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1 Introduction

Variance- and efficiency-balanced designs in one-way and two-way elimination of 
heterogeneity settings have been studied quite extensively in the literature. Though 
such balanced designs lead to considerable simplicity in the analysis, with the 
availability of high speed computers, simplicity in analysis alone does not justify 
the attractiveness of these designs, and, further statistical justification, in terms 
of optimality considerations, is necessary. In the literature, optimality results on 
balanced designs are available only for the equireplicate case (see e.g. Kiefer 
(1958, 1975)), and, not much is known about the optimality of variance- and effi
ciency-balanced designs when the treatments are not equally replicated, except for 
a recent paper by Mukerjee and Saha (1990), in which the optimality of efficiency 
-  balanced block designs has been studied in some restricted classes of com
peting designs with unequal replications and unequal block sizes. The assumption 
of equal replication often puts a severe restriction on the other parameters {v, b, k)
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of the design (e.g., the number of blocks in block designs). From a practical point 
of view in situations where b k /v  is not an integer, efficient designs with unequal 
replications are desirable. This paper attempts to present some efficient non
binary variance- or efficiency-balanced block and row-column designs with un
equal replicates. These designs are ^-optimal in certain broad classes of com
peting designs and also have high efficiencies as per the A- and Z)-optimality crite
rion.

2 Preliminaries

In the usual setting of block designs, let v denote the number of treatments, b, 
the number of blocks and k, the number of units per block. Any allocation of 
v treatments to the b k  experimental units is a block design. Under the usual fixed 
effects, additive model with homoscedasticity and independence, the coefficient 
matrix of the reduced normal equations for estimating linear functions of treat
ment effects, using a block design d  with parameters v, b, k  is given by

Cd = Rd- k ~ lN dN'd , (2.1)

where Rd = diag (rdu . .  . ,rdv), rdi is the replication of the /th treatment in d  and 
Nd = ((ndij )) is the v x b  incidence matrix of the design d.

The row-column designs considered here have b k  experimental units arranged 
in a rectangular array of b columns and k  rows such that each unit receives only 
one of the v treatments being studied. For an arbitrary row-column design d, the 
“C-matrix”, under an appropriate model is given by

C f C) = R d- k ~ l Nt dN \  d--  b ~1 N2dN'2d+(bk)~l rdr'd

= Rd- k - iN idN \ d- b - lN 2d( I - k - H \ ’)N'2d , (2.2)

where Rd is as defined earlier, rd = (rdl, . .  . ,rdv)', Nd{ and N 2d are the v x b  treat- 
ment-column and v x k  treatment-row incidence matrices, respectively, I  is an 
identity matrix (of appropriate order) and 1, a column vector of unities.

It is known that Cd as in (2.1) and C(d c) as in (2.2) are symmetric, non
negative definite matrices, with zero row sums. A block (resply. row-column) 
design d  is called connected if and only if Rank (Cd) = v— 1 (Rank (C(f c)) = 
v - 1). Henceforth, only connected designs are considered.

For given positive integers v, b, k , D0(v,b,k)  will denote the class of all con
nected block designs with v treatments, b blocks and block size k. Similarly,



D(v ,b ,k )  will denote the class of all connected row-column designs with v 
treatments, k  rows and b columns.

With rh design d e D (v ,b ,k ) are associated the block designs dNi and dNi 
with inc> nee matrices N ld and N 2d respectively, i.e., dN (dN ) is the block 
design obtained by treating the [columns] ({rows)) of d  as blocks. Then, from (2.2), 
it follows that

is the C-rnatrix of dN . We denote by DN(v,b,k), the class of designs dN< cor
responding to de D(v ,b ,k )  and consisting of all connected block designs having 
v treatments, b blocks and block size k.

We now have the following definitions.

Definition 2.1: A connected block (resply. row-column) design d  is said to be 
variance-balanced if and only if it permits the estimation of all normalized treat
ment contrasts with the same variance.

A connected block (resply. row-column) design d  is variance-balanced if and 
only if

where 9(>0) is the unique non-zero eigenvalue of Cd(Cj fc )̂.
Let d  denote a connected block (resply. row-column design). The positive 

eigenvalues of the matrix R d x/2CdR d x/1 (resply. R d i n C {d C)R d ul) are called 
the canonical efficiency-factors of the design d.

