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SUMMARY. A scparated paramotrio spaco is dofinod and proportica of tho m.le.

likolihood eati ) studicd. It in shown that the m.l.o. is asymptotically minimoax

bLut not in general asymptotically admiesiblo. Tho main rosult of Kraft and Puri (1974)
is obtained as & corollary.

1. INTRODUOTION

Cox (1962) has pointed out that in some problems the model consists of
two scparated families of densities £, 0, ), 7€Qy, 0 =10,1 and ono is
required to test H, (0 = 0) against ¥, (0 = 1). These families are assumed
to be scparated in the senso that no density f(-,0,%) can he obtained as a
limit of a sequenco {f(+, 1, 7,)} and vico versa. Cox has not explained the
senso in which this limit is to be taken but the following soems to be adequate
for most purposes. Lot M =({f(-,0,7), 76Q, 6 = 0,1} bo thought of as
a metric space with motrio

A(fD, f@) = (| f0—f2 |dp

whero z i3 a o-finite measuro with respect to which the densities aro taken.
Then f — f if d(ft™, f)— 0. Thus H, and II, are soparated iff.

i.n:" d(f(, 0,7), f(1,7")) > 0.

An oxamplo given by Cox involves deciding whother one should fit a
lincar regression with or without a logarithmio transformation of the variables.
Anothor problem of this sort occurs if one has to choose betweon a normal
and & Cauchy both with nnknown location and rcale parameters; in this
problem,
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Suppose we modify the lust problom a bit by assuming that a doublo
exponentinl—with unknown location and scale parumeters—is nlso a possi-
bility. More genorally let us consider decision problems whoroe we have a
countably many separated families f(-, 0, %), 7€Q,. 0€©, O being a countablo
sct. By “separated” we mean that for cach 0.

ig\f AdfC 0,9, f(-,0,9)) > 0.
neog .
e
For simplicity wo shall consider in this paper the case where we have

only ono parameter 0. Thoe general case, which.can bo treated in a similar
way, will appear elsowhere.

Suppose then wo have a countablo sopurated family of donsities f(-, 0),
0¢ 0O with respect to n o-finito measure s

inf d(f(-, 0'). f(-, 0")) > 03 0.
Grpb

Weo make the homogeneity assumption that the set {x; f(z, #)> 0} is independent
of 6.

Let
P(6",0) = inf [ (f(x, 0)ftx, O))¢ f(z, O)dp, p(8) = sup p(@, D). ... (1.1)
t20 820

Then 1—p(0’, 0) is & measuroe of divergence introdueed by Chernoff (1952).
It can Do shown vide Proposition 2.2, that O is soparated iff 1—p(0) > 0-0.
Noto that ©, or more procisoly tho family {f(-, 0), 0@}, is soparated iff
it is & discrete metric space under the metric (2, 0) = d(f(-, ), f(-, 0))
intraduced earlier. Tho statistical problem is to pick the corrcct valuo of
0 givon a samplo X, ..., X,,. In tho rest of tho paper we tacitly assume this
sot-up.

Let 8, bo o maximum likelihood cstimator (m.le). Lot the loss function
W(8.,0) = 0if §, = 0 and positive otherwiso. Lot R(f,, 0) bo tho risk under
0. Theoromn 3.1 provides an asymptotic estimate of R(8,, 6); it is shown that
undor somo conditions lim #-1 log R(8,, 0) exists and equals log p(0). Theorom
3.2 shows 8, has an asymptotic minimax property. From this wo derive a
new proof of the main result of Kraft and Puri (1974). In general thero are
maximum weighted likelihoad estimators (m.w.l.o.) which avo asymptotically
Votter than #,, so that 4, is not in general asymyptotically adiissible. For
& preciso dofinition of theso torms sco Scction 3.

