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ABSTRACT

This paper reviews different continuum models characterizing the flow fields around rigid
inclusions hosted in a ductile matrix. It can be shown that diverse types of structures that form under
the influence of the heterogencous strain around inclusions can be analyzed with the help of a single,
suitable hydrodynamic theory. Jeffery’s (1922) theory is found to be more general in nature, and
applicable to both cquant and inequant shapes of inclusions and ideal or non-ideal shear deformation
of the matrix. The application of this theory, therefore, has advantages over other models, based on
Lamb’s theory dealing with spherical inclusions. This paper also provides a detailed discussion on
existing numerical models, which are buttressed upon hydrodynamic theories, simulating the hetero-
geneous flow field and associated structures around inclusions. The review finally illustrates numerical
simulations, highlighting the controls of physical and kinematic factors on the progressive develop-
ment of some important structures associated with rigid inclusions, namely foliation drag and strain
shadows around inclusions, mantle structures around porphyroclasts and inclusion trails within

synkinematic, rotating porphyroblasts.
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INTRODUCTION

Rocks often contain stiff or rigid inclusions such
as large mincral grains (porphyroblasts or
porphyroclasts), xenoliths, pcbbles etc. floating in
a ductile matrix. Studies on the deformation
behaviour of such rock systems have been along
three principal directions: (1) The kinematics of rigid
or stiff inclusions, i.e. how the floating objects
change their shape or rotate bodily in the course of
progressive deformation and what are the factors
that control the instantancous rate of rotation of
the inclusions ctc. (2) Rock systems characterized
by stiff or rigid objects floating in a ductile matrix

Deformation, rigid inclusions, rotation, inclusion trails.

are essentially heterogeneous in nature and a vari-
ety of micro- to macro-scale structures, such as
foliation drag, pressurc shadow, porphyroclast tails,
porphyroblast inclusion trails and intragranular frac-
tures, develop under the influence of the heteroge-
ncous strain field around the inclusions. The analy-
sis of the aforesaid structures in relation to the het-
erogencous flow around inclusions has gained im-
portance in structural geology for their precise and
proper application in the kinematic analysis of de-
formed rocks. (3) The presence of rigid inclusions
in a rock also influences the bulk strength of the
rock depending upon the volume fraction of inclu-
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sions. their shapes and orientations. Studies along
this line have been in vogue using the mechanics
of fiber composites (Cox, 1952) or viscous materi-
als containing suspended particles (Einstein, 1911;
Jeffery, 1922).

This paper exclusively deals with the second
line of work and reviews the cxperimental and theo-
retical studies pertaining to the analysis of several
structures associated with rigid inclusions in rela-
tion to the flow field in the ncighbouring matrix.

FLOW FIELD AROUND ROTATING RIGID
INCLUSIONS

Theoretical formulations

The mechanical analysis of different geological
structures arising from the deformation of a rock
system containing rigid inclusions within a ductile
matrix hinges on characterization of three funda-
mental aspects: 1) rotation and shape of the inclu-
sion, 2) the flow of the surrounding matrix and 3)
the type of deformation (pure shear, simple shear
or a combination of them). The theoretical formula-
tion of the deformation pattern of such a system
requires determination of the rotation rate of the
inclusion and the velocity ficld in the surrounding
matrix. Such formulations, however, also demand
assumptions on the rheology of the matrix, for ex-
ample whether the matrix is elastic or viscous,
Newtonian or Non-Newtonian elc.

Considering elastic rheology and using plane
theory of clasticity (Muskhelishvilli, 1953) several
workers have analyzed the kinematics of stiff ob-
jects floating in a softer matrix and the neighboring
strain field (Eshelby, 1957, 1959; Ghosh and
Sengupta, 1973; Mandal and Chakraborty, 1990; Ji
ctal., 1997). Expecrimental studics, however. reveal
that rocks can undergo a limited clastic strain and
that too at upper crustal levels only: conscquently
the elastic models arc unsuitable for characterizing
deformation of rocks that may have undergonce large
ductile strain at deepcer crustal levels. Application
of the theorics of hydrodynamics, on the other
hand. appears to be morc appropriate for modeling
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deformation behavior of rock systems containing
stiff inclusions in a viscous matrix. Using Lamb’s
(1932) theory of spherical harmonics, Gay (1968)
has modeled the deformation of floating objects
within a matrix with respect to the bulk strain, for
different viscosity contrasts between the object and
the matrix. He derived the velocity functions as fol-
lows:

Velocity components outside the inclusion,
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Velocity components inside the inclusion,
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where r = Vx? +y%; p = b/V1-eicos’a, e is the
eccentricity of the elliptical object @ and 5 are the
major and minor axial dimensions of the object re-
spectively; 4, B are constants, which need to be

determined by applying boundary conditions. z
is the principal rate of natural strain in the far-ficld.

Gay’s work reveals that the deformation within
the object is essentially homogencous, whereas the
deformation outside the object is heterogencous,
as also obtained from elastic models (Eshelby, 1957,
1959). However, in Gay’s mathematical formulation
itis not explicit how rotating objects aflect the het-
crogencous flow field in the matrix, although from
Lamb’s theory onc can also determine the velocity
functions around a spherical rigid body in terms of
its rotation rate by solving thc famous Navicr-
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Stoke’s equation (Oertel, 1965; Wakiya, 1956), which
have been utilized to model different aspects of
heterogencous deformation around rigid objects,
¢.g. particle paths, strain distribution, distortion
patterns of foliations (Masuda and Ando, 1988),
porphyroclast tails (Bjornerud and Zhang, 1995)
and inclusion trail patterns of synkinematic
porphyroblasts (Masuda and Mochizuki, 1989) as-
suming a Newtonian rheology for the matrix.

Masuda and Ando (1988) have expressed the
velocity functions outside a rigid, spherical inclu-
sion as:

(ua’va'uja) - (ual"’ul’)vnl) h (un?'va}'wa})

The first part of the right hand side of the equa-
tion refers to the velocity components considering
a general viscous flow around a fixed rigid spheri-
cal body, whereas the second part represents the
velocity components arising due to the rotational
motion of the rigid body. The expressions of these
velocity componems are as follows,
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where r = V¥ + v* + 22 and y,, ¢ and y_are
spherical solid harmonics of degree n.

The form of the expressions of v and w_, will
be similar as above. The expression of the velocity
component in the second part is:
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The form of the expressions of the other two
components will be similar as above.

Similarly, Bjornerud and Zhang (1995) have de-
fined the velocity field by adding two velocity com-
ponents, one associated with displaccment

(u,v_w_)of material points around the rigid object
and the other (x, v, ,w,j with shear induced rota-
tion of the object. The expressions of these two
types of velocity components have been obtained
as,

u, = (3Ualdr)(1 - a*/r)x* + U(1-3a/dr - a*/4r)
v = @UaMr )l -a'lriycy

w, = (G Ualdr)(l - a*/r)xz

and

forr>a

u, = kawya' /r’ v, = -koya'ls w, =0

forr<a

u, = kay v, =-kox w, =0

where a is the object radius, » is the radial dis-
tance of the point from the object centre, U is the
rate of displacement in the shear direction far away
from the object and @, is the rotation rate of the
object. The parameter & in the equations is an index
of coupling between the object and matrix, the value
of which lie in the range of O to 1. £ = 1 implies a
non-slip condition at the object/matrix interface.

