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A new clustering algorithm is developed for efficient classification of  data  in R(/ when there exists no a priori information 
about  the number  o f  clusters. The algorithm is based on a split-and-merge technique. The tvpe-I splitting is guided by density 
o f  data  over strips ai different  directions around  the centroid o f  the data.  The type-11 splitting is the usual A'-means clustering 
a lgori thm (K = 2) and recheckcd with the help o f  a merging technique.  A theorem on the convergence o f  this algorithm is 
proved.
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1. Introduction

Clustering is a useful and important technique in 
image processing and pattern recognition [1,2 ,5 , 
7,9]. There exist two classes of  clustering tech
niques, namely hierarchical and non-hierarchical 
techniques. Among non-hierarchical techniques 
/T-means and ISODATA are popular. O f them, 
ISODATA is a split-and-merge technique of 
achieving a prespecified number of  clusters. 
Among other split-and-merge techniques Wishart 
[4] as well as Liu and Tsai [3] may be mentioned. 
The method in this paper also falls in this category.

The main difference of the proposed method 
with those of  the others is that here we try to split 
the clusters by noting the density at different direc
tions by observing the data over strips. In order to
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overcome some defects of this approach, another 
splitting approach, that is, the simple 2-means 
algorithm under a certain restriction is used. Also, 
for merging, it is tested whether the data at the 
boundary o f  a cluster is very close to the data  at the 
boundary of the other cluster. The splitting and 
merging techniques are described in Section 2. Sec
tion 3 describes the proposed algorithm with the 
corresponding flowchart and the theorem of con
vergence criterion. The results on synthetic and 
real data (remotely sensed imagery) are presented 
in Section 4.

2. Splitting techniques

In type-I splitting, strips of finite width at dif
ferent directions around the centroid o f  the data  
are considered. The data is split across the sparsely 
populated  strip. For a two-dimensional data  set we 
consider four directions at the center o f  the data  as



Figure 1. Strips in the four directions in a 2-dimensional data 
set.

shown in Figure 1. They are named as 1 <-► 5 (one 
diagonal), 2 6 (vertical), 3 <-*■ 7 (another diago
nal), and 4<->8 (horizontal). The correspond
ing strips are denoted by St. [1 <->■ 5], S t_ [2 ^ 6 ] ,  
St [3 <->• 7] and S t . [4<->8], respectively. For a 
three-dimensional data set we consider 23 - 1 + 3 = 7 
directions at the centroid of the data (23 -1 = 4  
directions are 4 diagonals and 3 directions are 3 
axes). The number of directions considered for a q- 
dimensional data set is 2q '+ q .  The strips are 
constructed along (i) the q axes and (ii) the diag
onals (note that the number of  diagonals in q 
dimensions is 2‘r  '). But, observe that the greater 
the number of directions for strips the better the 
accuracy of the result is.

The width of a strip along any direction is to be 
found out before actually constructing the strip. 
The width is an important impediment in deciding 
whether the data is indeed sparsely populated in 
that direction. If the width is very large then all the 
points in the data set may belong to the strip. If it 
is very small then the strip may not be amenable 
for making any decision. In this connection a 
measure o f  finding the width is described below us
ing an example.

(a) (b)
Figure 2. Clusters with different density, (a) Cluster  o f  50  p a t 
terns with relatively large interpoint distances, (b) C l u s t e r  o t  50 

patterns with relatively small imerpoint d is tan c es .

Example. Three data sets are shown in F igu res  
2(a), 2(b) and 3(a) where the number o f  p o in t s  in 
these data sets are the same. Intuitively, th e  se t  o f  
points in Figure 2(b) is a single cluster. T h e  d a t a  in 
Figure 2(a) can be called a single cluster t h o u g h  in
terpoint distances are generally greater t h a n  in 
Figure 2(b). In Figure 3(a) it is intuitively c le a r  th a t  
there are two clusters. Thus the sets o f  p o i n t s  in 
Figures 2(a) and 2(b) should not be split  while 
those in Figure 3(a) are to be split. A w ay o f  sp l i t 
ting the set of points in Figure 3(a) at th e  cen te r  
(A'o) is shown in Figure 3(b).