In Scetion 4 following Hammersley (1950) wo nssumo & to bo an integer
and the loss to be zquared orror. \Vo dovelop: analogues of Cramer-Rao
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bounds and show that if an estimator attains it asymptotically at some 6
then its risk at some other point tonds to infinity |

For the special easo of the normal thoro is & slight overlap botween our
paper and that of Laderman (1955).

A soquential apy h to these probl is considered by Khan (1973b).

2. SOME PROPERTIES OF THE DIVERGENOE FUNCTION
Wo write @(t) = E,{f(X,, 0)/f(X,, 8)} suppressing the dependonce of
¢ on & and 0.

Proposition 2.1: (o) p(0’,0) = ¢(t,) forsome 0 <1y <1
(b) p(0",0) = p(0,0").
Proof : (s) This follows from convexity of ¢ nnd the fact $(f) =1,
t=0,1.
(®) pld,0)=inf E{fiX, 6)fiX, 0)) by (a)
[
= inf By {f(X,, OUf(K,, O
= pl0,0).
Proposition 2.2: 2{1—p¥0’, 0)}V2 > d(6', 6) > {1—p(&', 6)}/2.

Proof : Khan (1073b, Temma 1) has shown that
A1—g2 (1212 > d(F', 6).

This jmplios 201—p¥@, 61 > d(07, 6).
For the other incquality in Proposition 2.2 we p d as follows. Let
¥>0,0K1< L
Then
(14-ty)— (0 +y) = 1 ty— {1 Hy(1 )1} @y
<y

and for 0< y <1, 0 €t 1, by coneavity of (1—y),
(=¥ > (1=y)-(0)4g-(0F = 1=y > 1—y—1ty.

I—ty—(1—y¥ < y. e (2.2)
{ {fo (D) fyla}—1 i fy(2) > fi(z)
1—{fo(=)/f, (@) otherwiso.

So
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Then
1 t - tyfo(2)dp
PIZ 1 b o ea uhl
— Jyfiee
=1-4(0", 0).

Henceo d(0', 6) > 1—p(0', 0), completing the proof.

We shall occasionally neod the Monotono Likelihood Ratio (MLR) Assump-
tion : @ is & sot of real numbers and f(x, 0'){f(x, 0) is an increasing function
of z whenever ¢’ > 0.

Proposition 2.3: Supposo tho MLR assumption holds. Then

pl0,,0) > p(0,,0) if 0 < 0, < 0, or 0, < 0, < 0.

Proof : Wo prove o stronger result, namely, that for alt ¢ such that
0,

EgU(Xx- 0)f(X,, O < Ea(f(xx- Of(X,, 00} if0<0,<0,

or 6, <0, <0. o (23)
Wo consider first 0 < 0, < 0,. Let

A = [{{z,0)lf(, )} [olz)dp
wharo fo = Al 0 0 fi2,0)

t T [ {fle 0)ftx, 0 fle, O)p
Since 0 ¢< 1 and MLR assumption holds, f(z,0,)/f,(z) is an increasing
function of 2. Also {f(z, 6,)/f(z, 0,)} is an increasing function of z. Hence

4 < [ {flz, 0)fiz, 0} fiz, 6,) <1

which is just (2.3) by definition of A. o can doal with the case 8, < 0, < 8
in a similar way. This completes the-proof.

3. PROPERTIES OF M.L.E.

Let & =(2;,...,2,) and B,(x) be an mle,ie, §, is any olement of
tho set {0"; sup flx, 6°) = f(x, 0)} if this set is non-empty and 8, is any

oloment of © otherwise. Lot Z4(0", 0) = log{f(X,, 0"))f(X,, 0)} and S(0',0) =
Zi+..+Z,. Let W(0',0) be the loss in estimating the true value ¢ by &'
We assume (0", 0) = 0if 0’ = 0 and > 0if 0’ £ 0.

