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Abstract

Chaudhuri, D., B.B. Chaudhuri and C.A. Murthy, A new split-and-merge clustering technique, Pattern Recognition Letters
13 (1992) 399-409.

A new clustering algorithm is developed for efficient classification of data in R when there exists no a priori information
about the number of clusters. The algorithm is based on a split-and-merge technique. The type-I splitting is guided by density
of data over strips at different directions around the centroid of the data. The type-II splitting is the usual A-means clustering
algorithm (K =2) and rechecked with the help of a merging technique. A theorem on the convergence of this algorithm is

proved.
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1. Introduction

Clustering is a useful and important technique in
image processing and pattern recognition [1,2,5,
7,9]. There exist two classes of clustering tech-
niques, namely hierarchical and non-hierarchical
techniques. Among non-hierarchical techniques
K-means and ISODATA are popular. Of them,
ISODATA is a split-and-merge technique of
achieving a prespecified number of clusters.
Among other split-and-merge techniques Wishart
[4] as well as Liu and Tsai [3] may be mentioned.
The method in this paper also falls in this category.

The main difference of the proposed method
with those of the others is that here we try to split
the clusters by noting the density at different direc-
tions by observing the data over strips. In order to

Correspoirdence to: B.B. Chaudhuri, Electronics & Com-
munication Sciences Unit, Indian Statistical Institute, 203 Bar-
rackpore Trunk Road, Calcutta 700035, India.

overcome some defects of this approach, another
splitting approach, that is, the simple 2-means
algorithm under a certain restriction is used. Also,
for merging, it is tested whether the data at the
boundary of a cluster is very close to the data at the
boundary of the other cluster. The splitting and
merging techniques are described in Section 2. Sec-
tion 3 describes the proposed algorithm with the
corresponding flowchart and the theorem of con-
vergence criterion. The results on synthetic and
real data (remotely sensed imagery) are presented
in Section 4.

2. Splitting techniques

In type-I splitting, strips of finite width at dif-
ferent directions around the centroid of the data
are considered. The data is split across the sparsely
populated strip. For a two-dimensional data set we
consider four directions at the center of the data as

399



Volume 13, Number 6

2
o
55| 2
|
n
N
2 Sy 3
»
4/% N U
2 \)
st_C4+s83
h
4——%-;"" = 8
(%,y)
g
©

6

Figure 1. Strips in the four directions in a 2-dimensional data
set.

shown in Figure 1. They are named as 1 < 5 (one
diagonal), 2 < 6 (vertical), 3 < 7 (another diago-
nal), and 4 < 8 (horizontal). The correspond-
ing strips are denoted by St_[1< 3], St_[2 < 6],
St_[3«<7] and St_[4< 8], respectively. For a
three-dimensional data set we consider 2° "' +3=7
directions at the centroid of the data (2% '=4
directions are 4 diagonals and 3 directions are 3
axes). The number of directions considered for a g-
dimensional data set is 29 '+ g. The strips are
constructed along (i) the g axes and (ii) the diag-
onals (note that the number of diagonals in ¢
dimensions is 297 '). But, observe that the greater
the number of directions for strips the better the
accuracy of the result is.

The width of a strip along any direction is to be
found out before actually constructing the strip.
The width is an important impediment in deciding
whether the data is indeed sparsely populated in
that direction. If the width is very large then all the
points in the data set may belong to the strip. If it
is very small then the strip may not be amenable
for making any decision. In this connection a
measure of finding the width is described below us-
ing an example.
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Figure 2. Clusters with different density. (a) Cluster of 50 pat-
terns with relatively large interpoint distances. (b) Cluster of 50
patterns with relatively small interpoint distances.

Example. Three data sets arc shown in Figures
2(a), 2(b) and 3(a) where the number of points in
these data sets are the same. Intuitively, the set of
points in Figure 2(b) is a singlec cluster. The data in
Figure 2(a) can be called a single cluster though in-
terpoint distances are generally greater than in
Figure 2(b). In Figure 3(a) it is intuitively clear that
there are two clusters. Thus the sets of points in
Figures 2(a) and 2(b) should not be split while
those in Figure 3(a) are to be split. A way of split-
ting the set of points in Figurc 3(a) at the center
(Xp) is shown in Figure 3(b).