Draw a strip of width 2hn as shown in F ig u re  
3(b). Count the number of points in the s t r ip .  If 
the number of  points is less than some th re s h o ld ,  
say 9, then conclude that there are two c lu s te rs .  
Note that, if this procedure is to be fo l lo w e d  in 
Figures 2(a) and 2(b) then h„ should b e  ta k e n  
suitably. h„ should not be too big so th a t  it cou ld
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Figure 3. Cluster detection by splitting across the  l o w -d e n s i ty  
snip ,  (a) Two clusters, (b) Lowest density strip o f  t h e  d a t a  at 

the center X 0. (c) Splitted clusters.



include the entire set o f  points in the strip. h„ 
should not be too small so that the set o f  points in 
Figure 2(a) may be split. Note that hn in a sense 
gives the connectivity of  the set. In this regard a 
result [20] is stated in the Appendix. Based on this 
result we propose that the width of the strip should 
be 2h„ where h„ = ae„,E„ = \ / n ' \ Q < p <  l / q  and a 
is a constant, n is the total number of  points in the 
^-dimensional data set.

The type-I splitting is described below for fR2.
Let the given set o f  points be

5 = { ( x 1, ^ i),(.v2,.y2), c  [R2.

Let
I « i »

x  = -  £  x, and y  = ~  £  y , .
n  i=\  n  / = i

Type-I splitting is applied at the mean point of 
the data  set [i.e., at („v, v)] along a particular direc
tion among the four directions discussed before.

Let b u b2, by and b4 be the number of points 
in each of the strips St_[I<->5], St_[2<^6], 
St_[3<->7] and St_[4<->8], respectively.

Let a?i = m in {b u b2, b j ,b 4}.
Find the strip in which the number of points is 

If is not very small compared to n, then 
there should not be any split in that direction. If

—  x l 0 0 < / ,  (1)
n

then split the set S along the corresponding direc
tion. Inequality (1) is called the splitting restric
tion. Here /, is a small quantity dependent on the 
width o f  the strip. If the number of  points in a strip 
satisfies ( 1) then the strip is called a sparsely 
populated strip. Otherwise the strip is called a 
densely popula ted  strip.

Note that if in two or more directions, the 
number o f  points, n u satisfies the splitting restric
tion, then one of  the directions is chosen arbitrarily 
for splitting.

Type-I splitting can also be extended to three or 
more dimensions. Observe that for a two-dimen
sional da ta  set, two straight lines are needed for 
constructing a strip (Figure 1). For higher-dimen
sional data  sets, hyperdimensional strips need to be 
constructed. The number o f  hyperplanes needed 
for constructing a hyperdimensional strip in q

dimensions is 2f,~ '. The inequality (1) would re 
main unchanged for ^-dimensional data.

Note that sparsely populated regions need not 
always be present at the center of  the data. They 
can occur at other places as well. In this context a 
splitting method, namely type-II splitting is incor
porated in the algorithm.

The type-II splitting technique is the usual K-  
means method by Forgy [6 ] with some restriction 
imposed and K -  2. The selection of  initial seed 
points is to be. done suitably [14],

After the 2-means algorithm converges, let m x 
and m 2 be the mean points of the two subclusters 
S] and S2 of S.

Let d0= \ \ m \ - m 2\\.
The almost equidistant po in t set, A ,  is the col

lection of  those points whose differences o f  the 
distances from m x and m 2 are less than 10% o f  d0,
i.e.,

A  = jz: z e S ,  \ I z - w J  -  | |z -/;72|| I < ^ j  

and «4= # A .  If

—  xlOO < / ,  (2)
n

then 5] and S2 are said to be two different 
clusters. The inequality (2) is called the almost  
equidistant restriction. As before, I2 is a small 
quantity.

If (n4/n)  x  100^ / 2 then the merging criterion 
will have to be checked for deciding whether 
subclusters 5, and S2 remain divided or not.

Merging technique

Let S =  { z \ , z 2, ••■,2,,} £ (Rf/- Let 5, and S 2 be 
such that 5, n  S2 = 0, S, U S 2 = S and they are the 
outcome of the 2-means algorithm on 5 . Let

m,=  ^ £  z ^ j # S , ,  / = 1,2.