In Theorem 3.1 wo find en asymptotic value of the risk R(f,, 0) =
E{W(8,, 0)} and use it in Theorom 3.2 to prove a weak minimax result. The
idea behind the proof of Theorem 3.1 is to show that R(8,, 0) bohaves asympto-
tically like W(0y, 0). (Pgf, = 0,)) for & suitably chosen 0, # 0, and so
n~tlog R(0,, 0) bohave like n~t log Py{f, = 6,).

1
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Theorom 3.1: Suppose
(i) = p0,0) <o and (i) T W, 0)p0,6) < co.
2] o2
Then
lim w=log R(D,, 0) = log p(0).
Proof: Let By bo tho sot {S(0',8) >0}. By Chernoff’s (1952)
inoquality
S PyBy)< S {pl0, 0" < E {p(0,0)} < by (i)
20 (2] o'#8

So by the Borel-Cantelli lemma the probability that only finitely thany B,.’s
oceur is ono, i.0., with probability ono
b,¢(0; sup flz, ) = fiz, 0).

Henco
P8, = 0) < PyBy) < {p(0", O))
andso 8 W, 0)pd', 6
T W 4 n
RrO,0) < o=, (0, 0){p(@, o). e (31)

Beeause of (i), the supremum p(0) of p(0’, ), 6’ 5 0 is attained at a finite

number of points 0" =6, ..., &. Since
oy (PO g gy [P 6)
211'(0.0){ o ] gxuw,o){ T }

is convergent uniformly in z, we get,

im X WO, 0){p(0" n= 5 WO, 6l ", n
m 2 W0, 000, OO} = W0, ) lim (o0, 0)p(0)

=z 76, 6). . (32)
2 NN

1t follows from (3.1) and (3.2) that
lim n-1log R(8,, 0) < log p(0), ... - (3.3)
Let
C=(S(0',0) >0 from some & =0, ..., 6},
D= B, W = min {IV(0,, 0), ..., W(0, 0)}.
a-;@,...._a,_a 5, min {IF(0,, 9) 1¥(Ok, 0)}
Then using Chernofl’s (1952) theorem
Rb..0) > WPLC (D)
> WIPIC)— X .
= .. o0 DB

Wip(0)—e)n— % : y
2 Wl{p(0)—en 0'.-0,2:....0,,0 (oo, 0] ... (34)
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for any preassigned € > 0 and = sufficiently largo. Sinco by (i),

0, 0)\»
2 )

is uniformly convergent, wo get as boforo
i z 0, 0p0r= % Lim {p(0’, 0)/p{0))* = 0.
)"“aue,. Y {p(0, 0)]p(0) Y {el0", 0)p{0)) =%
By (3.4) and (3.6), Lim n~tlog R(8,, 0) > log(p(0)— ¢} which, taken with
(3.3), complctes the proof.

Note that tho limiting valuo is independent of 1¥(0',0). If tho loss is
0—1 then obviously (i) and (i) are sama.

Theorem 3.2 :  Suppose the conditions of ‘Theorem 3.1 hold and T, is an
estimalor such that lim n=" log R(T, 0) ezisls for all 0. Then

sup lim n-1 log R(T,, 0) > sup Tim a-tlog R(B,, 0).

Proof : Wo consider a fixed value of 0 say 0, and define 0; 0s in tho
proof of Theorem 3.1, i.e., p(0y, 0,) == p(0;). Consider a prior # which assigns
positive probability #; > 0 to 0;, i = 0,1, Then thoe avcrago risk i» mini-
mised by tho Bayes estimator B, which equals 0, if 8(0,, 0p) < log {m,1F(0,, 0p)/
{m, W(0y, 0,))} and equals 0, otherwiso. Since n log {mgI¥(0,, 0,)/(m, (0, 0,))}
tends to zero it follows from Chernoff’s (1952) theorem that lim a~! log R
(Bn 0) =1log pl0;, 0y), i #j=0,1. Now using the definition of 0, and
Proposition 2,1(b), we get lLim n~! log R(B,, n) = log p{0;) whero R(B,, m)
is tho average risk m, R(B,, 0O)+mR(B, 0,). Since B, is Bayes,
we get

E:i‘ lim n=*log R(T,, 0r) > lim 2~ log R(B,, m) = log p(0,).