Masuda and Mizuno (1996a) and Pennacchioni
et al. (2000) have further extended the analysis for
rigid objects hosted in a non-Newtonian matrix.
Bjornerud (1989a) formulated the heterogeneous
strain field surrounding an equant rigid object fol-
lowing the equations of Turcotte and Schubert
(1982) and numerically mudeled the development
of passive folds in the neighborhood of the object
similar to the foliation drags obtained by Masuda
and Ando (1988). The equations obtained by
Bjornerud (1989) arc as follows:

u, =U{-1-a"/Q2ry+3a2ricos
u = U{-1-a*/(4r)+3a4r}sin 0 (forr>a)

where a is the radius of the object; » and 9 are
polar co-ordinates centred on the sphere; v and v ,
are radial and tangential velocity components, re-
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spectively and U is the far-ficld unidirectional Now
velocity in the 8= 0 direction. It may be noted that
the above cquations are applicable to fluid How
around a rigid sphere subject to the following con-
ditions. 1) The {luid approaches a uniform velocity
far away from the sphere and 2) the rigid sphere is
stationary and non-rotating. Thus the velocity func-
tions have 1o be modificd in order to utilize them for
describing the flow (icld around a rigid body under
shear deformation.

The presence of floating objects results in het-
erogencous flow in the matrix, and the heterogene-
ity is further augmented when the objects rotate
during deformation. The nature of the heteroge-
neous flow field in the matrix again depends on the
shape of the object as inequant objects rotate with
changing angular velocity during progressive de-
formation in contrast to the constant angular ve-
locity (¥/ 2, yis the bulk shear rate) executed by
cquant objects. The instantancous rotation rate of
an inequant object is controlled by the shape and
orientation of the object at an instant and the ratio
between the rates of flatiening and simple shear in
the general type of bulk deformation (Ghosh and
Ramberg, 1976; Passchier, 1987). Consequently, the
velocity fields, both inside and outside an incquant
object. are much more complex than those deduced
for equant objects in earlier studies. Jeffery (1922)
has given an elegant mathematical trcatment on the
motion of ellipsoidal object cmbedded in a viscous
medium. Jeffery’s equations, determining the rate
of rotation of an object in a laminar flow (equation
41), have been utilized to analyze the kinematics of

rigid inclusions within a ductile rock {Ghosh and
Ramberg, 1976; Passchicr, 1987). From his theory
one can also obtain functions for the instantaneous
velocity field outside the rigid object not only for a
simple shear but also for a general type of deforma-
tion (Jezek ctal., 1999). Considering an cllipsoidal
coordinate system, with the origin at the center of
the rigid object, Jeffery obtains a solution of the
Navicr-Stoke’s equation for viscous flow, and de-
scribes the instantaneous velocity field around the
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object. The velocity at a point is a function of the
coordinate of the point, 4 (cllipsoidal coordinate),
with respect to the surface of the object, which is
taken as the surface of reference (4 = ). As the
distance of the point from the surface of object
becomes large. i.e. 2 tends to infinity, the velocity
tends 1o approach that of a homogencous {low of
the medium far away from the object. However, uti-
lizing Jeffery’s functions to derive the velocity ficld
is complicated. as the functions have complex con-
stants and parameters. Secondly. they are described
with reference to the co-ordinate axes along the
axial directions of the obiect, which themseclves
move with progressive deformation. Jezek ct al.
(1999) have circumvented these hurdles by solv-
ing the velocity functions numerically with the help
of a computer software. Mandal et al. (2000) have
utilized Jeffery’s theory to model the heterogencous
flow field and development of rclated geological
structures in a rock system containing rigid ob-
jects of either equant or inequant shape, undcr pure
shear, simple shear or general type of bulk defor-
mation. They have, however, considered the ve-
locity functions in two dimensions, (equations 22
and 23 of Jeffery, 1922) and arnalytically derived
the expressions for the constant terms in the func-

tions by satisfying boundary conditions as given
below.

Let us consider a rigid inclusion of axial dimen-
sions aand b, hosted in an infinitely extended vis-
cous medium, subjected to a shear flow ata rate, y,,
with a flattening rate of £,, at right angles to the
shear direction. A fixed reference, oxy, is sct with x
axis parallel to the shear direction and a moving
reference frame ox'y’ is tied with the axial dircctions
of the rotating inclusion (Fig. 1). The a-axisof the
inclusion at any instant makes an angle ¢ with the
shear direction. In order to characterize the defor-
mation of the matrix around the inclusion we need
to know the velocity field in the neighbourhood of
the inclusion, which can be derived by solving the
famous Navier-Stoke’s equations. Following
Jeffery’s (1922) approach these can be derived as:
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Different co-ordinate systems used for derivation
of the velocity functions around an inequant rigid
inclusion.
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where a' = Vai+ 4,b’=Vh'+ 1 and A=a'b’,
S ’,j is the instantaneous bulk strain-rate tensor with
respect to axial dircctions of the inclusion. ¢, 8 and
y are geometric parameters, whose expressions in
two-dimensions can be written as

T dA di T d
a:‘[a[,zA’ =,[

ﬁ = 1247 /4 12402
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The solutions of the above integrals are:
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The expressions of constants, 4, B, ...
velocity functions are:
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Now, to find the instantaneous velocity com-
ponents at a point (X, y) we first have to make the
following coordinate transformation:

Xl [x [Cos¢ Sing

y' B y || =Sing Cos¢
where ¢ is the inclination of the a-axis to the
bulk shear direction. Finally, the velocity field with

respect to the fixed reference, oxy, is obtained by a
reverse transformation:

liu} {u’Jl'Cos¢ —Sinq
v V' | Sing  Cos¢

The velocity at a point (x, y) will depend on the
position of the point with respect to the object
boundary (4 = 0). 4 > 0 indicates that the point

occurs outside the object boundary. while 4 =0
and A <0 indicates that the points lic on the surface
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and inside the object respectively. At an instant,
points lying outside the object, will move with ve-
locity components as shown above, while points
either on the surface or inside the object will move
with velocity components:

u=-wy and v=ox,

w is the instantaneous rotation rate of the ob-
ject, which is given by

a*(Sin*g + S Sin2g)+ b*(Cosp - S, Sin2g) .
- a’ +b? ’

where S is the ratio of bulk pure shear and
simple shear rates. The above equation reveals that
inclusions of equant shape (a = b) rotate with a

, Yo ..
constant angular velocity of —21-’— in simple shear

and a combination of simple shear and pure shear.

Application of the theoretical formulations: nu-
mevrical experiments

The controls of the flow field around rigid in-
clusions on the development of related structures
are difficult to envisage directly from the velocity
functions mentioned in the previous section, as
their expressions arc complex involving many pa-
rameters together. But, the task becomes much
easier when numerical methods are applied to the
expressions of the velocity functions. With the ad-
vent of computer technologies it has further be-
come convenient to perform numerical experimelh
based on complex mathematical equations, which
have many advantages over physical experiments.
For example, in numerical experiments one can simu-
late deformations forhigh finite strains, while im-
posing a number of boundary conditions at a time,
which is hardly possible in analog model experi-
ments. Morcover, in physical experiments it is diffi-
cult to simulate certain structures, such as
porphyroblast inclusion trails requiring an experi-
mental set up where the analog inclusion would
increasc in size while rotating within the deforming
matrix. In contrast. excellent inclusion trail struc-

tures can be generated with the help of numerical
models. The essence of numerical modclling can
be illustrated by simulating particle paths, strain
distribution and foliation drag patterns arcund rigid
inclusions as well as porphyroclast tails and
porphyroblast inclusion trails using the velocity
functions derived from Jeffery’s theory (see fol-
lowing sections). The basic requirement for simu-
lation of such features is to find the positional
changes of material points at every increment of
progressive deformation by using the velocity func-
tions. This necessitates development of a simple
computer programime that would compute the po-
sitional changes of all the given points, at each
increment of progressive deformation, under a set
of boundary conditions and would provide the fi-
nal positions of the points after a finite strain so
that the deformed configuration in a required {inite
state can be visualized. The boundary conditions
are specified by several input values as required
for different features, such as incremental rates of
pure shear and simple shear, initial orientation of
the inclusion if it is inequant, initial axial dimen-
sions of the inclusion and its axial ratio in case of
inequant shape, initial orientation of foliation mark-
ers in the matrix if there are any, incremental change
in the inclusion size if it grows (e.g. Synkinematic
porphyroblasts) or reduces (¢.g. synkinematically
degenerating porphyroclasts) during progressive
deformation (Table - 1).