Let

A = z e S ,  | | z - / n n  - ^ - / » 2|! | < ^ j  

where d{)= \ m \ -  >n2\\. Let nx = # A .  Let

" h =  —  (  I  z



and

H = ^ z :  | /«3- z | s £ y j .

The set H  is called the merging circle set (Figure 4). 
Let

« 5= # / / n S |  and «6 = # / / n S 2.

If
-  n(, I

— ----- — x  100 < / ,  (3)
n

then only S ( and S 2 are to be merged. /3 must be 
very small. The inequality (3) is called the merging 
restriction.

It may be noted that
1. The above method basically verifies whether 

the points near the boundary of  the two clusters 
have equal representation in both clusters (Figure 
4).

2. The above method gives a criterion for merg
ing S ]U S 2 which are products of the 2-mean 
algorithm on S.

3. If any one of S[ and S2, say S b is further sub
divided (say to Sn and S 12), then also the same 
merging technique can be applied. The definitions

A ,  d0, «4, m 3, H ,  n5 and n6 are unchanged.

Let S , , be such that A  D S , , *  0. It is then generally 
true that A f ) S [2 = 0. Thus S n and S2 a re  to  be 
merged if the merging criterion is satisfied.

4. If both Si and S 2 are further subdivided then 
the merging technique is to be applied similarly.

3. Proposed algorithm

In the proposed algorithm the num ber o f  itera
tions is represented by J  while the n u m b e r  of 
clusters at the J th iteration is given by K j .  Initially

J=  0 and K0 = 1.

Thus, there exists one cluster initially which  is S. 
The algorithm has the following steps.

Step 1. Apply type-I splitting on every cluster. 
Step 2. If no cluster is divided in Step 1, go to  Step

3. Otherwise go to Step 1.
Step 3. Apply the 2-means algorithm o n  every 

cluster. Find out the almost equidistant po in t  
sets for every cluster. Check the inequality  (2) 
for every one of  the almost equidistant p o i n t  sets 
which do not satisfy the almost equidistant  
restriction; then go to Step 4. Otherwise go to 
Step 5.

Step 4. Let A UA 2, . . . , A L be those alm ost equid is
tant point sets which do not satisfy the alm ost  
equidistant restriction. Let the corresponding  
clusters for A h A 2, ■■■,AL be C,, C2, . . . ,  C L. Let 
every Cs be divided into Q ,  and Cs2 in S tep  3 
for s = l , 2 ,  . . . , L .  Apply type-I splitting o n  C5l 
and Cs2 for 5=  1 , 2 , ,  L. For every 5 = 1 ,2 , . . . ,  L, 
the following two cases arise.
(a) None of C sl and Cs2 is split. Then check  the 

merging restriction on C vl and Cs2 using A s.
(b) At least one of the Q ,  and Cs2 is split. Then 

check the merging restriction for th o se  sets 
with which A s has non-empty intersection.

Step 5. J < - 7 +  1. Find the number o f  c luster K }. 
Step 6. If K j  =  K j _ 1 then go to Step 7. O therwise 

go to Step 1.
Step  7. Stop.

The flowchart of the above algorithm is show n 
in Figure 5.

Note that the algorithm converges w hen  the



number of  clusters in the 7 th  iteration and the 
( 7 + l ) th  iteration are equal. A theorem is stated 
below which shows that if the number of  clusters 
in the 7 th  and (7 + l)th iterations are equal then the

clusters at the end o f 7 th  iteration are the same as 
the clusters at the end of  the (7 + l)th iteration. 
Theorem 1 and Theorem 2 stated below are proved 
in the Appendix.



and

Theorem t .  Let the number o f  clusters at the end  
o f  the J th  and  (7+ 1 )th iterations be k and I respec
tively. Then k ^ l .

Theorem 2. Let the clusters at the end o f  the J th  
and (J+ \)th iterations be P x,P 2,

Then

{ P 1, P 2, . . . , P , }  = {Q1,Q 2, . . .Q ,} .