Hence,
3\;[) lim2-Ylog R(T',, 0) > sl;p log p{0).

An appeal to Theorem 3.1 now completes the proof.

If sl;p p(0) =1, the result is not useful. For then any estimator
with lim (T, 0) € K ¥ 0 has this weak minimax property oven though 7,
need not even bo consistent.

It would be interesting to find conditions under which

lim »-t sup log R(B,.0) = sup lim n-1Yog R(8,, 0). e (3.8)
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When (3.68) is truo, we get from Theorom 3.2
lim n~? sup log R(T,, 0) > sup lim n~1 log R(T,, 0)
> sup lim n~1log R(3,, 0)

= lim n~1 sup log R(8,, 0) . 37

which is a more meaningful minimax result than Theorem 3.2,

Theorem 3.3 :  Suppose condilions (i), (ii) of Theorem 3.1 hold. If, more-
orer, (3.6) kolds and for each n there exists T3 such that

m‘lp R(TS, 0) = inf s;:p R(T,, 0), . (3.8)
T
then lim ot ﬂ;p log R(T, 0) = agp log p(0). we (3.9)

Proof : (3.9) follows from (3.8) and (3.7).

If O is finite all conditiona of tho theorem hold and so we get the main
result of Kraft and Puri (1974).

If we mako tho additional assumption in Theorom 3.2 that p(6,) = p{6),),
40, and some 0, depending on 0, then we can make the stronger assertion that
lim 21 log R(T,, ) < lim n~tlog R(,, 0;) at any point 0, implies the
reverse incquality at the corresponding 0,, i.e., 8, ia asymptotically admissible.
This stronger result follows from the proof of Theorem 3.2.

Unfortunately, as the following simple examplo shows, wo can, in general,
do better asymptotically by using some m.w.l.e. instead of §,. Suppose ®
consists of just three points 1,2 and 3. Supposo p(1) = p(2, 1) > p(3, 1),
P2) = p(3,2) > p(1,2) and p{3) = p(2, 3) > A1, 3). Let

1 if 0=1
My =
An if 0=2,3
where 0 <A <1 is to bo choson later. Consider an cstimator T, which
meximises the weighted likelihood myf(x, 0). Let

YO, 0y = BJIf(Xy, Oy (X, O)mnY,  y(0) = sup 10, 0).

Then it can be shown as in the proof of Theorem 3.1 thet lim n—1log R(T,, 8)
=log ¥(0). If we chooso A sufficiently close to one so that (i) y(2) = (3, 3)
and (ii) ¥(3) = (2, 3), then y(1) < p(1) and ¥(0) < p(0), = 2,3. Thus T,
is asymptotically botter than 8.

If O is not finite but the MLR assumption holds, then too usually one

can construct an asymptotically better m.w.le. Asymptotic admissibility
of 8, scerus to bo an exception rather than the rule,
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4. ESTIMATION OF AN INTEGER VALUED PARAMETER

In this section we assume O is tho set of integers and allow an estimate
to be any real number, not necessarily an ingeter. The loss in estimating
0 by a is (a—0)~

Both Theorems 3.1 and 3.2 arestill applicable. But the proofof Theorem 3.2
needs some change, sinco the form of the Bayes estimator B, in the present
set-up will be quite different from that in Section 3. However, one can still
show that lim n-!log R(B,, m) = log p(0,) and so the proof goos through.
We omit the details,

Following Hammersley (1950) we dovelop an analoguo of the Cramer-Rao
bound. Let, A = {f(X, 0,)/f(X, 0,)}, 0, # 0, and assume A(0,) = E,°(f(X,, o)/
J(X5, 0))* < co. Then A has finite varianco A%(0,)—1 under 0, By the
Cauchy-Schwartz inequality, we have for any estimator T',

var(T,|6;) > {Ey (T ) —Eg (T.)/{A"(6,)—1}

= (6,—0o/{A"(6,)— 1} e (4)

if By(T,) =0 for 0 = 6,, 0,. Note that A(0;) > 1. Clearly the best bound
of this typo is obtained by maximising (4.1) with respect to 0,. \When the
MLR assumption holds, the maximum occurs either at 0, = 0y—1 or 0,41,
answering partly a question of Hammersley (1950).

