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Model Assisted Survey Sampling Strategy in Two Phases
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Abstract: Postulating a super-population regression model connecting a size variable, a cheaply
measurable variable and an expensively observable variable of interest, an asymptotically optimal
double sampling strategy to estimate the survey population total of the third variable is specified.
To render it practicable, unknown model-parameters in the optimal estimator are replaced by
appropriate statistics. The resulting generalized regression estimator is then shown to have a model-
cum-asymptotic design based expected square error equal to that of the asymptotically optimum
estimator itself. An estimator for design variance of the estimator is also proposed.
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1 Introduction

We consider double sampling with varying probability in both phases from a
finite population in order to estimate the total of a variable y of interest. Earlier
Rao and Bellhouse (1978) considered, taking a first phase sample utilizing known
size-measures, w’s and observing the values for it on an auxiliary variable x.
Their second phase sample is a sub-sample from the first and its selection
probability utilizes w’s but not x’s. Postulating a linear regression model
connecting y, x and w of which the first two are treated as stochastic and the
third as non-stochastic, they derived an optimal estimator for the total of y as a
generalised difference estimator involving unknown parameters within a class of
non-homogeneous linear unbiased estimators. Chaudhuri and Adhikary (1983,
1985) treated the same design set-up and superpopulation model but obtained a
model parameter-free optimal estimator within a severely restricted class of
design unbiased estimators. Mukerjee and Chaudhuri (1990) extended the class
of designs permitting the second phase sample selection-probabilities to depend
on both x and w-values, the latter known for the entire population. They
consider the regression estimator which is design-biased and hence resorted to
studying its asymptotic design-based properties. Also postulating an appropri-
ate super-population model slightly different from the earlier one they estab-
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lished certain model-cum-asymptotic design-based properties of the regression
estimator and specified optimal two-phase designs. Their study is based on the
asymptotics of Robinson and Sidrndal (1983) which is a follow-up of Isaki and
Fuller’s (1982) and Fuller and Isaki’s (1981) asymptotic approach. In the present
work Sérndal’s (1980) generalised regression (greg) estimator in one phase sam-
pling is extended to two-phase sampling with Rao-Bellhouse (1978) design, free
of x’s. Its properties following Brewer’s (1979) asymptotic approach applicable
to greg estimators are examined postulating linear regression model as in
Mukerjee and Chaudhuri (1990) and extending exact theories of Godambe and
Joshi (1965) and Godambe and Thompson (1977) a model-cum-asymptotic
design-based optimum estimator is first derived. This involves model parame-
ters. A class of optimal two-phase designs is noted and then shown that the
double sampling regression estimator itself shares the same property with the
optimal one. Finaily we present a method of estimating the approxiate design
variance of the two-phase regression estimator following Sarndal’s (1982) and
Sédrndal, Swensson and Wretman’s (1992) technique of estimating the approxi-
mate variance of greg estimator in single-phase sampling. The main reason for
this presentation is to take advantage of simpler analysis by Brewer’s (1979)
approach compared to the much tougher one treated by Mukerjee and
Chaudhuri (1990).

2 Asymptotically Optimal Double Sampling Strategy

We consider a finite population U =(1,...,i,..., N) of N units labelled i
(=1,..., N). On it are defined three variables w, x and y with values w; known
and positive with total W, x; unknown but ascertainable at little cost with total
X and Y; unknown and ascertainable at a high cost with total Y. The problem
is to estimate Y. For this sample s, of size n; with probability p,(s,) is taken from
U and from s, sample s, of size n, is to be drawn with a conditional probability
P2(s2]s1). The over-all two-phase sample s = (s, s,) has then the selection prob-
ability p(s) = p,(s,)- po(s,]s,). The designs p,, p,, p are permitted to involve
elementsof W = (w,,...,w, ..., wy)but not those of X =(x,,..., x;,..., Xy} or
_Y = (yla s Vs ooy yN)'

For design p;, we suppose the inclusion probabilities Y p,(s,) = m,; and
Y pi(s;) = myy; are positive. For design p, also the conditional inclusion
LE)
proi)abilities, for each s, held fixed, namely 3 p,(s,ls;) = m(s;) and
PEL

