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Abstract

Applications of Whittle’s inequality for Banach space valued martingales are discussed generalizing recent
results of Shixin (Statist. Probab. Lett. 32 (1997) 245-248) and earlier results of Rao (Theory Probab. Math.
Statist. 16 (1978) 111-116) for Hilbert space valued martingales.
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1. Introduction

Whittle (1969) proved an inequality for real valued random variables generalizing the Kolmogorov
inequality, the inequality derived by Hajek and Renyi (1955) and the inequality of Dufresnoy (1967).
An application of this result for Hilbert space valued random elements {Z;, k > 1} such that the
family {¢.(Z;), k > 1} is a submartingale is given in Rao (1978) generalising the Hajek—Renyi
type inequality for martingales with values in Hilbert space due to Konakov (1973). Application
to obtaining a lower bound for the probability of a simultaneous confidence region in multivariate
analysis is given in Rao (1978) sharpening the bound given in Sen (1971).

Recently Shixin (1997) proved the Hajek—Renyi type inequality for Banach space valued martin-
gales. We now derive a Whittle type inequality for Banach space valued martingales from which
the results in Shixin (1997) follow as special cases.
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2. Whittle’s inequality

Theorem 2.1. Let B be a Banach space. Let {S,=3;_| D;,%,, n > 1} be a B-valued martingale .
Let ¢(-) be nonnegative valued function defined on B such that ¢(Sy)=0 and {¢(S,), 7, n= 1}
is a real valued submartingale. Let y(u) be a positive nondecreasing function for u > 0. Let A, be

the event that ¢(S;) < Y(u),1 <k <n, where 0 =ug <u; <...<u,.... Then
" E[¢(Si)] — E[$(Si—1)]
— W(ui)

If, in addition,
0 <E[P(S)Fa-1]1— &(Sk—1) S 4, 1<k <
and
Y(u) 2 Y(u-1) + A, 1<k <,

then

n Ak
P n > - .
4 )>,£Il (1 l//(uk))

Remarks. The above result is a consequence of the inequality in Whittle (1969). A version of
Theorem 2.1 for a sequence of Hilbert space valued random elements D, was given in Rao (1978).
We now give a detailed proof of Theorem 2.1 for completeness.

Proof. Let ;; be the indicator function of the event [¢(S;) < y¥(u;)] for 1 <j < n.
Note that

_W&U
“20 W)

and hence

P(4,)=E (]}x) =E ({]:I:x} xn)
(i -229)

i=l

Observe that

A(S) }_ H(Sim1)  E{d(S)|F1} — (Ss-1)
E 1 — F_1r=1~ -~ .
{( MWJI = V(i)
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Since {¢(S;), %,/ > 1} is a submartingale and since Y(u;) is nondecreasing , it follows that

n—1
P4,)y=FE ({H){[} (1 — (j)l/Sf;_)l))) o E{d)(Sll)}w—(uE;{gb(Sn—l)}

T, L (om0 ELS)} — E{es,-)}
> £ <{H/l} <1 l[’(“n—l))) l/’(un)

=1

Applying this inequality repeatedly, we get that

— E[$(S))] = E[p(Si-1)]
P4)=1- .
) =1-2, W)
Note that
(Z)(Sn))’ } _ < _ An ) (1 o ¢(Sn—l)>
E { (1 '»b(“n /}] ! 1 !//(u,,) lp(un—l )
d)(Sn—l )

> mﬂ//(un) — Y1) — 4,]

and the last term is nonnegative by hypothesis. Hence

n-—2
qb(Sn—l)
P(A,,>>( ) ) ({Hx}( Wﬂ_])».

Applying this inequality repeatedly, we obtain that

Pl H < <uA)>

3. Applications

(1) Let B a Banach space which is p-smoothable where 1 < p < 2. Let {S, =" D;, %,n > 1}
be a B-valued martingale. Then {||S,||?, %, n > 1} is a real valued submartingale. Let $(x) = ||x||

and Y(u) = u”. Applying Theorem 2.1, we get that

. — E|S;[|1” = E||S;- )l
PASI <wpl<j<mz1-) =
J=1

J
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and hence for every ¢ > 0,
S; S;||?
o 1505 ) p( o IS5
1<j<n YW I<jsn U

gg_,,z E]\Sjllp—fllsj_ﬂ]”. (3.1)

j=1 uj

In view of Assouad’s theorem (cf. Woyczynski, 1975, Theorem 2.1), it follows that there exists
an absolute constant ¢, depending only on p such that

E(IS)1? = 18-111°F5-1) < ¢, E(|D)||?|F=1), =2
and hence
E(|IS;117 = 118j=1117) < e, E(ID;]|).
Combining the above inequality with (3.1), we have

[ - Z" E(|D;017)
P —_— > < p JENJ LS L L
(12‘;1;1 U ’ e uy

j=I J

Remarks. Corollaries 1 and 2 and other results in Shixin (1997) follow as special cases of the
above inequality.

(2) Suppose {D;, j > 1} are independent random elements and the Banach space is 2-smoothable.
Further let ¢(x) = ||x||? and Y(u) =u?. If
E(ISiI? = 18- 1*) < f — i,
for 1 < j < n, then

P > ] (1 EUSI) ~ ES ||2)> ,

= J

which is an analogue of Dufresnoy’s inequality. Applying the inequality
E(IS;I*) — E(I8;-117) < cB(ID;1%),
we get the weaker inequality

P(A,,)}ﬁ (1 —M).

u:
j=1 7
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