The following result shows that if an asymptotically unbiased estimator
attains a Cramer-Rao bound (4.1) asymptotically at 0, then its variance
tends to infinity under 0,. Thus there does not exist an estimator attaining
a Cramer-Rao bound asymptotically at all 6, This solves a problem raised
by Hammersloy (1950).

Theorem 4.1: Suppose T, is an estimator such that lim E(T,) = 0 if
0=0, 0, Let A(0,) <co. If lima-tlog R(T,, 0) = —log A(0,) then
lim R(T,, 6,) = .

Proof : Assumo 0, > 0, without loss of gonerality. Wo uso 7, to
construct o test of /(0 = 0,) vs H (0 = 0,) as follows.

If T,—0, > k accept JI,

< kaceept Hy
where 0 < k < 6,—0,. Let a,, B, be the errors of first and sccond kind of
this test. Lot aj bo the crror of first kind of the most powerful test of H,
vs Hy which has error of second kind equal to #,. Note that

an < &, & Byl (T,—0pPfit, - (42)
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So by our assumption on T,

Tim n=1log a; < —log A(0)). . (43)
Suppose, if possible, l_i_nlﬁ, < 1. Then by Stein’s lomma—sco Rao (1982,
Lomma 4.2)—wo can chooso a subsequenco n¢ such that

lim 27! log a;(: -1 e (4.4)
where I = E, {log(f{Xy, 0.Mf(Xy, 0o}

But I < log A(0,) and so (4.4) contradicts (4.3). So lim g, =1 and

henco
lim g, =1 o (4.5)

Wo now show (4.5) implica lim E,‘(T,—ol)l = c0.

Let
A= Et, (ToTa=0 < k) Ay = E,l (T, T.—6, > k).

Then,
B+ (1—BA, = By (T,) = 0,+b(n)
where b(n) is the bins.
Noto that A, € 0,4F and b(n) > 0. Hence
lim (A,—6,—B(n))t > o. e (4.0)
Now,
Eal (T.—0)2 > Eal (T, —0,—b(n))t
2 BulA =0 =b(n)]*+ (1= YA, —6,—b(n)]
by Jensen's inequality
= B\ —0,=b(n) /(1 -4.)
which tends to infinity by (4.5) end (4.6).
5. Two EXAMPLES
5.1. Normal with inlegral mean, Lot Xi's be normal with known vari-
anco o? and mean 0, 0 =0, +1, 42, .... Tho m.le. §, = nearest integor to
tho samplo mean X,. By Theorom 3.1, lim n-3log E,(#,—0)) = % ot
Thia was shown in a different way by Hammorsley (1950). By one of tlio
remarks following Theorem 3.2, 8, is asymptotically admissiblo. In tho class
of oll tranclation invariant estimators 7', satisfying

Tolzitiy ooy zpti) = Tol)+e, §=0, £1, 42, ..,
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the best estimator with respoot to the squared orror loss is given by

To= YZ—ih, i i < X, < i+ ;-

whore vy = ~(z ie-nusaitiogs)| {?e"’“"”/“’m‘].

In particular T§ is better than the m.le. 8, so that 8, is nojther minimax nor
admissible. Khan (1973a) has shown this in a ‘somowhat differont way.
Of course T? is minimax and probably admissible. It can be shown that
lim n-1log Eo(T2—0)t = lim n~1log Ey8,—0)*.

Ono would not recommend T, if one wants integer valued estimators.
In the class of integer valued translation invariant estimators, 8, is best and
lience minimax as stated by Stein in the discussion following Hammersloy
(1950). Probably 8, is admissible among integer valued cstimators.