Draw a strip of width 24, as shown in Figure
3(b). Count the number of points in the strip. If
the number of points is less than some threshold,
say #, then conclude that there are two clusters.
Note that, if this procedure is to be followed in
Figures 2(a) and 2(b) then A, should be taken
suitably. 4, should not be too big so that it could

(a)

(c)

Figure 3. Cluster detection by splitting across the low-density
strip. (@) Two clusters. (b) Lowest density strip of the dat

; a at
the center Xj. (¢) Splitted clusters,
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include the entire set of points in the strip. A,
should not be too small so that the set of points in
Figure 2(a) may be split. Note that 4, in a sense
gives the connectivity of the set. In this regard a
result [20] is stated in the Appendix. Based on this
result we propose that the width of the strip should
be 2k, where h,=ae,,¢,=1/n",0<p<1/q and a
is a constant, » is the total number of points in the
g-dimensional data set.

The type-I splitting is described below for R2.

Let the given set of points be

S: {(xb yl)o (-\’j; yz), ...,(X,;, yn)} g [Rz.

Let

=

1 H 1 n
=— Y x, and y=— Y y.

noj=y noj=

Type-1 splitting is applied at the mean point of
the data set [i.e., at (¥, ¥)] along a particular direc-
tion among the four directions discussed before.

Let by, b,, by and b, be the number of points
in each of the strips St_[1< 5], St_[2+ 6],
St_[3+ 7] and St_[4 < 8], respectively.

Let ny=min{b, by, by, b,}.

Find the strip in which the number of points is
ny. If my is not very small compared to n, then
there should not be any split in that direction. If

2 100<, (1)
H

then split the sct S along the corresponding direc-
tion. Inequality (1) is called the splitting restric-
tion. Here /; is a small quantity dependent on the
width of the strip. If the number of points in a strip
satisfies (1) then the strip is called a sparsely
populated strip. Otherwise the strip is called a
densely populated strip.

Note that if in two or more directions, the
number of points, ny, satisfies the splitting restric-
tion, then one of the directions is chosen arbitrarily
for splitting.

Type-I splitting can also be extended to three or
more dimensions. Observe that for a two-dimen-
sional data set, two straight lines are needed for
constructing a strip (Figure 1). For higher-dimen-
sional data sets, hyperdimensional strips need to be
constructed. The number of hyperplanes needed
for constructing a hyperdimensional strip in ¢
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dimensions is 297 '. The inequality (1) would re-
main unchanged for g-dimensional data.

Note that sparsely populated regions need not
always be present at the center of the data. They
can occur at other places as well. In this context a
splitting method, namely type-1II splitting is incor-
porated in the algorithm.

The type-I1 splitting technique is the usual K-
means method by Forgy [6] with some restriction
imposed and K =2. The selection of initial seed
points is to be done suitably [14].

After the 2-means algorithm converges, let m1,
and m, be the mean points of the two subclusters
S;and S, of S.

Let dy=|m;—my|.

The almost equidistant point set, A, is the col-
lection of those points whose differences of the
distances from m and 1, are less than 10% of d,,
i.e.,

A= {z: ze s,

ey~ Jo—mal | < 22
1 21 10
and ny=#A. If
M 100<4, 2)
n

then §; and S, are said to be two different
clusters. The inequality (2) is called the almost
equidistant restriction. As before, /, is a small
quantity.

If (ny/nm)x 1002/, then the merging criterion
will have to be checked for deciding whether
subclusters S, and S, remain divided or not.