DEFORMATION OF MATRIX AROUND RIGID
INUCLUMIONDS

Farticle paths

In order to characterize the heterogeneous flow
field around rigid objects during deformation it is
essential to describe the possible patterns of par-
ticle paths under varying conditions of deforma-
tion (c.g. Ramberg, 1975). In rotational deforma-
tions the presence of an equant rigid object induces
concentric particle paths in the surrounding matrix.
Two types of paths have been predicted - one with
eye-shaped separatrix and the other with bow-tic
shaped separatrix, which develop in Newtonian and



Table 1 : An outline of computer program for numerical simulations.

INPUT
Incremental rate of
Pure shear () and

Simple shear (s,,)

)
INPUT
Inttial inclination of
the object (¢)

Initial dimension of
the object (a and b)

INPUT

T

Kinematics

(Determination of the value of %)

Any point in rectangular co-ordinate system as
fixed Input

]

Conversion to elliptical co-ordinate system

==

Positional parameters

e

L=<0 v

Ly Velocity function

inside the object

1 4250

Velocity function
outside the object

Conversion of Displacement Vector in
rectangular co-ordinate system

A4

Previous position + Displacement of the poim]

Position of the point

after single Increment

4

INPUT
Initial slope of
marker line (8)

INPUT
Incremental change in
dimension of the object

along long axis (G, or R ) and
short axis (G, and R))

[ After multiple Increments

¥

ouTpPUuT
Final position of the point
(Ready to print on the Screen)

Previous dimension + Incremental
change in dimension

SNOISOTONI AIDIY HLIMA JHIVIDOSSY STINLONYULS
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non-Newtonian matrix respectively (Fig. 2;
Passchier, 1994). Later studies, however, have
shown that the flow with double-bulge shaped (i.c.
cye-shaped) separatrix (Masuda and Mizuno,
1996a) and bow-tie shaped separatrix (Pennacchioni
et al., 2000) may develop in both the rheological
varicties. It appears that in addition to matrix rheol-
ogy there are other factors that could control the
geometry of particle paths, such as shape of rigid
inclusions (R = a / b) and the ratio of pure shear
and simple shear rates (S ) in the bulk deformation
as pointed out by Passchier (1994).

=
=

Stagnation points

Fig. 2. Flow patterns around spherical rigid inclusions un-

der dextral shear. (a) Particle paths with eye-shaped
separatrix and (b) particle paths with bow-tie shaped
separatrix (Passchier, 1994).

Influence of strain ratio (S ) : For equant inclu-
sions (R = 1) in stmple shear type of deformation,
the particle paths show a typical cye-shaped
separatrix (Fig. 3). The separatrix has a finite dimen-
sion across its longer direction, but becomes as-
ynipiotic along the length (Fig. 3a, see also Masuda
and Mirzuno. 1996a). The abscnce of stagnation
points (zcro velocity) is a characteristic feature of
the flow pattern around the inclusion. With intro-
duction of pure shear component in the bulk defor-
mation (S, > ) the separatrix becomes finite both

along and across its length and two diametrically
opposite stagnation points appear (Fig. 3b). With
further increase in the pure shear component, par-
ticle paths in the immediate neighborhood of the
object become elliptical and those away from the
object are hyperbolic. The separatrix of the two types
of paths assumes a bow-tic shaped geometry (Fig.
3c¢). The line joining the stagnation points bisects
the extensional and contractional apophyses of
bulk deformation (Fig. 3¢). The distance between
the stagnation points defines the longer dimension
of the separatrix. When the pure shear component
is very large (S, =0.5), the separatrix shrinks in size
and becomes more equant, as the stagnation points
moves close to the object (Fig. 3d).

To summarize, the flow pattern around an equant
rigid object in simple shear is characterized by a
semi-infinite eye-shaped separatrix, which in bulk
deformations by a combination of simple shear and
pure shear assumes a bow-tic shaped geometry with
finite dimensions. The inclination of the longer di-
mension of finite separatrix with the bulk shear di-
rection can be given by:

9:~%tan“‘ (28))

The equation shows that the long axis of
separatrix will be parallel to the shear direction when
the bulk deformation is under simple shear (5, = 0),

as shown by Masuda and Mizuno, 1996a; Passchier,
1994.

Influence of the shape of rigid object : We have
seen that inequant inclusions, unlike equant ones,
rotate with changing velocity in the course of pro-
gressive deformation. As a result, the particle paths
around inclusions arc mutually disharmonic, and
intersect ane another, implying an unstcady flow
around the object (Fig. 4). In case of equant ob-
jects, cach particle lying between the separatrix and
the surface of the object moves along a close path
and reverses its movement direction twice. The
points of reversals lic on the central shear plane,
diametrically opposite to each other (Fig. 4a). li:
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Numerically simulated particle paths around cquant rigid inclusions. (a) Simple shear. (b), (c) and (d) Combination

of pure shear and simple shear; straight lines parallel and inclined to the shear direction are the extensional and

contractional apophyses of the hulk deformation respectively. S @

objects. § =

contrast, a particlc in the vicinity of an incquant
object reverses the movement direction several
times whilc moving along closc paths (Fig. 4b). The
reversal points arc gencrally located away from the
central shear plane.

Strain shadow zones

The development of strain shadow zoncs
around rigid mincral grains or pebbles is clearly
manifested in the preferential localization of equant
quartz grains on thc opposite cdges of rigid ob-
jects in many natural deformed rocks (Spry. 1969
Ramsay and Huber, 1987). and arc so named be-
causc there the finite strain is relatively less than
the far-ficld finite strain. The rock matrix in the strain
shadow zones mayv remain attached to the inclu-
sion or may be detached creating fissures between
the inclusion and the matrix. These open spaces on

stagnation points in the flow around the rigid

ratio of pure shear and simple shear rates in the bulk deformation.

the opposite cdges of the inclusion arc commonly
filled with fibrous crystalline materials like quartz,
calcite ctc. producing structurcs known as pres-
sure fringes (Ramsay and Huber, 1987). In this re-
view we, however, deal mainly with strain shadows
devcloping in the matrix that remain attached to the
inclusion. The development of strain shadow zones
can be casily demonstrated by means of physical
modecls (Stromgard, 1973; Ildcfonse and
Manckiclow. 1993) as well as numerical experiments
(Masuda and Ando. 1988: Masuda and Mizuno,
1996). In the following scctions we shall discuss
development of strain shadow zones for differcnt
strain ratios (pure shear /simple shear) and inclu-
sion shapes by analvzing the deformations of nu-
merous. small, initially circular markers distributed
around the inclusion.
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Fig. 4. Flow patterns around (a) equant and (b) inequant
rigid inclusions obtained from numerical simula-
tion. In (b) the long axis of the inclusion was ini-
tiatly parallel to the shear direction. R : aspect
ratio of the object.