Definition 2.2: A connected block (resply. row-column) design d  is said to be effi
ciency-balanced if and only if the canonical efficiency-factors of d  are all equal.

A connected block (resply. row-column) design d  is efficiency-balanced if and 
only if

C ^ C) = C 3 '-& -,N2rf( / - A r 1ir)A /’2<, , (2.3)

where

(2.4)

cd(cfC)) = d(i-v~x\\') (2.5)

Cd( C f C)) = a{.Rd- n  lrdr'd) , (2.6)

where 0< ct<  1 is a scalar and n = bk.



It is known that a variance-balanced (block or row-column) design with v>2 
is efficiency-balanced, and conversely, if and only if the design is equireplicate. 
Also, it may be noted that in the class of proper (equal block sized) designs, any 
binary variance- or efficiency-balanced block design is necessary equireplicate.

For a block design d e D 0(v,b,k), let 0 = zd0<zd\<zd2-  .. . < z d^ x denote 
the eigenvalues of Cd. Similarly, let 0 = z*0<z*, < z*2^  .. . < z dtv-\ denote the 
eigenvalues of C (f c) for deD(v,b,k) .

Definition 2.3: Let d* be a block (resply. row-column) design belonging to 
D0(v, b, k)(D(v, b, k)). If zd*i>zdi(z%*i'>.zdi) for any other design d e D 0(v,b,k) 
(deD (v ,b ,k )), then d* is ^optim al in D0(u,b,k) (resply. in D(v,b,k)).

It is well-known that a design is jE-optimal if and only if it minimizes the maxi
mum variance of the best linear unbiased estimator of normalized treatment con
trasts.

Finally, we quote some results and definitions from Das and Dey (1989).

Definition 2.4: A  k x b  array containing entries from a finite set Q = (1,2,.. ,,v] 
of v treatment symbols is called a Youden Type (YT) row-column design if the /th
treatment symbol occurs in each row of the array m, times, for /' = 1,2........v,
where m, = rt/ k  and r, is the replication of the /th treatment symbol in the array.

Theorem 2.1: A necessary and sufficient condition for the existence of a YT 
design is that r / k  is an integer, for / = 1,2, . . . ,  v.

Theorem 2.2: A necessary and sufficient condition for C (f c) = Cd is that 
deD(v ,b ,k )  is a YT design.

Remark 1: In view of Theorem 2.2, it is clear that if the block design dN cor
responding to a row-column design deD(v ,b ,k )  is 0-optimal according to some 
non-increasing optimality criterion 0, then d  is also 0-optimal, provided d  is a 
YT design (An optimality criterion <p is non-increasing if </)(A )<4>{B) whenever 
A - B  is non-negative definite). Thus, in the case oi  Y T  designs, the search for 
optimal designs in a three-way setting reduces to that in a two-way setting.



3 i?-OptimaJ Variance- and Efficiency-Balanced Block Designs

3.1 Variance-Balanced Designs

Consider a Balanced Incomplete Block (BIB) design with parameters v', 
b' = v ' ( v ' - l ) / 3 ,  r' = v '— 1, k  = 3, A' = 2, and let N  be the incidence matrix of 
such a BIB design. Such a BIB design is also called a two-fold triple system and 
general solutions to these designs are well-known (see e.g., Bose (1939)). Let d* 
be a block design with incidence matrix

N d. = N  /„. 
0' 21'

(3.1)

Then, it is easy to see that the C-matrix of d* is Cd» = (2v/3) ( / -  v 111') where
v = v '+ i .  Thus, d* is variance-balanced, with v = v ' + \  treatments, b =
(v - l ) / 3  blocks, block size k -  3 and replications

rd,t = v- 1 (= ru say) for / = 1,2 , . . . ,  t ; - 1  , 

rd,v = 2 ( v - \ ) { =  r2, say) . (3.2)

Jacroux (1980) proved that for any block design d e D 0(v,b,k),  

zdi < r ( k - l ) v A ( v - \ ) k }  , (3.3)

where r is the largest integer not exceeding bk/v.  Since d* is variance-balanced, 
Zd*i = 2 v/3 for *= 1,2, . .  .,17 — 1. It is now easy to see that = 2v/3  attains 
the upper bound specified in (3.3) and hence d* is ^-optimal over D0(v,b,3) 
with v -  v '+ 1, b = (u2-1) /3.  We thus have

Theorem 3.1: The design d* is variance-balanced with replications as in (3.2) and 
is E-optimal over D0(v, b, 3), with v = v '+\ ,  b = (d2- l ) / 3 ,  provided BIBD 
(v',b',r', 3,2) exists.