4. Experimental results

4.1. On artificial data

The clustering scheme described in the paper has 
been implemented on various data sets. The pro
grams are run on an IBM P C /A T  microcomputer 
in TURBO PASCAL language. In all the tested 
cases, the breadth of the strip, i.e., 2hn = 2ae„ 
[ e „ = \ /n p, 0 < p < 0 . 5  and a = 3, /? = 0.05 and 
n = number of points], the values o f  /,, l2 and l3" 
are taken 4, 5, 3 and 0.7, respectively.

Figure 6(a) shows multi-cluster data of size 204. 
For type-I splitting of this data, the mean point is 
marked by ‘X ’, the direction is marked by a dotted 
line (3 —  7) shown in Figure 6(b). Here /?, = 21 
and also St [ 1 ^ 5 ]  and St_[3<->7] contain 21 
points each. But

n i

(a)

(b)

N . . . .s . .
. . . N . . . .

x 100* 10.3 > 5

(C)

Figure 6. Synthetic data  to show the need o f  type-11 splitting,
(a) A multi-cluster d a ta  of  size 204. (b) The mean point and the 

direction of  the low-density strip, (c) The resulting clusters.

so the strip is densely populated  and is not to be 
split. The results of type-II splitting are shown in 
Figure 6(c). The mean points of the two subsets S { 
and S2 (obtained by using the 2-means algorithm) 
are marked by ‘A y and lX 2 and the boundary 
line is marked by 'B XB2 . The almost equidistant 
points  are marked by ‘ O ’ . Here n4= 15. The 
mean point of the almost equidistant points  is 
marked by ‘C” .

Since (nA/n)  x 100 = 7.3 >  3, the merging cri
terion is to be checked. For S, and S2, the type-I 
splitting technique is also to be verified. Thus for
S , , 4 strips are generated with width 4 at the 
center X x and the minimum size of the strip is 
tound  tor strip St_[2<->6] with size 9. Since 
(9/7;) x 100 = 4 .4 < 5 ,  S, should indeed be split at

the center along the direction 2<->6. Similarly it 
can be seen that S 2 should not be split at the 
center X 2.

The equidistant point set, H , for the pair S] and 
S2 is found. The number o f  points within the 
merging circle is found to be 25, the values for d0, 
n5 and n6 are found to be 22.3, 13 and 12, respec
tively. Here

- x  100 = 0 .4 < 0 .7 .
n

So one of  the divided portions of  S, is to be merg
ed with S2. Thus at the end o f the first iteration, 
the number of  clusters is found to be 2 (Figure 
6(c)).



Figure  7. A n o th e r  example, (a) A multi-cluster da ta  o f  size 237. (b) The mean point and the direction of  the low-density strip.
(c) T he  resulting clusters.

On each one of the above two clusters, type-I 
splitting and type-II splitting are applied. It has 
been found that no further divisions can take 
place. Thus at the end of the second iteration too, 
the num ber  of clusters is the same. So the process 
is terminated. One cluster has 25 points and the 
other has 179 points.

The results o f  the algorithm on other data  sets 
are also demonstrated. Figure 7(a) shows a data set

and the corresponding intermediary step is shown 
in Figure 7(b) where the mean point is marked by 
lX \  the direction is marked by a dotted line 
(3 —  7). But the strip along (3 —  7) is densely 
populated  and is not to be split. The results of 
type-II splitting are shown in Figure 7(c). The 
boundary line o f  the two subsets Sj and S2 is 
marked by >B lB2 . For S2> the minimum size of 
the strip is found for strip St [ 1 <-> 5] in the direc



tion l<->5 at the center ‘X 2’. The minimum 
number of points in St [1 5] satisfies the split
ting restriction. S2 should indeed be split at the 
center along the direction 1 <->5. S2i and S t 
are merged. Hence the two clusters are S22 and 
S21US, which are shown in Figure 7(c).

Figure 8(a) shows another data set w'hich can be 
split by type-1 splitting only and the coresponding 
results are shown in Figure 8(b). No merging is 
needed in this case.

The results of applying the proposed algorithm 
on a real-life data are given below.