Z pa(s3151) = my;(sy) are assumed to be positive. Tzhe survey data are denoted

s34, f

byd = (s, x;, yjli € s,,j € 5,). By an estimator we mean a real-valued function of
d which is free of any x; for i ¢ s, and of any y; for j¢s,. It is to be noted
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throughout that s, is a subset of s,. To employ a serviceable estimator ¢t = t(d)
for Y we “first” postulate a model M connecting W, X, Y of which the first one
is a vector of known positive constants but the latter are treated as random
vectors. By E,(V,,C,) we denote the operator of expectation (variance,
covariance) over the joint distribution of ¥ and X. By E,(V;, C;) we denote the
operator of expectation (variance, covariance) over the conditional distribution
of Y given X and by E,(V,, C,) that over the distribution of X. For M we
postulate the following:

E\(y:| X, W)= B,x; + Bw;
iyl X, W) = 0'12.' s Ez(a,z,.) = '/’.2 s

E(x;|W) = B3 W,, Va(x)|W) = o3, , i=1,...,N

Further, y;’s are ‘independent’ conditionally on X and x;’s are ‘independent’. We
shall write 8 = B, 5. “Secondly”, we adopt the asymptotic analysis of Brewer
(1979). This stipulates that U along with W, X, Y, may be supposed to reporduce
itself T (> 1) times leading to the following entities:

Up=U®,..., U@ ..., UM,

where
UD=(~YN+L..,G~-)N+N),
Ye=(XY(),..., Y(j),.... X(T)) ,

where

Y(j)= (Y(j—1)1v+1, cees YE-1N+is e e s y(j—l)N+N) s i=L...,T

such that units i, N +i,...,(j — )N +i,..., (T — 1)N + i are same separately
foreveryi=1,...,Nand y; = yn+; =" = Yj-yv+i =" = Yr-ywwfori=1,
..., N and similarly for W, X 1. From each U(j), samples of the type s are
independently drawn according to p and amalgamated. From such pooled
samples, estimators ¢ are calculated so as to estimate TY rather than Y itself.
Calculating the expectations with respect to the resulting designs limits are taken
allowing T to tend to infinity. Such limits are denoted by lim E,. Utilizing
Slutzky’s theorem (cf. Cramér (1966)) about limits of functions of several
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sequences highly convenient simplifications are available under such limiting
operations. With these preliminaries we shall seek estimators t = t(d) for Y
which are asymptotically design unbiased (ADU) satisfying

limE,(t — Y) =0 2.1)

For such ADU estimators of Y we have the following theorem.

Theorem 1: Assuming that E, and E,, commute, under M,
M(@t)=E,lim E(t — Y)

z)lf(i y, bty —l)wwii(%— 1)6;

n%l' sy 3i 7t2|'(sl) 1§

= E,lim E (t, — Y)?

= M(t,), say, where

= Z (¥ = Bix; — Byw))/mymai(sy) + By Z (x; — Byw)/my;

jes;z ies;

N
+(9+Bz)21:Wi

Sketch of a proof: Writing 4,,(t) = E,(t — Y) and extending Godambe and
Thompson’s (1977) analysis relevant to t(d) subject to E,(t(d) ~ Y) =0, we
easily simplify, using commutativity of E,,, E,,, to get

M(t) = lim E, V,,(¢) + lim E, 42(t) — V,(Y) . 2.2)

Xj

Next let t, =t,(d)= Y — 2 __ B1<Z Moy

+ ) Then

jesy Ty jmay(sy) ies; My;  Jjes; 7‘1,‘”2;(31)
E,(t;) = Y. Hence lim E,(t, — Y) = 0. Let h = h(d) be an “ADU estimator for
0” i.e. lim E, (h) = 0. Then we may write ¢t = t; + h. Then, extending Godambe
and Joshi’s (1965) approach so as to verify that lim E,C,(t;, h) = 0, the in-
equality in Theorem 1 easily follows, on further noting that (i) V,(Y)=
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i Valyi) = i W7 + Ba3), (i) Cu(yi — B1x:, B1x;) = 0 and (iii) lim E, V() =

1 1
¥y} P1(51)> 2 (02i>
= + 2,
; 3, (s?;i ai(S1) A Zl: Ty

To get rid of the second term in M{t) in (2.2), following Godambe and

Thompson (1977) again an easy way is to choose h = h(d) as hq = ho(d) where

ol g 2 enlne o

ies, 1 jesy nljn.Zj(sl)

yielding t,(d) = t,(d) + ho(d). Then, noting that ¥, (hy) = 0 and 4,,(t,) = 0, the
Theorem 1 finally follows.