The following are the only possible series of BIB designs which satisfy the 
conditions required for obtaining the design d* of Theorem 3.1:

( i )u '  = 3 / ,  b' = t ( 3 t - l ) ,  r' = 3 t - \ ,  k  = 3 ,  X' = 2 ,  t z i  ,
(3.4)

(ii) y' = 3 / + l  , b' = t ( 3 t + l ) ,  r' = 3 t ,  k  = 3 ,  A' = 2 ,  t>  1 .



We refer to Dey (1986) for their construction. Note that for t = 1 in series (i), the 
design reduces to a Randomized block design.

3.2 Efficiency-Balanced Designs

Let there exist a BIB design d' with parameters v', b, r', k, k. Let these treatments 
be grouped into (p+ 1) disjoint groups, sa.y p u p 2, .. .,pp+u such that the first 
group p l contains ( v ' - 2 p )  treatments and each of the remaining groups contain 
two treatments. Let Nd' be the incidence matrix of d', such that the first ( v ' - 2 p )  
rows correspond to treatments in p t and the remaining rows correspond to 
treatments in p t for / = 2 , 3 , . . . ,p+\ .  From Nd>, we get another matrix N d, by 
adding the two rows corresponding to the two treatments in each of the groups 
P2>P3> ■ ■ -<Pp+\< the first ( v ' - 2 p )  rows are left unaltered. Then, Nd* is the in
cidence matrix of a block design with v = v ' - 2 p + p  = ( v ' - p )  treatments, b 
blocks, block size k  and replications

rdv = b k /v '  = r ' (= r u say) for / = 1 , 2 ........v - p ,

= 2r' (= r2, say) for i = v - p + i , . .  , , v  . (3.5)

The C-matrix of d* is

Q .  = (A/A:) v ' j - W  -211 '
—21'1 2 y'7-411'

(3.6)

where in (3.6), the first principal submatrix is of order v - p  and the second, of 
order p; A = r ' (k— l ) / ( u '- l ) .  Simple calculations yield

Cd* = a(Rd* - n  Vrf*/-̂ *) , (3.7)

where a = kv ' /kr ' ,  Rd, = r ' l
2 r ' l

rd, = (r ' l ' ,2r’V) and n = bk. Thus, d*

is efficiency-balanced. In fact, that d* is efficiency-balanced follows from a result 
of Puri and Nigam (1975), though the proof given here is some what different. 
Further, from Bagchi (1988), it follows that for p > 0, d* is E-optimal over 
D0(v,b,k)  provided the following two conditions are satisfied:



(i) v - p r ’>2  ,
(3.8)

(ii) v -  v(v~pr ')  l ^ p X  .

Thus, we have

Theorem 3.2: The design d* (if it exists) is (i) efficiency-balanced and (ii) is E- 
optimal over D0(v,b,k) provided the conditions of (3.8) are met.

In particular, the following two series of BIB designs satisfy (3.8):

(i) v‘ = s2+ s + l  = b , r1 = s+i  = k  , A = 1 , 
s a prime power and p s s ~  1 ,

(3.9)
(ii) = A t - 1 = b , r' = 2 t -  \ = k  , k = t - 1 , f >  1 , p =  1 .

For construction methods, refer Dey (1986).

4 Zs-Optimal Variance- and Efficiency-Balanced Row-Column Designs

From Definition 2.4, Theorems 2.1 and 2.2, and Remark 1, the following results 
are obvious.

Theorem 4.1: The block contents of the block design d* (if it exists) in Theorem
3.1 can be rearranged to yield a YT design provided (v - 1 ) is divisible by 3. In 
such a case, the YT design is variance-balanced and ^-optimal in D(v,b,  3).

In particular, the series (i) of (3.4) can be used to obtain ^-optimal row-col
umn designs.