Influence of strain ratio (S ) : In simple shear
type of deformation (S, = 0), strain shadow domains
develop against the two extensional faces of the
object describing a o-type geometry (Fig. 5a). The
zones of high strain occur near the contraction face
of the object and along long bands at an angle less
than 45° with the shear direction (Figs. 3a and b, see
also Masuda and Ando, 1988). The low-strain zones
tend to shrink as the pure shear component in the
bulk deformation increases (Figs. 5 b and c), and
when the deformation is entirely by pure shear no
discernible strain shadow zone develops (Fig. 5d).

Strain shadow around inequant inclusions :
In casc of incquant inclusions the initial axial orien-
tation of the objcct with respect to the shear direc-

tion {¢) and the axial ratio of the object (R ) are addi-
tional parameters in the development of strain
shadow zones. Strain shadow zones form when the
long axis of the object makes an angle between 60°
and 135° with the shear direction (Fig. 6). When ¢
is close to 60°, the strain shadow zone forms a nar-
row tail, emerging from the tip of the object (Fig.
6a). With increase in initial inclination. the shadow
zone becomes wider and longer (Fig. 6b), and at ¢=
120°, they form bands giving rise (o an overall pat-
tern similar to that of augen structures (Fig. 6¢).
The low-strain zones dic out as the initial inclina-
tion of the object is further increases (Fig. 6d) and
instead a narrow zone of strong strain concentra-
tion appears sub-parallel to the long axis of object
(Fig. 6d).

Fora given ¢, with increasc in axial ratio of the
rigid object strain shadow zones progressively in-
crease in length as well as changg their pattern (Fig.
7). When the axial ratio is low (R = 1.5), the strain
shadow zoncs resemble o -type tails emerging from
the nodes of the object. With increase in axial ratio,
R, the zone forms wings, which finally becomes like
a band surrounding the object (Fig. 7¢).

Distortion patterns of passive markers

The heterogencous flow field around rigid in-
clusions is often manifested in the distortion of
passive markers (bedding or foliation) in the matrix.
The distortion patterns of passive markers in the
neighbourhood of rigid inclusions are useful in the
analysis of progressive deformation as well as ki-
nematic conditions.

Ghosh (1975). Ghosh and Ramberg (1978) have
analyzed different drag patterns by considering the
relative rates of rotation of the inclusion and the
passive markers in the coursc of progressive de-
formation. However, there arc distortion pattcrns
that cannot be explained by these analyses. Masuda
and Ando (1988) took into account the heteroge-
neous strain ficld around equant inclusions and
explained diverse types of distortion patterns for
different initial orientation of passive markers v--
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Fig. 5. Strain distributions around equant rigid inclusions in numerical models. Finite bulk shear = 4.0. Strain shadow zones

(shaded) are shown in insets.

der simple shear type of bulk deformation. How-
ever, the distortion patterns would also depend on
the shape and orientation of the inclusion if it is
incquant and the ratio of purc shear and simple
shear rates in the bulk deformation as shown in
Figures 8 and 9. The diffcrent drag patierns that
may form around rigid inclusions under varving
conditions can be classified nto four major types
(Fig.10). Tipe 1 Markers form bi-convex curvatures
around the object (Fig. 10a). Tvpe 2 : Markers are
distorted in the form of typical folds on cither side
of the objcct (Fig. 10b). Depending upon the de-
grec of relative curvature, the drag folds can again

be classified into three sub tvpes: Tivpe 2a, 2b and. ..
e
AL D P

2c. The first two types arc characterized by larger
curvatures of folds with inward convexity, and they
differ from cach other by the opposite sense of
arrangement of folds with inward and outward cur-
vatures. 7ipe 2¢ has drag folds with outward con-
vex curvatures much greater than inward convex
curvaturcs, 7ype 3 Markers arc distorted with in-
ward convex curvaturcs. giving risc to geometry
very similar to that of millipede structures (Bell and
Rubcnach. 1980). They have smooth. rounded
(single-hinged) (Tvpe 3a) or flat (double-hinged)
(Type 3b) crests (Fig. 10c). Type 4 : The drag effect
of object is such that the markers are distorted in
.the-fern of overturned folds on cither faces of the

o~
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Fig. 6. Strain distributions around inequant inclusions of aspect ratio R = 2 with different initial inclinations of their long
axes to the shear direction (¢) Finite bulk shear = 4.0. Strain shadow zones (shaded) are shown in insets.

object (Fig. 10d). This type of drag patterns has
been produced in analog model experiments (Van
Den Driessche and Brun, 1987). Types 2¢, 3b and 4
develop around inequant objects under specific
conditions, whereas the rest of the types are com-
mon to both equant and inequant inclusions. The
naturc of drag pattern of marker foliation may be
useful to understand their initial orientations as well
as the shear sense. For example, in case of Type 2
drag paticrus the initial oricntation of the {oliation
is required to be parallel to the shear direction or at
angles morc than 90°. Again. Type 26 and Type 4
drag patterns can used as shear sense indicators
(Fig.11). Table 2 summarizes the conditions at which
diffcrent types of drag patterns develop.

Tablc2:
Ficlds of different types of drag pattern around
inequant rigid objects (R = 3) in the f = g space.

Inclination of long axis of ohject (f)

45 90 135 180
Type 3b Type 4 Type 4 Type 2¢  Type 3b
Type 1 Type 1 Type 4 Type 1  Typel
Type 1 Type 1 Type 1 Type | Type |
Type 2¢ Type 2b Type 3a Type 3b  Type 2c
LTWC 3b Type 4 Type 4 Type 2¢  Type b
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Fig. 7. Strain shadow patterns near inequant objects of
increasing axial ratio R. The long axis of the ob-
jects was initially at an angle ¢ = 120° with the
shear direcion.

MANTLE STRUCTURES AROUND
PORPHYROCLASTS

The velocity functions characterizing the flow
field around rigid inclusions can be utilized to study
the development of mantle structures around
porphyroclasts. However, in this casc the
porphyroclast reduces in size as a result of periph-
eral dynamic recrystallization in the course of pro-
gressive deformation, forming deformable mantles
rimming the porphyroclast. The mantle subse-
quently deforms in concert with the surrounding
flow field producing a spectrum of mantle struc-
tures around the porphyroclast under varying con-
ditions of deformation. In other words, mantle struc-
ture is the deformed geometry of the mantle around
the undeformed core of a porphyroclast which usu-
ally consists of tails on either side of the rigid core
(Figs. 12, 13). Passchier (1994) has comprehensively
classified mantled porphyroclasts into four types
(0-, o-, ¢- and o- type, Fig. 12a).0 - type
porphyroclasts are characterized by little or
undeformed mantles without any discernible tails.
o - and & - type porphyroclasts have mantles with
prominent tails showing monoclinic arrangement.
The tails on either side of the porphyroclasts lie at
relatively different levels, defining stair-stepping
(Fig. 12b). ¢ - type porphyroclasts have tails
bounded by straight lines on one side and curved
lines on the other side that define an internal
asymmetricity. The tails in o -type porphyroclasts
do not cross the shear plane passing through the
center of the porphyroclast. In contrast, o-type
porphyroclasts have tails with both boundaries
curved in the same scnse, and in addition, the tails
cross the central shecar plane. ¢-type
porphyroclasts, on the other hand have tails sym-
metrically disposcd astride the rigid core showing
an orthorhombic symmetry. o and o tvpe
porphyroclasts can be uscd as shear sense indica-
tors by analyzing the sensc of stair-stcpping as
shown in Figure 12b. We will see later that there
may be more complex mantle structures showing
combinations of the above types.
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Type t

6 =85°

. Numerical simulations of the distortion patterns of
passive marker lines around equant rigid inclusions.
@ is the initial inclination of marker with the shear
direction. (a) Simple shear. (b) Combination of
pure shear and simple shear. S is the ratio of pure
shear and simple shear rates.

