transform says that f i x )  is also of the same form. M ore precisely, f i x )  = 
.Fo(M)P(-*) where

/»oo

(2.1) F0(r) = 2 7 i r mr - W 2+m-V f 0(s)Jn/2+m^ ( 2 n r s ) s n' 2+m d s .
J o

This was proved, e.g., in Stein-Weiss [7, §4, Theorem 3.10], In this sectiop 
we prove a similar formula for the action of the Herm ite projection operators 
Pk on functions o f the form y o ( |x |)F (x ). To state the identity we need to 
introduce some notation.

Let for k  = 0 , 1 , 2 , . . .  and a > - 1 ,  L%(r) stand for Laguerre polynomials 
of type a .  Define <pk (r) = L%(r2)e~r2/2 and for functions on [0, oo) define
m f )  by
(2.2) R l { f )  =  1 ° °  f ( rm r ) r 2a+l d r .

Now we can state and prove
Theorem 2.1. Let  f ( x )  = fQ(\x\)P(x) where P is a solid harmonic o f  degree 
m . Then
(2.3) P2k+mf ( x )  = Fk (\x\)P(x) 

where Fk (r) is given by the formula

(2.4) Fk{r) =  R f +m- 1( f0)v Hk/2+m- l (r).

For other values o f  j , P j f  — 0 .
Corollary. I f  f ( x )  =  io(|x |) then P2k +if  = 0 and

PikRr)  = R f - \ h ) < ? f - \ r ) .



Proof  o f  Theorem 2.1. We start with the generating function identity for the 
H erm ite functions (see Folland [2] for a proof) for |io| < 1 ,

)w( 'J  ^ 2 ^ k { x , y ) i(2.5) t o
_  n -n /2(j _  W2 y n / 2 e -( l / 2)(l+w2)/(l-w2)(\x\2+\y\2)+(2wx-y)/(l-w2) _

From  this it follows that
OO

Y^Pkf(x)wk = n~n/2(l -  w2)~n!2
(2.6) *=°

X  [  e - ( 1/ 2 ) ( 1+ u ' 2) / ( 1- ," 2K k l 2+ b l 2) + ( 2^ -> ') / ( 1- u ' 2) / ( y ) ^ y .
J R"

Let us write x  =  rx  , y  =  sy'  where r — | x | , s =  |y| so that P(x)  =  rmP ( x ’) ; 
then we have

OOY j Pkf ( x ) w k = 7t- n I 2 ^ _ w 2ynl2e -(\12)(\+w1y i ( \ - w 2)
(2.7) *=°

f  e C™rsx'-y')l(\-w2)p ŷ ^ d yi
Jo U s"-1

g(s )sm+n ds
where g{s) =  e - (1/2)(1+^2)̂ 2/(1- “,2)y'0(5) . Tc> evaluate the integral we proceed as 
follows.

One has
[  e 2jllx’yg( \y \ )P(y)dy  J R»

" 7  /Jo Us1"-! - 2x i r s x ' - y '  P ( y ' ) d y ' g(s)sm+n 1 d s .
In view of the Hecke-Bochner identity for the Fourier transform

g(s)sm+"'~1 ds
r /*oo

= 2 n r mr - {nl2~l)
(2 .8')

/ ° °  /  e - 2™ * ' ' * P ( y ' ) d y '  Jo U s*-1 poo
/  ^ ^ ) ^ / 2 +m-l(27I«)5"/2+m^Vo P (x ') .

Since both sides are holomorphic functions o f r ,  we can replace r by 
iw r / (  1 -  t/;2)n to get

TVJo LJi"-'
, (2 w rsx ' -y ') / ( l -w 2) f i y ' g(s)sn+m~ ds

(2.9) =  2 7 r " / 2 / ~ ( " / 2 + m _ 1 ) ( l  — ■u/2 ) _ W 2 - i ) r - ( n / 2 + m - i )

P (x ).x Jo g(s)Jn/2+m-\ ( j ^ ^ rs) s nl2+mds
Using this we have proved that

OO

Y / Pkf ( x ) w k = 2 r (',/2+m“ 1)(l - w 2) - lw ~ ^ 2- l)r - ^ 2+m~ l)
k =0

(2. 10) rj, . s n/2+m

x P(x)e -(l/2)(l+w2)r2/(l-w2)



Now let us recall the following generating function identity for the Laguerre 
functions q>% (see Szego [8]):

^ r ^ T )  <Pk(rM ( s )w 2k

=  (1 — w 2)~l ( irsw)~ae~(l/ 2̂ [+w2̂ r2+s2'l^ 1~w2'>Ja •
In view of this formula, we get

OO
] T  Pkf { x ) w k

= ™  g  i t ^ j  \ [  *
x (pnk/2+m~l {r)w2k+m

= P(x)

k =o

(2 . 12)

OO

n / 2 + m - l ,  r ^ r n / 2 + m - l ,  . n 2 k + m« ) < '  w>»Lfc=0
Comparing the coefficients on both sides we immediately get P2k+mf(s ) = 
Fk(\x\)P(x)  where

Fk(r) = R nk/2+m- i ( f0)< p f+m- ' ( r ) .
This completes the proof o f Theorem 2.1. The corollary is immediate.

3. U n if o r m  b o u n d e d n e s s  o f  t h e  R ie s z  m e a n s

The uniform  boundedness of the Riesz means can now be easily deduced 
from a result concerning the summability o f Laguerre series. The functions 
<pk (r) form an orthogonal system in L 2(R+, r2a+xdr)  where R+ =  [0, oo). 
For /  in L p(R+ , r2a+ldr) we have the formal Laguerre series

OO

(3T) m  =
k =0

In [3] Gorlich-Markett proved that the partial sums of the above series are 
uniformly bounded on Z /(R + , r2a+ldr) iff p  lies in the interval

(4a + 4 )/(2 a  +  3) < p  < (4a + 4 )/(2 a  +  1)
provided a > 0 .

When /  is radial, f ( x )  = / o ( | x | ) , the partial sums o f the Herm ite series 
become

[R/2]
<3-2) s » / w =

k = 0
So we obtain the uniform estimates
(3-3) \ \SRf\ \P < c \ \ f \ \ p



for all ' p  satisfying 2 n / (n  +  1) < p < 2n / (n  -  1). Interpolating this with the 
result for 8 > (n -  l ) / 2  we get Theorem 1.1.

We conclude this section with a proof o f Proposition 1.1. Since for radial 
functions P2kf  =  R nJ 2~ l {f)<Pk 2~l , we have

(3-4) WPikfWl = c\Rnk/2~ \ f ) \ 2
/»oo

/  \<Pk/2~ 1(r)\2rn~ l dr  Jo
As the square o f the norm  of ip^1 1 in L 2(R+ , rn~ xdr) behaves like k n/2 1 , 
we get

/•O O

/  f(r)<pl,2~ l {r)rn~l dr  Jo(3.5) \\P2kf\\22 < c k - nl2+l
Applying Holder’s inequality we get

\\P2k fW 2 <  ^ - ”/4+1/2II/IIl,(«-.)II</2" 1||l,(*+, ^ - . ^ )
where p  +  q =  p q . _An estimate for the L q norm  of (pnk 2~ l can be read off 
from Lemma 1 o f M arkett [5]. For 1 < p  < 2n/ (n  +  1) it easily follows that 
the estimates (1.11) are valid.
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