Theorem 4.2: The block contents of the design d* (if it exists) in Theorem 3.2 can 
be rearranged to yield a YT design, provided r' is divisible by k. Further, in such 
a case, the YT design is efficiency-balanced and ^-optimal provided the condi
tions (3.8) are met.

Note that for the series of designs in (3.9), the conditions in Theorem 4.2 are 
satisfied and hence, these designs can be used to obtain £-optimal row-column 
designs.



5 Efficiency of Designs as per A- and D-Criterion

The designs constructed in Section 3 and 4 are shown to be ^optim al. It may be 
of further interest to see how these designs perform under a change of criterion. 
For a block (resply. row-column) design d  belonging to D0(v,b,k)  (resply. 
D(v,b,k))  let,

! > - l  /  B - l  \

0 A ( d ) =  £  Zdi1 (resply. £  z%~x \ and

<t>D(d)=\[zm (resply. Y[ z% 1
i= 1 \  / = 1 ,

(5.1)

A design is ^-optimal (£>-optimal) if it minimizes <pA(d)(<pD(d)) over all the 
designs in D0(v,b,k)  or D(v,b,k).  The A- and /^-efficiency of a design d  is 
defined as

eA(d) = $A{d\)/<l)A(d) 

and (5.2)

eD(d) = [0D(df>)/<t>D(d)}'«v- l) ,

where d\{d%)  is the ^-optimal (D-optimal) design. One difficulty with these 
definitions of efficiency is that A-(or D-)optimal designs are known only for some 
specific values of v, b, k. Alternatively, one can obtain simple lower bounds o f 
eA and eD as conservative measures of efficiency (see, e.g., Cheng and Wu 
(1981)). It has seen shown by Kiefer (1958, 1975) that for any design 
d e D 0(v,b,k)  (or deD(v,b,k)) ,

<t>A{ d ) > ( v - \ f m k - \ ) )  

and (5.3)

(t>D( . d ) > [ ( v - m b ( k - m v- { •

These lower bounds are the <j>A and 4>D values of a BIB (resply., Youden) design 
with parameters v, b, k. The efficiency lower-bounds are then,

e’A(d) = ( v - l ) 2/{b(k-l)<pA(d)}



and (5.4)

e'D(d) = ( v - \ ) / [ b ( k - m D(d)}U{v- X)\ .

We use the above lower bounds of A-  and /^-efficiencies for the designs con
structed in Sections 3 and 4.

For the variance-balanced (block or row-column) design d*, we easily have,

We have computed and presented in Table 1 these lower bounds to A- and in
efficiency for variance-balanced designs d* with v < b < 50 obtained from the two 
series, as in (3.4), of BIB designs.

Table 1. Parametric values of ̂ -optimal Variance-balanced block and row-column designs based on 
Theorems 3.1 and 4.1 and their A -  and ^-efficiency lower bounds

S. No. V b k r\ r2 e'A (d*) e'D(d*)

1 4 5 3 3 6 0.800 0.800
2* 5 8 3 4 8 0.833 0.833
3 7 16 3 6 12 0.875 0.875
4* 8 21 3 7 14 0.889 0.889
5 10 33 3 9 18 0.909 0.909
6* 11 40 3 10 20 0.917 0.917

For the efficiency-balanced block (resply. row-column) design d*, using the ex
pression (3.6) for the C-matrix, one can show, after some routine calculations, 
that the positive eigenvalues of Cd* (resply., C (/ , c>) are 2X(v+p)/k,  X(v+p)/k  
and 2Xv/ k  with respective multiplicities [ p - 1), ( v - p - 1) and 1. Thus, for effi
ciency-balanced design d*, we have,

e'A (d*) = e'D{d*) = v/(v+1) . (5.5)

e'A(d*) = 2 v (v - l ) / { ( 2 v - p ) ( v + p - l ) }  ,

and (5.6)

e'D(d*) = - ± J — {v2 P / (v + p ) f (v- 1) .
( v + p - 1)

These lower bounds to A- and /^-efficiency for efficiency-balanced design d* 
(in the parametric range v < b < 50, 3<A:< 15), which are derivable from existing



Table 2. Parametric values of ^-optimal Efficiency-balanced block and row-column designs based 
on Theorems 3.2 and 4.2 and their A- and D-efficiency lower bounds

S.No. P V b k r\ r2 e'A(d*) e'D(d*)