Following the key publication by Passchier and
Simpson (1986) mantled porphyroclast systems
have increasingly gained importance in the kine-
matic analysis of deformed rocks, as they have been
proved to be reliable shear sense indicators
(Choukroune et al., 1987; Mawar, 1987; Van Den
Dricssche and Brun, 1987, Hooper and Hatcher.
1988: Bjorncrud, 1989b; Hanmer and Passchier.
1991 Simpson and De Paor. 1993: Bjornerud and
Zhang. 1994). Recent studies have revealed that
the cvolution of different tvpes of mantled

porphyroclasts, €.g. 5-type, o- type clc, is itself a
subject requiring a more detailed introspection
(Passchier et al., 1993; Passchicr, 1994; Bjornerud
and Zhang, 1995; Masuda and Mizuno, 1996b).
Passchicer et al. (1993) and Passchier (1994) have
provided genetic models for the development of
mantle structures in relation to the {low perturba-
tion around the rigid porphyroclasts. The flow per-
turbation that is mainly of two types. - with an eye
shaped and a bow-tie shaped separatix (Fig. 2).
Passchier (1994) has explained the development of
the principal four types of mantle structurcs by
considering the position of initial mantle relative to
the flow separatrix.

The mantle structures of porphyroclasts have
been successfully simulated in experiments with
Newtonian as well as non-Newtonian matrix
(Passchier and Simpson, 1986; ten Brink and
Passchicr, 1995; Passchicr and Sokoutis, 1993). The
experimental results apparently conform to the theo-
retical genetic models, formulated on the basis of
the geometry of flow perturbations around rigid
porphyroclasts (Passchier, 1994) barring some de-
viations (Masuda and Mizuno, 1996b). In addition,
they provide a volume of information about how
the mantle structures of porphyroclasts change their
geometry in the course of progressive deformation
to a large finite strain.

Numerical simulation (ten Brink et al., 1993;
Bjornerud and Zhang, 1995; Masuda and Mizuno,
1996b) is another useful approach to study the evo-
lution of mantled porphyroclasts. This approach
has somc advantages, as one can simulate a struc-
ture to high strain in a parallcl-sided shear zone,
while imposing a number of boundary conditions
atatime. Bjornerud and Zhang (1995) have deter-
mined the stability fields of common types of
mantled structures by considering synkincmatic
size reduction of the spherical porphyroclast at dif-
ferent rates and a slip or non-slip condition at the
matrix-porphyroclasts interface. The model results
are, however, restricted to moderate finite shear
strains (¥ < 10). Natural as well as experimental
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Type |
e

Fig. 9.

’ Type 2a

Drag patterns of marker lines around inequant inclusions. (a) R was varied, keeping 8 = 0 and ¢ = 0. (b) ¢ was varied,

keeping R = 3 and 0 = 0. (¢) 0 was varied, keeping R = 1.5 and ¢= 0. In all the cases S = 0. R : axial ratio of object;
¢ - initial inclination of the long axis of object with the shear direction; 8 : initial inclination of marker with the

shear direction.

observations (ten Brink and Passchicr, 1995) indi-
catc that the evolution of a porphyroclast may in-
volve a large finite strain, giving rise to additional
complexities in the mantle structure. This is also
evident from the numerical models of Masuda and
Mizuno (1996b) where they have analyzed mantled
porphyroclasts in both Newtonian and non-
Newtonian matrix by varying the initial mantle
width. In contrast to Bjornerud’s (1995) model, their
model, however, considers a fixed dimension of the
object in the progressive deformation.

All these numerical models show the probable
modes of development of mantle structure around

equant porphyroclasts in a simple shear type of
progressive bulk deformation. However, in natural
mylonites porphyroclasts are often inequant in
shape (Passchier and Simpson, 1986). In addition,
the bulk deformation can hiave a shortening com-
ponent across the shear zone. In detail, the shape
of natural mantled porphyroclasts are thus likely to
be more complex and to deviate from those so far
predicted by simulations with objects of equant
shape under simplc shear type of progressive de-
formation (Passchicr and Trouw, 1996). Again, the
physical model experiments of Passchier and
Simpson (1986) explicitly reveal that the rate of size
reduction of the porphyroclast is a crucial param-
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Fig. 10. Types of drag patterns obtained from numerical
simulations (see text for details).
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Fig. 12. (a) Types of porphyroclast systems (Passchier,
1994). (b) Relations between the sense of stair-
stepping of o and & tvpe porphyroclast tails and
the sense of butk shear.

cter controlling the geometry of mantle structures.
Mandal et al. (2000) have presented a more gener-
alized theoretical model in two-dimension, and
shown probable patterns of mantle structure
around inequant porphyroclasts in a Newtonian
matrix. Their numerical simulations attempt to in-
vestigate the control of the following factors on
the development of tail structures over a large fi-
nite strain: (1) the rate of size reduction of
porphyroclast, (2) the ratio between pure shear and
simple shear rates in the bulk deformation, and (3)
the initial shape and orientation of porphyroclasts
(represented by the aspect ratio a/b). This model,
when applied for an equant clast and simple shear
type of progressive deformation, yields results simi-
lar to those of earlier models.

In the present discussion following terms are
used for the clarity of the description: Mantle struc-
ture- deformed geometry of the mantle around the
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Fig. 13. Diagrammatic representation of the terminology
used in the text. (a) Geometrical terms (see text
for details); (b) wing migration by shifting of branch
points (X); (¢) wing lengthening by two modes: (i)
shifting of branch points (X) without wing stretch-
ing, (it) stretching of wings without branch point
(X) shifling; (d) side stepping (A-B) in a tail struc-
ture.

rigid core of a porphyroclast. 7ails- the portions of
deformed mantle on cither side of the rigid core. Wing-
narrow offshoots of a tail (Fig. 13a). Branch Point-
the point from which a wing offshoots from the tail.
Wing migration- the bodily migration of a wing along
with the branch point (Fig. 13b). Wing lengthening -
the increase in length of a wing, which occurs in two
modes- (i) shifting of the branch point without wing
stretching, (ii) wing stretching without branch point
shifting (Fig. 13¢). Contractional face and exten-
sional face~ portions of the object, at any instant,
facing the contractional and extensional ficlds re-
spectively (Fig. 13a). Side-stepping-refers to the lat-
cral offset of the tails as one moves from one side of
the porphyroclast to the other (Fig. 13d).

