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Abstract
Applications of Whittle’s inequality for Banach space valued martingales are discussed generalizing recent 

results of Shixin (Statist. Probab. Lett. 32 (1997) 245-248) and earlier results of Rao (Theory Probab. Math. 
Statist. 16 (1978) 111-116) for Hilbert space valued martingales.
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1. Introduction
Whittle (1969) proved an inequality for real valued random variables generalizing the Kolmogorov 

inequality, the inequality derived by Hajek and Renyi (1955) and the inequality of Dufresnoy (1967). 
A n  application of this result for Hilbert space valued random elements {Z*, k  ^  1} such that the 
fam ily {<pk(Zk), k  ^  1} is a submartingale is given in Rao (1978) generalising the Hajek-Renyi 
type inequality for martingales with values in Hilbert space due to Konakov (1973). Application 
to  obtaining a lower bound for the probability of a simultaneous confidence region in multivariate 
analysis is given in Rao (1978) sharpening the bound given in Sen (1971).

Recently Shixin (1997) proved the Hajek-Renyi type inequality for Banach space valued martin­
gales. We now derive a Whittle type inequality for Banach space valued martingales from which 
the results in Shixin (1997) follow as special cases.
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2. Whittle’s inequality

Theorem 2.1. Let B be a Banach space. Let {.!>„ =  Ym=\ A , &  n, n ^  1} be a B-valued m artingale. 
Let </>(•) be nonnegative valued function defined on B such that <j)(Su) =  0 and {(l>(S„), .J7,n n >  1 } 
is a real valued submartingale. Let <p(u) be a positive nondecreasing function fo r  u > 0. Let An b e  
the event that <t>(Sk) <  ij/(uk), 1 ^  k ^ n, where 0 =  uq < u\ Then

Remarks. The above result is a consequence of the inequality in Whittle (1969). A version o f  
Theorem 2.1 for a sequence of Hilbert space valued random elements D„ was given in Rao (1978). 
We now give a detailed proof of Theorem 2.1 for completeness.
Proof. Let Xj be the indicator function of the event [(f)(Sj) ^  •Km, )] for 1 ^ n .

Note that

If, in addition,
0 <  E[$(Sk)\.^k- \ \  -  <p(Sk- 1) <  Ak, 1

and

then

and hence

Observe that



Since ^  1} is a submartingale and since i/'(« /) is nondecreasing , it follows that

Applying this inequality repeatedly, we get that

f l M i d l ,
<A ( « * )

Note that

4>(Sn-l)E<  1 1 - ^
Ij / ( u n )

^ ^ “  <A(w„_i) — zl„]
y ( u „ )i^ (m h_ |  )

and the last term is nonnegative by hypothesis. Hence 

Applying this inequality repeatedly, we obtain that

H u k)Jk =  1

3. Applications
( 1) Let B  a Banach space which is /?-smoothable where 1 sc p  ^  2. Let {5„ =  E ? =iA ,^ i» »  > !} 

be a 5-valued martingale. Then {\\Sn\\p,^F„,n ^  1} is a real valued submartingale. Let 4>(x)= |x| 
and i]/(u ) =  u’'■ Applying Theorem 2.1, we get that



and hence for every s >  0,
p f sup

uj J  \ 1 =£;«:« uj J

(3.1,jr “/
In view of Assouad’s theorem (cf. Woyczynski, 1975, Theorem 2 . 1), it follows that there exists 

an absolute constant cp depending only on p  such that
2 ? ( | |S , r  -  \ \Sj -{\\p^ )  <  C p E i W D j V W - x ) ,  j  >  2 

and hence
E(\\sJr - \ \ s Ĵ r )^cpE(\\Dj \n

Combining the above inequality with (3.1), we have
J  s u p

Remarks. Corollaries 1 and 2 and other results in Shixin (1997) follow as special cases of the 
above inequality.

(2) Suppose {Dj, j  ^  1} are independent random elements and the Banach space is 2-smoothable. 
Further let <j>{x) =  ||jt||2 and = u2. If

£(I|S/II2 -  II3m||2) < uj -  wj_,
for 1 <  j  <  n, then

which is an analogue of Dufresnoy’s inequality. Applying the inequality
^(ii^lh-^ii^.ipx^di^n2),

we get the weaker inequality
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