Merging technique
Let S={z,,23-.-,2, CRY. Let Sy and S, be

such that §;NS,=0, S;US,=S and they are the
outcome of the 2-means algorithm on S. Let

m,z( Y z>/#S,, i=1,2.
TeS;

Let
A= {:: zes,

o dy
jomy = z=mf | < 0]

where dy=|m,—ma|. Let n,=#A. Let

1
m}:’—< Y z)
NyN\zea
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and

d
H= {z: |imy—z] é—oj .
5
The set H is called the merging circle set (Figure 4).
Let

ns=#HNS, and ng=#HNS,.

If
ns—#
J—5—(’l>< 100< /4 3)
n
then only S, and S, are to be merged. /; must be
very small. The inequality (3) is called the merging
restriction.

It may be noted that

1. The above method basically verifies whether
the points near the boundary of the two clusters
have equal representation in both clusters (Figure
4).

2. The above method gives a criterion for merg-
ing S;US, which are products of the 2-mean
algorithm on S.

3. If any one of S| and S, say Sy, is further sub-
divided (say to S;; and S;,), then also the same
merging technique can be applied. The definitions
m;, A, dy, ny, my, H, ns and ng are unchanged.
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Figure 4. The process of merging in 2-dimension.
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Let S, be such that ANS,; #@. It is then generally
true that ANS;;=0. Thus S,; and S, are to be
merged if the merging criterion is satisfied.

4. If both S, and S, are further subdivided then
the merging technique is to be applied similarly.

3. Proposed algorithm

In the proposed algorithm the number of itera-
tions is represented by J while the number of
clusters at the Jth iteration is given by K. Initially

J:O al’ld K():l

Thus, there exists one cluster initially which is S.
The algorithm has the following steps.

Step 1. Apply type-I splitting on every cluster.

Step 2. If no cluster is divided in Step 1, go to Step
3. Otherwise go to Step 1.

Step 3. Apply the 2-means algorithm on every
cluster. Find out the almost equidistant point
sets for every cluster. Check the inequality (2)
for every one of the almost equidistant point sets
which do not satisfy the almost equidistant
restriction; then go to Step 4. Otherwise go to
Step §.

Step 4. Let A\, A,, ..., A, be those almost equidis-
tant point sets which do not satisfy the almost
equidistant restriction. Let the corresponding
clusters for A4, A,,...,A; be C,C,,...,C,. Let
every C; be divided into Cy, and C,, in Step 3
for s=1,2,...,L. Apply type-l splitting on C,
and C, fors=1,2,...,L. Foreverys=1,2, ... L,
the following two cases arise.

(a) None of C;; and Cj, is split. Then check the
merging restriction on Cy; and C;, using A..

(b) At least one of the C,; and C,, is split. Then
check the merging restriction for those sets
with which A4, has non-empty intersection.

Step 5. J«<J+1. Find the number of cluster K.

Step 6. 1If K;=K,_, then go to Step 7. Otherwise
go to Step 1.

Step 7. Stop.

The flowchart of the above algorithm is shown
in Figure 5.
Note that the algorithm converges when the
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Figure 5. A flowchart of the proposed algorithm.

number of clusters in the Jth iteration and the
(J+ Dth iteration are equal. A theorem is stated
below which shows that if the number of clusters
in the Jth and (J + 1)th iterations are equal then the

clusters at the end of Jth iteration are the same as
the clusters at the end of the (J+ I)th iteration.
Theorem 1 and Theorem 2 stated below are proved
in the Appendix.
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Theorem 1. Let the number of clusters at the end
of the Jth and (J+ 1)th iterations be k and I respec-
tively. Then k<.

Theorem 2. Ler the clusters at the end of the Jth
and (J+ th iterations be P, P, ...,P;, and
0,0, ..., 0. Then

{Pu Py Py =100 Qi

4. Experimental results
4.1. On artificial data

The clustering scheme described in the paper has
been implemented on various data sets. The pro-
grams are run on an IBM PC/AT microcomputer
in TURBO PASCAL language. In all the tested
cases, the breadth of the strip, i.e., 2h,=2a¢,
le,=1/n”, 0<p<0.5 and «¢=3, p=0.05 and
n=number of points], the values of /;, /, and /
are taken 4, 5, 3 and 0.7, respectively.