4.2. On remotely sensed data

Analysis of satellite imager has wide applica
tions such as crop yield estimation, estimation of

*---------------7-7--X1--------------------»

Si 6
(b)

Figure 8. An example where type-1 splitting only is needed, 
(a) The data set. (b) Resulting clusters.

Table 1

Band Wavelength

Blue 0.45 /mi-0 .52  /<m
Green 0.52 / /m -0 .59 //m
Red 0.62 um -0.68 //m
Infrared 0.77 /<m-0.86 um

forest regions etc. [10,11]. Satellite images are  used 
for defence applications too. The proposed 
algorithm was applied on an Indian remote sensing 
satellite (IRS) image.

The IRS provides images of  two ground resolu
tions, namely 72.5 m x  72.5 m and 32.5 m x  32.5 
m. It has four bands namely blue, green, red  and 
infrared. The wavelengths of these bands are given 
in Table 1 [12],

The proposed algorithm has been applied o n  an 
IRS image of ground resolution 36.25 m X 36.25 
m. The area under consideration in tha t image is 
a suburb near Calcutta namely Barrackpore. The 
images corresponding to green and infrared  bands 
for that scene are given in Figures 9 and 10, respec
tively. The observed gray value in the infrared 
band has the range 16 to 66 and the green b a n d  has 
the range 18 to 51. The bivariate frequency table  of 
the gray values of  these two bands is given in Table
2. The clustering partition by the proposed 
algorithm is shown as the dashed line in Tab le  2. 
The clusters mapped back in the image space are 
shown in Figure 11. Here, the white pixels in

Figure 9. Remotely sensed image corresponding to g reen  band .



Figure 10. Remotely sensed image corresponding to infrared
hand. Figure 11. Resulting two clusters mapped in image domain.

Figure 11 give the water pixels in the scene. The 
Hooghly river in the scene is demarkated distinctly 
from the rest. The path of  the river is clearly seen 
in Figure 11.
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Appendix

Result 1 [13]. Let £,,->0 and m qn ~^o°, £ „> 0  Vrc 
and q is a positive integer ^ 2 .

Let X UX 2, . . . ,X „ b e  independent and identically 
distributed random vectors following uniform dis
tribution on a ,  where g, cIR'/, a  is unknown and 
A(<5a) = 0 [A is the Lebesgue measure in q dimen
sions and da  is the boundary of a] . Let

«„= U  {*e iR'': ||x -x ,| see,,}.
i= I

Then a n is a consistent estimator of a ,  i.e., 

E„[X(an A a)] —>• 0 as n —► oo.

[E represents expectation and A represents sym
metric difference.]

I f  this estimation procedure for a suitably 
selected e„ is applied to the data in Figure 2(a), 
then the approximate output is shown in Figure 
2(c).

Let S c  [Rv and G = {x u x 2, . . . ,x„} c  S. Now let

dx = inf d(x, y)  Vx
V€ G
y*x

where d(x, y) is the distance between two points x  
and y. Let

b = max d x.
xeG

Then note that if b>  2e„ then the estimated set of 
G will have at least two components. Thus, G will 
be partitioned.

Hence, if the data is to be checked for splitting 
at X 0 o f  Figure 2(a) then note that hn should be 
greater than or equal to £„. The choice of hn will 
be h„ = «£„ where e„= \ / n p, 0 < p < \ / q  and a is a 
constant.

Proof of Theorem 1. Let the clusters at the end of 
the J th  and ( 7 + l)th iterations be P u P 2, . . . , P k 
and Q \,Q 2,--- ,Q i  respectively.

It is known that there are k  clusters in the begin
ning of the (J + l)th iteration. Each iteration treats 
the clusters present at the beginning independently.
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Table 2
Bivariate frequency table of  gray levels for green and infrared band  images

OOOOOC.OOOOC.QOOOO o o o o c

© o o o o o o o o o o o o o o o o o o o o o o o o o o —o o —

J C . O O O O O O O O O O O O O  — c

) — o o iN q o o o o o o o 1 1 '

> o - o o © - . o o o o o o o c c

j ^ O O O O O O O O O O O O O C

3 0  — 0 0 0 0 0 0 0  — 0000 — ooooooc

j o o o o o o —o o o o o o o o o o o o o o o o o o c

S OO OO OOC

3 0 0 0 0 0 0  OOC

,_ ««2 8 R SS ;!;8 !r
,„»=R s?S 8?88!