The optimum design p for employing t,, the optimal estimator for Y, is given
by the following theorem.

1 /X 2 N
Theorem 2: My(t)>M,;+p where M, = (E (Zl: q//,~> - zl: c//,-z) +

1 (X 2 X . . .
B? (n_(; 02,.) - zl: a§i> and p — 0 asymptotically in Brewer’s sense and this

1

lower bound is attained for a sampling design for which (i) 7,5:(s,) = n,(¥;/n,;) /

Z (Y;/ny;) foriin s, and (ii) n,; = nlaz,/z Gy

ies;

Sketch of a proof: To choose 7,;(s,) s0 as to minimise My(t) we require to

minimise Z Vi Y Pi(s subject to Y, my(s,) = n,. The choice (i) is imme-
1 7[1‘ 5120 o Sl) iesy

diate. To choose 7,; we then need to minimise

A——Z - Y palsy) (Z ni)ﬂif(i;_zz)

T Wyysyai ies; Ty 1 Ty
I(N 2 N 22
v e m(E )
= Ay + p, say.

Here p= zmsl)(z ﬁ—}f:w,)

1 Ty;s, oi ies; My

G 2¥)

Since [p| < Max.

8y

) ——Zwl

ies; Ty
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asymptotically in Brewer’s sense, p — 0. So it is desirable to choose =,;’s so

. . . 1/E \?
that 4, is minimal. Now using Cauchy-Schwarz inequality 4, > ;(Z l/’.~> +
2\1

2 /N 2
%(Z az,.> , with equality if and only if n,; = n,0,; / Y a,;. Hence follows the
1\ 1 1

Theorem 2.

3 Asymptotic Optimality of Regression Estimator

The optimum design is of course not applicable because a,;, i/; cannot be known
in practice. For any design with pre-assigned =,;, ,,(s,) also t, is not practicable
because f; (j = 1, 2, 3) are unknowable. So let s,, = Y zu,, where z;, u; stand

for wy, x;, y;, i € U. Then, we suggest estimating f§ = (zﬁl, B,) by b=(b,, b,Y
where

-1
b - (sxx wa ) (sxy )
- Swx  Sww Swy.

and by 6 = Swy _ b,. Then it may be checked that E,,(b) = B E,(0) =6 and

ww

so E,,(t§ — Y) = 0. Here

y X x
=Y 4 4 bl( 2t ___,__)
o5, Ty (1) ies, Wy fesy Wy jMa4(S1)

+b<iw—-z it >+é<§:w Zw‘)
e jes, Ty mas(Sy) TSy

So it is easy to check that lim E (t§ — Y) = 0 i.e. ¢} fulfils (2.1). Further it is not
difficult to check applying Slutzky’s theorem according to requirements, that

E,lim E,(t3 — Y)* = E, lim E,(t, — Y)? .

Details are omitted to save space and may be obtained on request from the
authors if one needs.
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4 Variance Estimation

We may recall that in one-phase sampling the well-known Horvitz — Thompson
(1952) estimator has Yates — Grundy (1953) variance estimator. If the former is
replaced by Sirndal’s (1980) greg estimator a Yates — Grundy type variance
estimator for the latter is available from Sidrndal (1982) and Sirndal, Swensson
and Wretman (1992). Drawing analogy to these in the present double sampling
situation, we propose, following these estimators, an estimator for an approxi-
mate design variance of the regression estimator t§ as

P = Z (mﬂh; - 751.';) (y; — (b, + é)Wi Vi~ (b, + é)w])z

i<jesy nlij“zi,-(sl) Ty Tyj

+2)

i<jesy 7[2ij(sl)

nli(sl)nlj(sl) - n2ij(sl)<Yi —byx; /i blxj)z

Ust; Tyj
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