
On a decomposition of 2-D circular 
convolution

G. Lohar, D.P. Mukherjee and D. Dutta Majumder
National Nodal Centre fo r  Knowledge Based Computing, Electronics and Communication Sciences Unit, Indian Statistical Institute, 
203 B. T. Road, Calcutta 700 035, India

Received 8 January 1992 
Revised 10 March 1992

Abstract

Lohar, G., D.P. Mukherjee and D. D utta Majumder, On a decomposition of 2-D circular convolution, Pattern Recognition 
Letters 13 (1992) 701- 706.

A square matrix can be expressed in terms of a set o f circulant matrices. This representation is applied to the 2-D circular 
convolution of two square matrices. The circulant representation of the resulting matrix has the property that each circulant 
is the product of the corresponding circulants o f the two matrices, the product being a 1-D circular convolution. This 
decomposition offers insight into the process of 2-D convolution. This has applications in image processing.
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1. Introduction

The circulant decomposition of a square matrix 
and its application to image representation has 
been reported earlier in Wacker and Lohar (1986). 
However, no efficient algorithm for its calculation 
or subsequent theoretical development based on 
this decomposition has been reported. An in­
teresting result which finds application in a decom­
position of 2-D circular convolution is the subject 
of this paper.

The circulant decomposition of a square matrix 
requires the application of a 1-D Fourier transform 
only once to the diagonally scanned elements of
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the matrix. In contrast, the 2-D Fourier transform 
is calculated by applying a 1-D Fourier transform 
to the columns, followed by a 1-D Fourier trans­
form on the resulting rows. It is thus easier to 
physically interpret the circulant decomposition. 
The significance of the Fourier transform in the 
context of image processing lies in the fact that 
convolution in the spatial domain transforms to 
multiplication in the frequency domain. It is 
harder to interpret this process in two dimensions 
than in one dimension both from an analysis and 
synthesis point of view. This problem is addressed 
in this paper.

An efficient algorithm for the calculation of the 
circulant representation is presented in Section 2. 
This is followed by a discussion on its relationship 
to the Fourier transform in Section 3. Section 4 
presents the main result of this paper. Examples il­
lustrating the advantages of the circulant represen­



tation are presented in Section 5 followed by con­
clusions in Section 6.

2. Circulant decomposition and its properties

Consider a p x p  matrix [H], [For ease of nota­
tion, matrix rows and columns are numbered from 
0 to p  — 1.] A  p x p  circulant matrix is defined by 
the elements of its 0th column. The /th column is 
generated by / cyclic shifts of the 0th column, 
where the direction of shift is along increasing row 
number. Let [T] represent the p x p  Discrete 
Fourier Transform (DFT) matrix whose kl th ele­
ment is defined by cokl where a> = exp(-j27i/p), 
j 2= - l .  Let Tj represent the /th column of [T], 
The p x p  matrix [H ] can be decomposed into cir­
culant matrices as follows

I H] = P£  diag{T*}[//c(/)].
i =  0

(1)

[//c(/)] is a circulant matrix, diag{T;*} is a diago­
nal matrix whose diagonal elements are the ele­
ments of T* (* denotes complex conjugate).

For a given [H], an algorithm to determine the 
circulant matrices is given below. It is noted that it 
is sufficient to determine the 0th columns of each 
circulant matrix. For ease of understanding, a 
proof is presented for the case p  = 3. The pro­
cedure is easily generalised for arbitrary p.  Con­
sider the case p  = 3. Let

*00 *01 *02
[H] = h 0 *11 *12 >
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From equation (1), matching element by ele­
ment, it follows that

*00 + *1 1  + *2 2  = 3*0(0) + /i0(l)(l +o>* + co*2)

+  * o ( 2 ) ( l  +  w *2 +  o j*4)

= 3A0(0).

Similarly,

*10 + *21 +*02 = 3*1 (0), 

*20 + *01 + *12 = 3A2(0). 

Hence,

1 *0 0 *02 *01

*11 *10 *12

h->2 *21 *2 0

[1 1 1]

=  t* o (0 )  * i  (0 )  M 0 ) ]

= [0th column of [//c(0)]]1

(t denotes transpose).

[//c(0)] is thus determined since it is specified by 
its 0th column.

To determine [//c(l)], multiply both sides of 
equation (1) by d i a g ^ } .  It is now noted that 
[//c(l)] is the 0th circulant matrix obtained by 
decomposing d iag jT ,}[//] since diag{7’, } d\&g{T*} 
is the identity matrix. Using the above procedure, 
it is readily determined that

1
[1 a> a>

'oo

*22

*0 2

*1 0

*21

*01

*12

*2 0

= [*„(!) *l(D  *2(1)]-

[//c(l)] is thus determined.
To determine [//c(2)], multiply both sides of 

equation (1) by d iag { r2} and use the above p ro­
cedure. It follows that
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*00
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*22

*02
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‘01

12
21 * 20.