Numerical models of Mandal et al. (2000) indi-
cate that 6 -, ¢- and finally o - type mantle struc-

—_— Ry,

0 0. %N O.QOS

().0‘16 0.032

Fig. 14. Fields of different types of mantled porphyroclasts
in the space of size-reduction rate (normalized to
the bulk shear rate) versus finite bulk shear. 6-¢: ¢
tail with incipient § wing, ¢-6&: combination of ¢ -
and § -type geometry;, H-¢ : hooked ¢i.c. ¢ -type
tails showing hook-shaped geometry at the tip; R-
o-¢ rolled 5-¢ i.e. ¢ -type tails with long & -type
wings; B-¢ : branched ¢ i.c ¢ -type tails with ¢ -type
wings at the tip of the tail; B-o : branched o ie. o -
type tails with short wings at the tip of the tail?

tures (Passchier, 1994) develop as the rate of clast-
size reduction increases (Fig. 14). These results
qualitatively conform to the model of Bjornerud and
Zhang (1995) that shows the development of o -
type objects at a high rate of recrystallization. Simi-
lar results were also obtained from analog model
experiments (Passchier and Simpson, 1986). Fora
given rate of clast-size reduction the mantle geom-
etry changes with increasing finite shear strain
during progressive deformation (Fig. 15). The sta-
bility fields of the principal mantie types have been
delimited in the space of finite strain versus recrys-
tallization rate from physical and numerical model
experiments (Passchier and Simpson, 1986;
Bjornerud and Zhang. 1995). These studies are,
however, restricted to moderate finite strains (y <
10). The simulations of Mandal et al. (2000) and
Masuda and Mizuno (1996b) show development



Fig. 15. Progressive development of mantle structures
around equant porphyroclasts in dextral shear. Rate
of size reduction (R) = 0.125.
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yFig. 16. (a) Typical and (&) atypical & - type mantle struc-
tures.
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Fig. 17. Control of the shape of porphyroclasis on their
mantle structures. Rate of size reduction (R) =
0.125.

of complex, but definite patterns over larger finite
strains as shown in a broader ficld diagram (Fig. 15).

1t has also been revealed that typical & - type
tails that cross the reference plane and show stair-
stepping generally develop for moderate rates of
clast-size reduction (0.25 - 0.5) (Fig. 16a). When the
rate of clast-size reduction is lower, the mantle struc-
ture looks like incipient & -type tails that do not
cross the reference plane, which at lower values of
kinematical vorticity number (i.¢. higher S ) appear
as & objects without stair-stepping but show side-

stepping as defined in Fig.13 (Fig. 16b, see also
Passchier et al., 1993).

For the same kinematic and physical conditions,
porphyroclasts of different initial shapes develop
different patterns in their mantles (Fig. 17). Ata low
finite strain, elongate objects with larger aspect ra-
tio have more complex multi-winged tail patterns in
comparison to those of equant objects. except at
higher values of clast-size reduction rate. In natural
mybnim the former may be mistaken to represent
high finitc shear. Such a qualitative assessment of
finite strain from mantle structures may thus be erro-
neous unless other factors are taken into account,
At bigher values of §_ inequant objects also show
development of & -like tails that do not cross the
central reference plane and appear as non-stair
Stepped 5-1ails of Passchier et al. (1996). However.
the magjc structure shows side-stepping (Fig, 16),’
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Fig. 18. Variation in the mantle geometry of inequant
porphyroclasts (aspect ratio 1.5) with their initial
orientation (¢). Finite bulk shear () in all models
was 7.5. Rate of size reduction (R) = 0.125.
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. Variation in the mantle geometry of very elongate
porphyroclasts (aspect ratio 3) with their initial
orientation (@). Finitc bulk shear () in all models
was 7.5. Rate of size reduction (R) = 0.125.

Mandal et al. (2000) performed several numeri-
cal experiments in order to study the effects of ori-
cntation of inequant porphyroclasts on the mantle
geometry. In simple shear type of progressive de-
formation (S, = 0) porphyroclasts of aspect ratio 1.5
develop & -type mantle geometry when their long

axis is initially parallel to the shear direction (Fig.
18). With increase in the initial inclination (¢ > 20°)
the mantle tends to have a composite structure
showing &-type wings, which becomes dominant,
giving rise to a & -type overall geometry of the
mantle at g= 80°. A similar transformation from o-
type to & -type mantle geometry with change in
porphyroclast orientation has been demonstrated
from kinematic models (Simpson and De Paor, 1993).
With further increase in the inclination (¢> 110°)
the mantle becomes symmetrical, forming a ¢-type
geometry.

For a given finite bulk shear, the variation of
mantle geometry versus initial orientation of
porphyroclast, as noticed in the above numerical
examples, is different when the porphyroclast has
a different initial aspect ratio. Experiments with ini-
tial aspect ratio 3 yield a contrasting result (Fig.
19). Porphyroclasts with initial orientation parallel
to the shear plane develop & -type mantle geometry
and those with initial orientation perpendicular to
the shear plane form o -type mantle geometry.

Different sets of experiments were run by
Mandal et al. (2000) by varying the initial orienta-
tion of porphyroclast under different values of the
ratio of pure shear and simple shear rates (S)) or
kinematic vorticity number (¥ ) with constant ini-
tial aspect ratio (a/b = 2). The experimental results
are shown synoptically in Fig. 20. The mantle pat-
tern, irrespective of initial orientation of
porphyroclast, tends to assume a simpler § -like
geometry without stair-stepping at a large value of
S, or a low value of W,. However, the S -value at
which porphyroclasts show such a simple pattern
depends on the initial orientation (¢) of the
porphyroclast. When ¢ = 0, the pattern develops
at§ =0.50, which formsat S =0.25, when the initial
orientation ¢ is 90°,

Tosummarize: (1) at a low finite strain, equant
objects develop simple & - type tails, which is re-
placed by ¢ - tvpe, as the rate of clast-size reduc-
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Fig. 20. Distribution of mantle patterns of inequant porphyroclasts in ¢ versus S space, where ¢ is the initial inclinat.ion
of porphyroclast with the shear plane and S, is the ratio of pure and simple shear rates in the bulk deformation.

Rate of size reduction (R) = 0.125.

tionis increased. o-type tails form at a high rate of
clast-size reduction and a high finite strain. (2) With
an increase in {inite shear strain, the tails tend to
have successive gencrations of wings forming com-
plex mantle structures except for a very high rate of
clast-size reduction. (3) Elongate objects may de-
velop composite tail patterns consisting of mul-
tiple wings, even at low finite strains and the mantle
structures become increasingly complex with in-
creasc in aspect ratio. (4) In case of inequant
porphyroclast the mantle structures depend on the
initial orientation of the porphyroclast. (5) For a
given finite shear, decrease in the vorticity of bulk
deformation leads to development of simpler mantle
structures and vice-versa. (6) Porphyroclast sys-
tems have been utilized as shear sense indicators
by considering the sense of stair-stepping in the
mantle structures (Passchier and Trouw. 1996).
However. there are mantle structures where the tails
do not show stair-stepping (Fig. 16). In such cases
shear scnsc can be determined from the side-step-
ping of the tails. Again, the rotation of an cquant
object takes place with a uniform angular velocity.

while an inequant object rotates with a changing
velocity. In the latter case the object may even ro-
tate with a sense opposite to the shear scnse where
a flattening component acts across the shear zone
(Passchier, 1987). An obvious doubt then arises on
the usage of tail patterns of inequant
porphyroclasts as shear sense indicators. However,
the numerical models reveal that inequant objects
develop more complex patterns containing multiple
wings showing sensc of side-stepping synthetic
to the bulk shear sense. Inequant objects with
multiwinged mantles can thus be reliably used for
the determination of shear sense.

