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Abstract: Postu lating  a  super-population  regression m odel connecting  a  size variable, a  cheaply 
m easurable variable and  an  expensively observable variable o f interest, an asym ptotically  optim al 
double sam pling strategy to estim ate the survey p o pu la tion  to tal o f the third variable is specified. 
To render it practicable, unknow n m odel-param eters in the optim al estim ator are replaced by 
appropria te  statistics. The resulting generalized regression estim ato r is then show n to have a  m odel- 
cum -asym ptotic design based expected square erro r equal to  th a t of the asym ptotically  optim um  
estim ator itself. An estim ator for design variance o f  the estim ato r is also proposed.
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1 Introduction

We consider double sampling with varying probability in both phases from a 
finite population in order to estimate the to ta l of a variable y  of interest. Earlier 
Rao and Bellhouse (1978) considered, taking a first phase sample utilizing known 
size-measures, w’s and observing the values for it on an auxiliary variable x. 
Their second phase sample is a sub-sample from the first and its selection 
probability utilizes w’s but not x ’s. Postulating a linear regression model 
connecting y, x  and w of which the first two are treated as stochastic and the 
third as non-stochastic, they derived an optim al estim ator for the to ta l of y  as a 
generalised difference estim ator involving unknow n param eters within a class of 
non-hom ogeneous linear unbiased estim ators. C haudhuri and A dhikary (1983, 
1985) treated the same design set-up and superpopulation  model but obtained a 
model parameter-free optim al estim ator w ithin a severely restricted class of 
design unbiased estim ators. M ukerjee and C haudhuri (1990) extended the class 
of designs perm itting the second phase sample selection-probabilities to depend 
on both x and w-values, the latter know n for the entire population. They 
consider the regression estim ator which is design-biased and hence resorted to 
studying its asym ptotic design-based properties. Also postulating an appropri­
ate super-population model slightly different from the earlier one they estab­



lished certain m odel-cum -asym ptotic design-based properties of the regression 
estim ator and  specified optim al two-phase designs. Their study is based on the 
asym ptotics of Robinson and Sarndal (1983) which is a follow-up of Isaki and 
Fuller’s (1982) and Fuller and Isaki’s (1981) asym ptotic approach. In the present 
work Sarndal’s (1980) generalised regression (greg) estim ator in one phase sam ­
pling is extended to  two-phase sampling with Rao-Bellhouse (1978) design, free 
of x ’s. Its properties following Brewer’s (1979) asym ptotic approach applicable 
to greg estim ators are examined postulating linear regression model as in 
M ukerjee and C haudhuri (1990) and extending exact theories of G odam be and 
Joshi (1965) and G odam be and Thom pson (1977) a m odel-cum -asym ptotic 
design-based optim um  estim ator is first derived. This involves model param e­
ters. A class of optim al two-phase designs is noted and then shown that the 
double sampling regression estim ator itself shares the same property with the 
optim al one. Finally we present a m ethod of estimating the approxiate design 
variance of the two-phase regression estim ator following Sarndal’s (1982) and 
Sarndal, Swensson and W retm an’s (1992) technique of estimating the approxi­
m ate variance of greg estim ator in single-phase sampling. The main reason for 
this presentation is to take advantage of simpler analysis by Brewer’s (1979) 
approach com pared to  the m uch tougher one treated by M ukerjee and 
C haudhuri (1990).

2 Asymptotically Optimal Double Sampling Strategy

We consider a finite population U = (1 , . . . ,  i , . . . ,  N)  of N  units labelled i 
(=  1 , . . . ,  N). O n it are defined three variables w, x and y with values vv; know n 
and positive with total W, x i unknown but ascertainable at little cost with to tal 
X  and Y; unknow n and ascertainable a t a high cost with total Y. The problem 
is to  estimate Y. F o r this sample of size with probability is taken from 
U and from sample s2 of size n2 is to be draw n with a conditional probability 
Pi(s2 \s i)- The over-all two-phase sample s =  (s1; s2) has then the selection p rob­
ability p(s) =  Pi(Si). p2($2 1̂  1 )• The designs p lf p 2, P are perm itted to involve 
elements of W  =  (w1, . . , , w f, . . . ,  wN) but not those of X  =  (x j , . . . ,  x (, . . . ,  x N) or
I  = ( y u - - - , y h - - - , y N)-

F o r design p 1, we suppose the inclusion probabilities £  P i t a )  =  and
Si 3 i

X  Pi(s i) — n nj  are positive. F o r design p2 also the conditional inclusion
S, 9 O’
probabilities, for each held fixed, namely £  P2(s2 ls i) =  nn (s i) and