= [*0(2) A,( 2) *2(2)].

[ //c(2)] is thus determined.
Collecting the above results together,

1
[T\

*00 *02 *
*11 *10 *
*22 *21 h
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The elements of the /th row on the right are the



elements of the 0th column of the /th  circulant 
matrix.

This procedure is easily generalized for arbitrary 
p.  It is noted that the procedure essentially involves 
diagonally scanning the elements of [H] in a par­
ticular order, inserting the diagonally scanned 
elements into columns, scaling the elements and 
then applying DFT to the columns of the rearrang­
ed matrix.

For a p x p  matrix [H],  let [ //s] represent the 
result of diagonally scanning and rearranging [H ]. 
Let [ //rc] represent the matrix whose rows con­
tain elements of the 0th columns of the circulant 
matrices corresponding to  IH]. Then,

[H, \= p [ T \ ~ l [HK\.

If [H\ is real, then from a property o f the DFT 
applied to  real sequences it readily follows that for 
/=  1,2 ,. . . , \ p -  1 (p even) or /=  1 ,2 ,..., %(p-  1) (p  
odd), rows i and p - i  of [i7rcJ are complex con­
jugates o f each other. Rows 0 and \ p  (p even) are 
real.

3. Relation of circulants to Fourier coefficients

The Fourier transform  of [H] is defined as 
[7 ] [ / /] [ r ]  = [ / / f] (Pratt (1978)). Each circulant 
matrix [ //c(/)] is composed of a set of p  Fourier 
coefficients of [H] in a select order, as will be 
shown below. The p  Fourier coefficients are from 
both low and high frequency regions. The circulant 
matrices are indexed by a single number /. In other 
words, a single index / is used to label p  Fourier 
coefficients. Hence, two-dimensional regions in 
the Fourier domain are represented by p-dimen- 
sional column vectors, the 0th columns of the cir­
culant matrices.

Let [/] = [/o /] ••• Ip- ]] denote the p x p  identi­
ty matrix where I, is the /th  column of [/]. Con­
sider the 2-D circular convolution of [/] and 
diag{7’,*}[//c(/)]. It is now shown that for / = 0, 
the result is p [ / / c(0)] and for /=£ 0, the result is a 
zero matrix. The Fourier transform of [I] is 
[7’][^][7’] = [T]2. As can be checked,

The Fourier transform  of diag{7’,;|t}[//c(/)] is

[r]d iag{ 7}*} [//,(/)][?"].

This can be expressed as

[T] diag {Ti* } [7] ~:1 [T] [//c(/)] [T ] ~' [T][T] .

An important property of DFT and circulant 
matrices is that a DFT matrix diagonalizes a cir­
culant matrix (Hunt (1971)). Specifically, [ r ]  
[//c(/)][r] 1 is a diagonal matrix whose y'th diago­
nal element, say is the y'th Fourier coeffi­
cient of the DFT of the 0th column of [Hc(i)]. The 
term [T][//<.(/)] [T]~1 [T]2 can be expressed as

p [ H 0{ i ) I 0 H p _ \ ( i ) I p _ ] H p - 2 { i ) I p - 2  ■ "

As can be checked,

*p -

[7’]diag{7'*}[7']

n*p-i+ 1

ip-

[T\2=p[I0 Ip~y I h i

which is obtained by cyclic shifts of the rows (con­
sidered as units) of [I] i times, where the direction 
of shift is along increasing row number (rows 
cyclicly shifted downwards) (the indices of I  are to 
be interpreted as being periodic with period p). 
This implies that the Fourier transform of diag {7,*} 
[//c(/)] has a structure similar to [7’][//c(/)][7’]_1 
[T\2 except for a change only in the indices of the 
columns of [/]. The change is expressed by / cyclic 
shifts towards the right of only the Ij terms. The 
convolution of [/] and diag{7’,*}[//c(/)] is calcula­
ted by multiplying the corresponding Fourier coef­
ficients term by term and using the inverse Fourier 
transform. It is now clear that for /=£ 0, the posi­
tions of the non-zero Fourier coefficients of [I] 
and diag{7’,*}[//c(/)] do not match. Hence, multi­
plication of the Fourier coefficients term by term 
results in a zero matrix. For / = 0 on the other 
hand, the result of convolving [/] and diag^o*}
[Hcm = [ H cm  is P [Hcm .

In equation (1), consider the product diag{7}}



[H]. Using the fact that diag {7}} diag {7}*} = [/], 
it is clear that [//c(y')] is the 0th circulant matrix 
obtained by the circulant decomposition of 
diag {7^}[//]. Therefore, in general, [//<.(/)] is 1 / p  
times the result of convolving [/] and diag{Tt}[//].