Figure 6(a) shows multi-cluster data of size 204.
For type-I splitting of this data, the mean point is
marked by ‘X, the direction is marked by a dotted
line (3----7) shown in Figure 6(b). Here n,=21
and also St_[l< 5] and St_[3+ 7] contain 21
points each. But

n
—x100=10.3>5
on

so the strip is densely populated and is not to be
split. The results of type-II splitting are shown in
Figure 6(c). The mean points of the two subsets S,
and S, (obtained by using the 2-means algorithm)
are marked by ‘X" and ‘X5’ and the boundary
line is marked by ‘B\B,’. The almost equidistant
poinis are marked by ‘®’. Here n,=15. The
mean point of the almost equidistant points is
marked by ‘C’.

Since (n,/n)x100=7.3>3, the merging cri-
terion is to be checked. For S, and §,, the type-1
splitting technique is also to be verified. Thus for
S,, 4 strips are generated with width 4 at the
center X, and the minimum size of the strip is
found for sirip St [2< 6] with size 9. Since
(9/n)x 100=4.4<5, S, should indeed be split at
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Figure 6. Synthetic data to show the need of type-1l splitting.
{a) A multi-cluster data of size 204. {(b) The mean point and the
direction of the low-density strip. (¢) The resulting clusters.

the center along the direction 2« 6. Similarly it
can be seen that S, should not be split at the
center Xs.

The equidistant point set, H, for the pair S, and
S, is found. The number of points within the
merging circle is found to be 25, the values for dy,
ns and ng are found to be 22.3, 13 and 12, respec-
tively. Here

|ns —ng|

n

x100=0.4<0.7.

So one of the divided portions of S, is to be merg-
ed with §,. Thus at the end of the first iteration,
the number of clusters is found to be 2 (Figure

6(c)).
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Figure 7. Another example. (a) A multi-cluster data of size 237. (b) The mean point and the direction of the low-density strip.
(c) The resulting clusters.

On each one of the above two clusters, type-I
splitting and type-11 splitting are applied. It has
been found that no further divisions can take
place. Thus at the end of the second iteration too,
the number of clusters is the same. So the process
is terminated. One cluster has 25 points and the
other has 179 points.

The results of the algorithm on other data sets
are also demonstrated. Figure 7(a) shows a data set

and the corresponding intermediary step is shown
in Figure 7(b) where the mean point is marked by
‘X, the direction is marked by a dotted line
(3----7). But the strip along (3----7) is densely
populated and is not to be split. The results of
type-11 splitting are shown in Figure 7(c). The
boundary line of the two subsets S; and S, is
marked by ‘B;B,’. For S,, the minimum size of
the strip is found for strip St _[1 < 5] in the direc-
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tion 1< 5 at the center ‘X,’. The minimum
number of points in St_[1 < 5] satisfies the split-
ting restriction. S, should indeed be split at the
center ‘X, along the direction 1< 5. S, and §
are merged. Hence the two clusters are S5, and
S5, US, which are shown in Figure 7(c).

Figure 8(a) shows another data set which can be
split by type-I splitting only and the coresponding
results are shown in Figure 8(b). No merging is
needed in this case.

The results of applying the proposed algorithm
on a real-life data are given below.

4.2. On remotely sensed data

Analysis of satellite imager has wide applica-
tions such as crop yield estimation, estimation of
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Figure 8. An example where type-l splitting only is needed.
(a) The data set. (b) Resulting clusters.
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Table 1
Band Wavelength
Blue 0.45 m-0.52 ym
Green 0.52 ym-0.59 ym
Red 0.62 ¢um-0.68 ym
Infrared 0.77 jan-0.86 gm

forest regions etc. [10,11]. Satellite images are used
for defence applications too. The proposed
algorithm was applied on an Indian remote sensing
satellite (IRS) image.

The IRS provides images of two ground resolu-
tions, namely 72.5mx72.5m and 32.5m X 32.5
m. It has four bands namely blue, green, red and
infrared. The wavelengths of these bands are given
in Table 1 [12].