S2 si
Y, !^i) =  ^ 2ij(^i)are assumed to be positive. The survey data are denoted

s2 3 i , j
by d — (s, x,, y'j\i e s l , j  e s2). By an estim ator we mean a real-valued function of 
d w hich is free of any x, for i $ s l and of any yj for j  $ s2. It is to  be noted



throughout tha t s2 is a subset of To em ploy a serviceable estim ator t =  t(d) 
for Y  we “first” postu late a model M  connecting W, X,  Y  of which the first one 
is a  vector of know n positive constants bu t the latter are treated  as random  
vectors. By Em{Vm, Cm) we denote the opera to r of expectation (variance, 
covariance) over the jo in t distribution of Y  and  X.  By E ^V ^ ,  C x) we denote the 
operator of expectation (variance, covariance) over the conditional distribution 
of Y  given X  and  by E 2(V2, C 2) th a t over the d istribution of X.  F o r M  we 
postulate the following:

E A y J X ,  W)  = Pj X, + p 2wt 

V1(yi\ X , W )  = a*i , E 2(ofi) =  ipf ,

E 2(x , \W)  =  p 3 Wit V2(x, \W) = a l  , i = \ , . . . , N

Further, y?s are ‘independent’ conditionally on X  and  x /s  are ‘independent’. We 
shall write 0 =  P iP 3- “Secondly”, we adop t the asym ptotic analysis o f Brewer 
(1979). This stipulates th a t U  along with W, X ,  Y, m ay be supposed to  reporduce 
itself T  (>  1) times leading to  the following entities:

UT = ( U ( l ) , - . . , U ( j ) ....... U(T)) ,

where

U{j )  = ( ( } - l ) N + l , . . . , { i - W  + N)  , 

where

X(j) — (^O -D JV  + U  •••) yy-UN + i’ •••> y ( j - l ) N + N )  » 7

such that units i , N  + i, . . . ,  ( j  — l ) N  + — 1 ) N  + i are same separately
for every i =  1 , . . . ,  N  and  y ( =  yNH =  • • • =  y u - i )N+i = ••• = y ^ - m + t  for i =  1, 

N  and similarly for WT, X T. F rom  each U(j) ,  samples of the type s are 
independently draw n according to  p and  am algam ated. F rom  such pooled 
samples, estim ators t are calculated so as to  estim ate T Y  ra ther than  Y  itself. 
Calculating the expectations with respect to  the resulting designs limits are taken 
allowing T  to  tend to  infinity. Such limits are denoted by lim Ep. Utilizing 
Slutzky’s theorem  (cf. C ram er (1966)) ab o u t limits of functions of several



sequences highly convenient simplifications are available under such limiting 
operations. W ith these preliminaries we shall seek estim ators t = t(d) for Y  
which are asym ptotically design unbiased (ADU) satisfying

lim Ep(t - Y )  = 0 (2.1)

F or such A D U  estim ators of Y  we have the following theorem.

Theorem 1: Assuming tha t Ep and Em commute, under M,

M(t) =  £ „ l t a £ , ( l -  Y f

1 X^li s,Bi^2iySl) /  1 v^li /

=  Em lim £ p(t0 -  Y f  

=  M (t0), say, where 

=  t0(d)

= I (yj ~ Pi*i ~ Piwj)lnijn2j{sl) + Pl X (xi-P3Wi)/nu
J€s 2 iesi

+ (e + P2) £ w i

Sketch of a proof: W riting A m{t) = Em(t -  Y) and extending G odam be and 
Thom pson’s (1977) analysis relevant to  t(d) subject to Ep(t(d) — Y) =  0, we 
easily simplify, using com m utativity of Ep, Em, to get

M(t)  =  lim EpVJt )  +  lim EpA 2m(t) -  V J Y )  . (2.2)

Next let h  =  h {d) =  X  ) + Pi ( l  ~  -  X  ^ T ? T ) ) -  Then
JSS2 n ljn 2j\s l) v e s i  n li jes2 n \jn 2j\s \)J

Ep(h )  =  Y- Hence lim E ^ t ,  -  Y) =  0. Let h =  h(d) be an “A D U  estim ator for 
0” i.e. lim Ep(h) =  0. Then we may write t =  t x +  h. Then, extending Godam be 
and Joshi’s (1965) approach so as to verify that lim EpCm(t1, h) =  0, the in­
equality in Theorem  1 easily follows, on further noting th a t (i) Km(Y) =