Kinematics of mantle deforination

Numerical experiments, described in the carlier
sections reveal that the development of mantle
structures involves some specific kinematics of their
tails or wings, which in turn govern the final geom-
ctry of the mantle structure. This section presents
a genetic basis for different mantled porphyroclast
systcims by considering the following three modes
of mantle deformation. AMode I : the mantle devel-
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opment involves dominantly wing migration (Fig.
13); the wings move bodily with the rotating
porphyroclast without any shortening or length-
ening during migration. Afode 2 : The mantle devel-
opment is associated with wing lengthening (Fig.
13), that takes place either by branch point shifting
(Mode 2a) or by wing stretching (Fig. 13) without
branch point shifting (Afode 2b). Mode 3 : The tail
structures lengthen in the instantancous extension
quadrant along with the branch points.

Each modc of mantle development gives rise to
a particular type of mantle structure. In Mode I the
wings show incipient §-like geometry, which bodily
migrate and coalesce with ¢ -type tails in the in-
stantancous extension quadrant, forming a hooked
& —¢ geometry at a large finite strain (Fig. 14). In
Mode 2a. the wings grow in length, but never cross
the central reference plane. The mantle therefore
does not assume a typical J-type geometry, as de-
fined by Passchier and Simpson (1986), but forms
atypical & -type structures, which transform into a
rolled & — ¢ composite gcometry at a large finite
strain (Fig. 15). Afode 2b mantle development is
characterized by wing stretching, maintaining the
branch points at fixed positions. The wings there-
fore can cross the central reference line, forming a
typical o -type geometry (Fig. 16). Aode 3 involves
stretching of the tail structure as a whole, where
the offshoots also expericnce stretching along with
their branch points in the bulk extension direction.
This mode of mantle development results in the
formation of ¢ -type overall geometry.

Numcrical modcl experiments run at different
clast-sizc reduction rates indicate that the mode of
mantle development is controlled by the size re-
duction rate of the porphyroclast. Low rates of size
reduction favour Aode | mantic development. As
the mantle grows in thickness slowly, it experiences
a strong drag cffect induced by the rotating rigid
corc. The wings in them therefore migrate bodily.
similar to material particles describing close paths
around rigid objects (Fig. 3). With increasc in size-
reduction rate, Mode 1 is replaced by Mode 2a. In

Mode 2a, the mantle boundary is folded by branch
point shifting, forming wings. As the porphyroclast
shrinks at a faster rate, the drag influence of the
rotating rigid core onto the wings decrcases and
thereby does not result in overall movement of the
wing. The wing migration in concert with the rotat-
ing rigid core is countered by wing stretching in
the bulk extension direction. Ata critical balance of
these two tendencies the wings do not move bodily
either in the shear or extension directions. With
further increasc in size-reduction rate, the drag of
the rigid core onto the mantle boundary becomes
weak and the processes of branch point shifting
due to the drag cffect is thereforc suppressed,
whereas the wing stretching in the extension direc-
tion gets dominance. Under this condition Aode
2b becomes the more dominant mode in the mantle
development, forming typical & -type structures.
At higher size-reduction rates the mantle grows in
size suffering relatively less drag by the rotating
porphyroclast. Consequently, Afode 2 is replaced
by Mode 3, in which wing stretching is much more
important than branch point shifting. giving rise to
a ¢-type overall geometry of the mantle. In Afode 3,
o -type mantle structures form when the drag cffect
onto the mantle boundary is very little or absent.

INCLUSION TRAILS WITHIN
PORPHYROBLASTS

Inclusion trails are a typical feature of many
natural synkinematic porphyroblasts, which com-
monly record minute details of deformation history.
Consequently, the study of porphyroblast systems
has been in vogue over several decades (Rast, 1958;
Zwart, 1960; Spry. 1963; Roscnfecld. 1970;
Schoneveld, 1977; Powell and Vernon. 1979; Bell
and Rubcnach. 1980; Bell. 1985: Bell and Johnson,
1989: Passchicret al.. 1992: Passchier and Speck.
1994 Johnson and Bell. 1996: Johnson and Moore,
1996).

Curved or spiral trails may result due to rota-
tion of porphyroblasts as they grow over a pre-
existing, passive foliation during a singlc phase of
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deformation and metamorphism (Ghosh and
Ramberg, 1978; Mandal and Banerjee, 1987,
Masuda and Mochizuki, 1989; Bjornerud and
Zhang, 1994 Beam, 1996). On the other hand, curved
trails may also form within non-rotating, stationary
porphyroblasts as they grow over and include vari-
ably oriented, successive generations of overprint-
ing crenulation cleavages during multiple phases
of deformation and metamorphisin (Bell, 1985; Bell
etal., 1992 a, b: Bell and Hickey. 1997; Bell et al..
1998). Analog model experiments suggest that rigid
inclusions embedded in a homogeneous ductile
matrix with coherent interfaces rotate during defor-
mation under favourable conditions (Ghosh and
Ramberg, 1976; Passchier and Simpson, 1986;
Ildefonse et al., 1992; Arbaret et al., 1996). On the
contrary, rigid inclusions in a heterogeneous sys-
tem may not experience rotation even when there is
a rotational component in the deformation (Stewart,
1997, Hickey and Bell, 1999). It thus appears that
independent criteria are to be used to discriminate
curved inclusion trails formed within rotating and
non-rotating porphyroblasts (¢.g. Passchier and
Trouw, 1996; Bell etal., 1998; Chan and Crespi, 1999).

This review exclusively deals with inclusion trail
structures developing in consequence to relative
rotation of porphyroblasts growing over a pre-ex-
isting passive foliation during a single phase of
deformation and metamorphism. With the advent
of advanced PC software, numerical simulation of
trail patterns within rotating porphyroblasts com-
menced as an area of major interest (Masuda and
Mochizuki, 1989; Bjornerud and Zhang, 1994, Beam,
1996). Earlier studies along this line have revealed
that relative rates of rotation and growth of
porphyroblast are the principal parameters control-
ling the trail pattern (Mandal and Banerjee, 1987).
Beam (1996) has further shown that porphyroblasts
can grow by constant increments of radius, sur-
face area and volume, cach producing different trail
patterns. Additional complexities in the trail pat-
tern may also arise due to the deflection of foliation
in conscquence to heterogencous strain induced
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by the porphyroblast in its vicinity. Based on the
velocity field around a rigid sphere hosted in a vis-
cous matrix with a coherent interface, different pat-
terns of inclusion trails have been simulated nu-
merically by varying the initial orientation of folia-
tion markers (Masuda and Ando, 1988; Masuda
and Mochizuki, 1989). It has been shown analyti-
cally that the degree of coupling between the
porphyroblast and matrix influcnces the velocity
ficld, and thereby controls the trail patterns
(Bjornerud, 1989; Bjornerud and Zhang, 1994). All
these models are two-dimensional and Gray and
Busa (1994) advanced them to three dimensions.

The numerical models so far discussed deal with
porphyroblasts of equant shape, which rotate with
a constant angular velocity. The kinematic analy-
sis reveals that non-spherical porphyroblasts ro-
tate with changing angular velocity during progres-
sive deformation. Beam (1996) has presented a ki~
nematic model for the development of trail struc-
tures within non-spherical porphyroblasts under
simple shear and a combination of simple shear and
pure shear. His model, however, does not consider
the effect of heterogeneous strain around the
porphyroblast.