The proposed algorithm has been applied on an
IRS image of ground resolution 36.25 m x 36.25
m. The area under consideration in that image is
a suburb near Calcutta namely Barrackpore. The
images corresponding to green and infrared bands
for that scene are given in Figures 9 and 10, respec-
tively. The observed gray value in the infrared
band has the range 16 to 66 and the green band has
the range 18 to 51. The bivariate frequency table of
the gray values of these two bands is given in Table
2. The clustering partition by the proposed
algorithm is shown as the dashed line in Table 2.
The clusters mapped back in the image space are
shown in Figure 11. Here, the white pixels in

Figure 9. Remotely sensed image corresponding to green band.
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Figure 10. Remotely sensed image corresponding to infrared
band.

Figure 11 give the water pixels in the scene. The
Hooghly river in the scene is demarkated distinctly
from the rest. The path of the river is clearly seen
in Figure 11.
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Appendix

Result 1 [13]. Let ¢,— 0 and ng! -, ¢,>0 Vn
and ¢ is a positive integer >2.

Let X, X, ..., X, be independent and identically
distributed random vectors following uniform dis-
tribution on @, where & C RY, ¢ is unknown and
A0a) =0 [A is the Lebesgue measure in g dimen-
sions and da is the boundary of «]. Let

n
¢y = _U' {XG RY: HX_XI'H ge/l}'
i=

Then @, is a consistent estimator of ¢, i.e.,

E,,[/{((X” A Cf)] -0 as n—o .

Figure 11. Resulting two clusters mapped in image domain.

[E represents expectation and A represents sym-
metric difference.]

If this estimation procedure for a suitably
selected ¢, is applied to the data in Figure 2(a),
then the approximate output is shown in Figure
2(c).

Let SCRY and G={x},x3,...

d.=inf d(x,y) Vx
veG
VEX

, X1 €S. Now let

where d(x, y) is the distance between two points x
and y. Let

b=maxd,.
NeG

Then note that if b>2¢, then the estimated set of
G will have at least two components. Thus, G will
be partitioned.

Hence, if the data is to be checked for splitting
at X, of Figure 2(a) then note that h, should be
greater than or equal to &,. The choice of A, will
be h,=ag, where ¢,=1/n", 0<p<l/gand a is a
constant.

Proof of Theorem 1. Let the clusters at the end of
the Jth and (J+ )th iterations be Py, P>, ..., P,
and Q,, 0>, ..., Q, respectively.

It is known that there are k clusters in the begin-
ning of the (J+ Dth iteration. Each iteration treats
the clusters present at the beginning independently.
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No part of one cluster becomes a part of another
cluster when the iteration ends, ie., T, CP;,
T,CP;, ji#Jj, and T\UT,CQ; is not possible
Yji, j» and j;. At most some clusters among
P,P,,...,P, may be split and merged among
themselves as the iteration progresses. Thus
k<l O

Proof of Theorem 2. Observe that in the (J+ 1)th
iteration no element of P, can change its member-
ship from P, to P, for j#r, r=1,2,..., k. At most
P, can be subdivided for r=1,2,...,k.

Let P, be split into m, subclusters, m,>1. If
m, =1 then there is no split in P,. That means, for
P, let Q,,0,,...,0, be such that

m,

UaQ,=P, r=12..k,
J=1

‘
m,=1 and Zl m,=1.

But we know that Zlem,:k. If 3a, ae

{1,2,...,k} such that m,>1 then Ef:l m>k,
which is a contradiction. So

m<l Vr=1,2,...,k.

But m, 2l Vr=1,2,...,k (as stated earlier).
Therefore m,=1, r=1,2,...,k. Hence there is
no split in P,’s. Thus

{P1, Py s P} = {01, Qs oo, Ok

ie., P, is equal to one of Q,Q,,...,0, Vr=
1,2,...,k. So the clusters at the end of the Jth
iteration and the (J+ I)th iteration are the
same. [J
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