Z  K,(yi) =  Z  W'? +  (») Cm(yt -  jSjjci, p xx t) =  0 and  (iii) lim E p Vm(t,)  =  

' " * l (  y  i ‘M \  + e i y  ( ° 1V I L  V  n 2 y  ___

r n 2l \ . f l i n 2t(s1)J Pl2r \ n J '
To get rid of the second term  in M(t)  in  (2.2), following G odam be and 

Thompson (1977) again an easy way is to  choose h =  h(d) as h0 =  h0(d) where

N w,N

l isst n \ i /  \  1 jes2 K\ j7!:2j(s l).

yielding t0(d) =  t ^ d )  + h0(d). Then, noting tha t V J h 0) =  0 and  A m{t0) =  0, the 
Theorem 1 finally follows.

The optim um  design p  for employing t0, the optim al estim ator for Y, is given 
by the following theorem .

Theorem 2: M 0(t) >  M , +  p where A/j =  ^Z ^  — Z +

(  \ ( N  \ 2  N \
/?i ^ — I Z  <?2i )  ~  Z  a2 iJ and p->  0 asymptotically in Brewer’s sense and  this

lower bound is attained for a sampling design for which (i) 7t2i(s i) =  n 2 ^ J n id

I n

Z  W l / X l l )  f o r  ' i n  S1 a n d  (“ ) n l i  =  ” i ^ 2 i / Z  ° 2 i

Sketch of a proof: To choose 7r2;(s i) so as t0  minimise M 0(t) we require to
N \I/? p (s )

minimise Z ~ t~  Z  ——^  subject to  Z  ^ 2;(s i) =  ni- The choice (i) is imme-
r  7cfi s f t i 7 t 2i(Sl) ies,

diate. To choose n u we then need to  minimise



asym ptotically in Brewer’s sense, p - *  0. So it is desirable to choose n u 's so
1 ( N  \ 2

tha t A 0 is minimal. Now using Cauchy-Schwarz inequality A 0 > —  I £  +
n 2 \ i /02 /  N \ 2  I

Z  ° 2 i j  » with equality if and only if n u  = n l a2ij Y J o2i. Hence follows the 

Theorem  2.

3 Asymptotic Optimality of Regression Estimator

The optim um  design is of course not applicable because a2i, ip; cannot be know n 
in practice. F o r any design with pre-assigned n u , n 2i(sl ) also tQ is not practicable 
because ( j  = 1,2, 3) are unknowable. So let szu =  £  z{ut, where z t, ut stand

ies2
for wi( Xj, y t, i e U. Then, we suggest estim ating /? =  (/?!, (i2)’ by b =  (bu  b2)  
where

and 0 by 6 =  —  -  b2. Then it may be checked that E J b )  =  /?, Em0 )  =  6 and  

so Em(tl  — Y) = 0. Here

t* =  y  yj + b j  y  —  -  y  Xj ^
jes2 ftljKljiSi) \ ‘ ®*i J 'e s j  n \jn 2j{s l))

+ b4 ^ w‘~ I  i n r s i )  + d( ^ w' -  £  r )V 1 J6S2 n l j n 2j \ Sl ) /  \  1 ie*i n l i /

So it is easy to  check that lim Ep(t$ -  Y) =  0 i.e. t* fulfils (2.1). F urther it is not 
difficult to  check applying Slutzky’s theorem  according to  requirements, that

Em lim Ep( tt  -  Y) =  Em lim Ep(t0 -  Y)2 .

D etails are om itted to save space and may be obtained on request from the 
authors if one needs.



4 Variance Estimation

We may recall th a t in one-phase sam pling the well-known H orvitz -  Thom pson 
(1952) estim ator has Yates -  G rundy (1953) variance estim ator. If the form er is 
replaced by Sarndal’s (1980) greg estim ator a Yates -  G rundy type variance 
estim ator for the la tte r is available from Sarndal (1982) and  Sam dal, Swensson 
and W retm an (1992). D raw ing analogy to  these in the present double sampling 
situation, we propose, following these estim ators, an  estim ator for an  approxi­
m ate design variance of the regression estim ator t* as

v =  y y  ( Uu7Zlj~ nui] ( y i~ ('t>2 + )̂W| yj ~ ~ +
i < j e s 2 \  K l i j n 2ij(S l )  /  \  ^ 1  i ^ 1  j  /

y y  ^2.(^l)^2j(^l) ~  ^2 i j ( S l )h i  -  bjXj  yj  -  M j V

i< je s 2 ^ 2 i j ( * l )  \  ^ l i  ^ l j  J
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