Jeffery’s velocity functions, given in the earlier
section can be applied to investigate the develop-
ment of inclusion trails within synkinematic, rotat-
ing porphyroblasts of both equant and inequant
shapes considering the heterogeneous flow of
matrix around the porphyroblast (cf. Jezek et al.,
1999; Mandal et al., 2000). The following factors
appear to be effective in controlling the geometry
of inclusion trails: (1) the initial orientation of folia-
tion markers, (2) the ratio of pure shear and simple
shear rates in the bulk deformation, (3) the ratio of
the rates of rotation and growth of porphyrobiast,
and (4) the initial orientation and the ratio of growth

rates aleng the axial directions of ineguant
porphyroblast.
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Fig. 21 Inclusion trail patterns in synkinematic porphyroblasts with # less than 90°, where 6 is the initial orientation of
marker. S, is the ratio of pure shear and simple shear rates. Note that, the central trails show reversal in curvatures
for large values of S. Finite bulk shear in models was 5. Ratio of growth rates along axial directions = 1.

Trail patterns in equant porphyroblasts

Earlier workers (e.g, Masuda and Mochizuki,
1989) have shown that the trail patterns in radially
growing equant porphyroblasts depend mainly on
the initial orientation of marker foliation. Additional
complexities in the trail patterns may arise if the
effects of pure shear component in the bulk simple
shear flow arc taken into account. Porphyroblasts
overgrowing markers initially inclined with the
shear direction at angles between 0° and 90° do not
show significant variation in the trail pattern with
an increase in pure shear component in the bulk
deformation (Fig. 21). The overall patterns are rep-
resented by sigmoidal curves, as commonly scen
in natural porphyroblasts. The central trail (i.c. the
trail passing through thc center of the
porphyroblast) consists of two segments symmet-

ric about the center. The individual segments of
the central trail do not generally show reversal in
curvature, as revealed in earlier numerical models
(Masuda and Mochizuki, 1989). However, when the
marker is at a high angle with the shear direction
and the ratio of pure shear and simple shear rates is
large (> 0.5), they show reversal in curvature, giv-
ing rise to a sinuous pattern (Fig. 21). With de-
crease in the ratio of growth rate and rotation rate
of porphyroblast. sigmoidal trail patterns are pro-
gressively replaced by spiral patterns (Fig. 22).

The influence of the strain ratio Sr on the trail
patterns is most significant when the markers have
negative inclination. For example, porphyroblasts.
with markers initially at an angle of - 45°, show a
systematic variation in the geometry of inclusion
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Fig. 22 Variations in trail patterns with increase in the
ratio of rotation rate and growth rate of
porphyroblast for S = 0. The ratios of rotation
rate and growth rate of porphyroblast were 2.5, 5
and 25 radian/length in (a). (b) and (c) respec-
tively. Marker foliation was parallel to the shear

direction. Ratio of growth rates along axial direc-
tions = 1.

pattern, as the ratio of pure shear and simple shear
rates in the bulk deformation is increased (Fig. 23).
In simple shear (S, = 0) the pattern is characterized
by a central trail with sinuous segments astride the
center. whereas the peripheral trails are typically
convex outward (Fig. 23). With an increase in Sr
value, peripheral trails tend to become convex in-
ward resembling the *millipede” structures described
by Bell (1983). At larger values of S . the peripheral
trails take the form of a hook-shaped fold. whereas
the central trail assumes sigmoidal gcometry. With
further increasc in Sr. the pattern turns into a simple

one that consists of typical sigmoidal shaped trails.
The spectrumn of inclusion trail geometries arising
from various combinations of Sr and negative incli-
nations of foliation is shown in Fig. 23,

Trail patterns in inequant porphyroblast

Trail patterns within inequant porphyroblasts
can be simulated in simple shear and a combination
of simple shear and pure shcar by varying the ini-
tial orientations of the long axis of porphyroblast
and the foliation marker, and the ratio of growth
rates along the axial dircctions of porphyroblast.
The diverse trail patterns obtaincd from these simu-
lations can be classified into a number of types
(Fig. 24). Type 1 : The central trail is sinuous and
confined by outward-convex peripheral trails. Tvpe
2 : The trails over the entirc porphyroblast are
sigmoidal in geometry. Type 3 : The central trail is
sigmoidal and is confined by inward-convex pe-
ripheral trails. Type 3 trails can again be classified
into four sub-types. Type 3a : The peripheral trails
show a side stepping of their axial traces and the
curvature of the trails progressively increases out-
ward. Type 3b : The peripheral trails do not show
side stepping and their curvature progressively
decreases outward. Zype 3¢ : The peripheral trails
do not show side stepping and their curvature first
decreascs followed by an increase away from the
center stmilar to those in ‘millipede’ structure. 7ype
3d : The central trail is much less curved than the
other types and the curvature of the trails progres-
sively increases outward. Type 4 : In this pattern
peripheral trails are convex outward. The pattern
can be further subdivided into two types: Type 4a
- the central trail is more or less straight and con-
fincd by trails with increasing outward convexity,
and Tvpe 4b - the central trail has two sinuous scg-
ments. 7vpe 5 : The peripheral trails are convex in-
ward. Depending upon the pattern of the central
trail, the type can again be subdivided into three
sub-types. 7ype 3a : The central trail has two sinu-
ous scgments. 7ype 3b : The central trail with a
step-like gcometry. Tupe 5S¢ : acombination of frypes
Ja and 5h. The kinematic and geometrical condi-
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directions = 1.

SNOISYTONI dIDN HLIA dJLVIDOSSY STANLIOMNALS

[%4



26 SUSANTA KUMAR SAMANTA, NIBIR MANDAL AND CHANDAN CHAKRABORTY

Table 3 :
The geomctrical and Kincmatic conditions for the development of different types of trail patterns in
non-spherical porphyroblasts. The numbers in Italies refer to the types of trail structures as stated

in the text.
Simple Shear Combination of Simple
§.=0) Shear and Pure Shear
(S, =0.25)
$—> 0 = 85° ¢ —>
45¢] 00 | 457 ] 85 45°] 0o | a57 | 85°
G,J’ 157 I 0 TR 2 B D Gi 112 A Y B I R
30 3al| ! 2 | 4a 30 3 1 1 4a
b—> 0 = 45° b——>
45°]70° | 450 | 83 45°] 0° | 457 | 85°
Grl 15] 36 2| 2 2 G'l 150 3b| 4a| da | I
33| 1} 4a| 2 30 3 1| 40| 1
¢ —> 0 =0° b—
457 o [ a5° | 85° 45°] 0° | 45°] 85°
olx; 3 1| 3a| 3a G_lls | 2 i i
3 3c 2 4c 3c 3 3b 4a 3b 3c
) N 0 = -10° ¢ N
T35 o° | 459 | 85 45°] 0 ] 450 | 85
c,l 15) 304 3a| 3a| 3a Gi 15y 3| 2| 3a| 3a
3 3¢ 5b 3d 3d 3 3b 2 3a 3c
o —> 0 = -45° b —>
45°] 0T 450 | 8s° 4571 0° [ 457 [ 85°
G’l 15) 4b | I ] ] G,l 15| $6| 3a{ S5b| 5b
3 5a| 1| 36| 2 3| 5| 3a| 56| s

= Initial inclination of marker with the shear direction,

= Initial inclination of a-axis of porphyroblast,

Ratio of growth rates along the axial directions of porphyroblast,
= Ratio of purc shear and simple shear rates in bulk deformation,

1]
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Type 44 T Tweds | Type 3d

Type 52

Fig. 24 Types of trail structures in clongate porphyroblasts,
obtained from numerical model experiments. Ra-
tio of growth rates along axial directions ranges
between 1.5 and 3.
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