1 1 6 1 3 3 6 0.909 0.928
2* 1 8 12 3 4 8 0.933 0.950
3 1 12 26 3 6 12 0.957 0.959
4* 1 14 35 3 7 14 0.963 0.974
5 1 6 7 4 4 8 0.909 0.928
6* 1 9 15 4 6 12 0.941 0.957
7 11 13 4 4 8 0.917 0.941
8 1 12 13 4 4 8 0.957 0.969
9 1 12 26 4 8 16 0.957 0.969

10* 14 20 4 5 10 0.933 0.954
11* 1 15 20 4 5 10 0.966 0.976
12* 1 15 40 4 10 20 0.966 0.976
13 23 50 4 8 16 0.958 0.973
14 1 24 50 4 8 16 0.979 0.986
15 1 10 11 5 5 10 0.947 0.962
16 3 18 21 5 5 10 0.927 0.952
17 19 21 5 5 10 0.950 0.967
18 1 20 21 5 5 10 0.974 0.983
19 1 20 42 5 10 20 0.974 0.983
20* 22 30 5 6 12 0.939 0.960
21* 23 30 5 6 12 0.958 0.973
22* 1 24 30 5 6 12 0.979 0.986
23 1 10 11 6 6 12 0.947 0.962
24 14 16 6 6 12 0.933 0.954
25 1 15 16 6 6 12 0.966 0.976
26* 1 15 24 6 9 18 0.966 0.976
27 1 15 32 6 12 24 0.966 0.976
28 1 20 42 6 12 24 0.974 0.983
29 27 31 6 6 12 0.936 0.959
30 3 28 31 6 6 12 0.951 0.968
31 29 31 6 6 12 0.967 0.978
32 1 30 31 6 6 12 0.983 0.989
33 1 14 15 7 7 14 0.963 0.974
34* 1 20 30 7 10 20 0.974 0.983
35 1 21 44 7 14 28 0.976 0.984
36* 26 36 7 9 18 0.963 0.976
37* 1 27 36 7 9 18 0.981 0.988
38 1 14 15 8 8 16 0.963 0.974
39 1 12 13 9 9 18 0.957 0.969
40 1 18 19 9 9 18 0.971 0.981
41* 1 20 35 9 15 30 0.974 0.983
42 23 25 9 9 18 0.958 0.973
43 1 24 25 9 9 18 0.979 0.986
44 1 24 50 9 18 36 0.979 0.986
45* 1 26 39 9 13 26 0.980 0.987
46* 31 44 9 12 24 0.969 0.980
47* 1 32 44 9 12 24 0.984 0.990
48 34 37 9 9 18 0.959 0.974
49 35 37 9 9 18 0.972 0.982
50 1 36 37 9 9 18 0.986 0.991



Table 2 (continued)

S. No. P V b k h r2 e'A (d*) e ’D(.d*)

51 1 15 16 10 10 20 0.966 0.976
52 1 18 19 10 10 20 0.971 0.981
53* 1 24 40 10 16 32 0.979 0.986
54 29 31 10 10 20 0.967 0.978
55 1 30 31 10 10 20 0.983 0.989
56 1 22 23 11 11 22 0.977 0.984
57* 1 32 48 11 16 32 0.984 0.990
58 1 22 23 12 12 24 0.977 0.984
59 3 42 45 12 12 24 0.966 0.979
60 43 45 12 12 24 0.977 0.986
61 1 44 45 12 12 24 0.989 0.993
62 1 26 27 13 13 26 0.980 0.987
63 38 40 13 13 26 0.974 0.984
64 1 39 40 13 13 26 0.987 0.992
65 1 26 27 14 14 28 0.980 0.987
66 1 30 31 15 15 30 0.983 0.989
67 34 36 15 15 30 0.971 0.982
68 1 35 36 15 15 30 0.986 0.991
69* 1 35 48 15 20 40 0.986 0.991

BIB designs (or their complements) listed in Hall (1986), have been computed and 
presented in Table 2.

In these tables the designs marked with asterisk cannot be converted to a YT 
design. As such these parameters refer only to the block designs. It is apparent 
from these tables that the designs, apart from being £-optimal, have high A- and 
^-efficiencies as well.

Acknowledgements: The authors are thankful to the referee for his valuable comments on a previous 
draft.
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