Theorems 3.1 and 3.2 hold also for the zero-ono loss. For this loss function
0, is the best among all translation invarinnt estimators and hence minimax.
Khan (1973a) has proved f, is admissible.

5.2. Poisson with integral mean. Let f(z,0) = e=%02[z), 6 =), 2, ....
Proposition 2.3 and some computations show

[

PO) = p(6-+1, 0) = exp{—t,—0+-6(1+1/6) "}

= exp{—¢,/log(1+1/0)+0(e*—1)} o (8.0)

where £, = —log{0 log(141/0}/log(14+1/0), ¢, = ¢, log(141/0).

Thoorem 3.1 applies. Theorom 3.2, though true is not useful since
sup p(0) = 1. Howover one can prove that
sup lia #=log Ey(T,—0)%|1og p(0)] > sup lim n-! log E(8.—0)*|log p(0)}.

Using the techniquo oxplained in Section 3 one can construct an ra.w.le.
which is asymptotically bettor than 8,. But it may bo of interest to considor
instead & natural compotitor 7', = nearest integer to X, and show it is asymp-
totically bottor. Using Chernoff’s (1052) theorem, we can show

lim 5 log Ey(T,—0)* = inf y(t)
10

where Y(() = O(e!—1)—4(6+1/2). By (5.1),
log p(0)—inf Y1) > —t{log(1-+1 JO)A+0(e = 1) = gty

= 4L{(6+1/2)log(L+1/0)—1}/log(14-1/6). ... (5.2)
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Let fiz) = log (H'%)_:T‘}'
Then

J(z) = =12+ 1224 1)) < O N 2 > 0. . (B.3)
Also l_i.m flx)=0. So flz) > 0% 2> 0.

Henoo (24 ) log (142)1 = (s+3) /@ >0p2>0 . (54

From (5.2) and (5.4) it follows that T3 is asymptotioally better than #, under
all 0. Somo explanation of this pl is provided below.

Note that T, maximises tho woighted likolihood p,f(x, 0) where p,'s are
defined recursively as follows :

p=1
-1 -1 1
notlog pyyy—nt10g pp = 1= (045 ) log(14+1/8), 0> 1.

By (5.4) p, i3 o docreasing function of 0. So it is to bo expected that under
0, T, takes the value 041 with smoller probability then §,. Sinco tho
biggest contribution to variance of T, and 8, come from Py(T', = 0+1}and
P, = 041} respectively, we have here a simple explanation of the better
performance of T,

6. MISCELLANEOUS REMARKS
It is of interest to compare the limiting value of n-1 log,, Es(0,—0)?
with jts exact valuo for largo but finite ». Somo calonlations with the normal
N(0, 1) are given below.,

n 36 64 81 ©
ntlog, Eyl0,—0)? —0.068 —0.065 —0.004 —0.054

It is not difficult to improve the approximations to n-1log,Es(8,—0)*
by using better estimates for large deviation probabilities. Sco for example
Theorom 2 of Bahadur and Reo (1960).

Theorem 3.1, but not the other results, is true without the homogencity
assumption.

In most practical cuses one has several discroto and continuous pars-
moters. It can bo shown that a result similar to Theorom 3.1 holds in theso
cases also for the discrete parametors.
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Possibly a more realistio reformulation of “soparation” is to allow the
extent of separation to dopend on 2. Let (0), bo the parameter spaco when
samplo sizo is » and supposo for ecach 0¢(0),,

oi.r;g o0, 0)=4d,0)>o0.

0’¢(6)s
Depending on tho behaviour of d, as a function of #, ono would have many
asynptotic theorics, If ono has also estimates of errors in theso esymptotio
theories, ono would bo in & position to embed a given problem of scparated
porameters in the “right” sequenco of problems.

Theso and some othor problems will be considered elsowhero.
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