«s.oo o-o - -o -ooo l-«,N<2;5SSS3S2S:S3:S2t '22" . ._MOoooI
ooo = *Bl!22»N<» J (. .  = 8 S ? 5 S 2 3 S 8 t5 ! s s S S S 5 2 , .« « o o o o o  

«.oo»*:§8fc35a!tiSi8 ! i f t? s s s :8 & 8 sS Ia § ss s fS 8 :» » « Nooooo 

o o o ^ i l S S r t s ^ a r s S S S ^ S g K S ^ s S t ^ s s — o o - o o -  

-o „2U & K ft s?B U !s aH % s§S!^ sR sSH  

on<,r2SftS??s |RlStS£2225ssa2?2^SSs!25S?S^2~«<Wo 

,„ d ~ t2 t J s 5 s s 5 s B 5 !s a s S a f tS s "^ s s : s s !? ^ r8 ? i ! ! : 2 K ~ „  

. - . D; s » s ^ s 3 s ^ i i i S i § i l i i § l i l s § H S s s = s = s R ^ ^  

^ • . s a s s s j t S S S S l i i l i i l l l l i f l S R S S a S S s a ^ s B a s s s -  

- , - = « * 2 = 5 = g S S t S l l l I l i i s i S l l R 5 S 1 5 S 5 2 « c a a 2 5 8 „ ,

^ s a « 2 : ^ s « l i l i i l § i S = s 5 2 «  83SS2C2,» 

s2 „2 f t5 R S 5 t2 !“ 8SftS853l§55!S8S = n = : : 2 r , 2 . B-oo«oo

S^” s8iSSf!sSSSSSSS?i = » <, o « _ _ o o o c _ o o o o - o o 0 0 „ Q„

- « n N » o o o

- o o n r g f ^ o  — o o c

•J — * N — ~ O o  O C

900000000000000000000.........................................................-............ — _.. ^ Z .„ ^ ,Z .Z .7. ” 3 __~3_ WWWODD o o q J o u o

—  °^KSRSfc8wSsSw 5RSn$}$;?7S!S;5 ;?SS$8£KBSBS«Rg; £3 5 513
*" p“»q If ai\«t iijj  V  - ................ - - -



No part o f  one cluster becomes a part o f  another 
cluster when the iteration ends, i.e., T ^ c P ^ ,  
T2C P j j x ^ j i  and 7 l U T 2 c Q /, is not possible 
V/',, j 2 and y3. At most some clusters among 
P b P 2, . . . ,  Pk may be split and merged among 
themselves as the iteration progresses. Thus 
k<:/. □

Proof of Theorem 2. Observe that in the (7+  l)th  
iteration no element of P r can change its member
ship from  Pr to Pj for j  + r, r = 1 ,2 , . . . ,k .  At most 
Pr can be subdivided for r=  1 ,2 , . . . ,k.

Let P r be split into in,, subclusters, m r^ \ .  I f  
m r = l  then there is no split in P r. That means, for 
Pr, let Qr,,Q r2, . . . , Q lm be such that

mr

U Q r= P r, r = [ , 2 , . . . , k ,
j  = i

k
m r ^  1 and £  m r = l .

r - I

But we know that £* =1 m r = k .  If 3 a ,  a e  
{1,2, such that m a > 1 then m r> k ,
which is a contradiction. So

m r^ \  W  = 1 ,2 , . . . ,At.

But m r^  1 \ /r=  \ , 2 , ... , k  (as stated earlier). 
Therefore m,.= 1, r = \ , 2 , . . . , k .  Hence there is 
no split in P ’s. Thus

{ p 1, Jp2, . . . , p , }  = {Q1, e 2, . . . , e a ,

i.e., P r is equal to one of  Q x, Q2, ■■■, Qk Vr =
1,2, . . . , k .  So the clusters at the end of the J th  
iteration and the ( / +  l)th  iteration are the 
same. □
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