The specific Fourier coefficients of [H ] which 
compose [//c(/)] are now considered. Since [Hc(i)] 
is l / p  times the convolution of [/] and diagfF,} 
[H], the Fourier coefficients of diag{T,}[//] 
which correspond to the positions of the non-zero 
elements of [T]2, the Fourier transform of [/], 
compose [//c(/)]. The Fourier transform of 
diag{Ti}[H) is

[r]diag{7}}[//][7’] = [7’]diag{7’ } [7 T 1[//f].

As can be checked, [7 ]diag{T,}[ T \ is obtained 
by cyclic shifts of the rows (considered as units) of 
[/] i times, where the direction of shift is along 
decreasing row number (rows cyclicly shifted up­
wards). The Fourier coefficients corresponding to 
the positions of the non-zero elements of [T]2 are 
thus

Hf(i ,0),H f(i-  1,1),//(■(/ —2,2), \ , p -  1)

(the Fourier indices are to be interpreted as being 
periodic with period p).  It is therefore evident that 
all Fourier coefficients H ({j ,k)  such that j  + k  = i 
(mod/?) go into the composition of [//c(/)]. It is 
noted that these Fourier coefficients are from the 
low band and high pass range.

Figure 1.

4. Decomposition of 2-D circular convolution

Consider the 2-D circular convolution of the 
p x p  matrices [H] and [G] to yield the p  x p  matrix 
[F]. As in equation (1),

[H] = Y  d ia g { ^ } [ / /c(/)], (2)
; = o

[G] = P̂ 1 diag{7'(*}[Gc(/)], (3)
/=o

[F] = Y  diag{7;*}[/•;.(/)]. (4)
1 =  0

It is asserted that for i = 0 , \ , . . . , p —\,

[Fc(/)] = [Gc(/)] [//c(/)] = [HMlOm-  (5)

Equation (5) implies that the 0th column o f [ / ’c(/)] 
is the 1-D circular convolution of the 0th columns 
of [Gc(/)] and [Hc(i)].

A  short heuristic proof based on the results of 
Section 3 is now presented. In the Fourier domain, 
every Fourier coefficient of [F] is the product of 
the corresponding Fourier coefficients o f [G] and 
[H]. As shown in the last section, [.Fc(/)] is com­
posed of p  Fourier coefficients of [F], the Fourier 
coefficients being the DFT of the 0th column of 
[Fc(/)]. But the DFT coefficients of the 0th col­
umn of [Fc(/)1 are the product of the correspond­
ing DFT coefficients of the 0th columns o f [Gc(/)] 
and [//<.(/)]. Hence, the 0th column of [Fc(/)] is the 
1-D circular convolution of the 0th columns of 
[Gc(/)] and [//c(/)]. This can be expressed as

Figure 2.



Figure 3. Figure 4.

0th column of [Fc(/)]

= [Gc(/)] xOth column of [//c(/)]

= [//c(/)] xOth column of [Gc(z')].

From this fact, equation (5) follows.
In terms of the matrices [Frc], [Grc] and [ //rc] , it 

follows that each row of [Frc] is the 1-D circular 
convolution of the corresponding rows of [Grc] 
and [//„;]. If the matrices [G] and [H] are real, 
then due to the complex conjugate property among 
the circulants, approximately half of the total 
number of 1-D circular convolutions need not be 
calculated.

5. Example

An example illustrating the data compression 
capability of the circulant representation is pres­
ented in Figures 1 and 2. Figure 1 represents a 
128 X 128 image and Figure 2 represents the recon­
structed image using the first 25 circulants (and 
their appropriate complex conjugates). To recon­
struct the original image exactly requires 65 cir­
culants (and their appropriate complex conjugates). 
This representation is sensitive to gray level con­
stancy along the diagonals which show up early 
during reconstruction.

Figure 3 represents a 128 X 128 image and Figure 
4 is the result of applying an edge detection filter 
to the image of Figure 3. Figure 5 is the result of 
filtering with the first 31 one-dimensional convolu­

tions (and their appropriate complex conjuagtes). 
In this context, it should be noted that in the 
reconstruction of the filtered image, the appropriate 
complex conjugates of the convolutions need not 
be calculated.

The circulant representation has a compact 
notation and is easy to use in a programming en­
vironment. This is to be contrasted with the two- 
dimensional Fourier transform. From the 2-D cir­
cular convolution decomposition, it follows that 
filtering of the original image is equivalent to the 
corresponding filtering of each circulant. This fact 
can be used in the analysis of existing filtering 
techniques or in the design of filters using one­
dimensional techniques. Due to the complex con­
jugate property among the circulants and the data 
compression capability, the circulant representa­
tion has computational advantages.

■ > . ,
■, i r .  I

: ’ v

Figure 5.



6. Conclusions

An algorithm for the circulant representation of 
a square matrix has been presented. This represen­
tation when applied to a 2-D circular convolution 
leads to a decomposition in terms o f 1-D circular 
convolutions. This decomposition offers a new in­
sight in and interpretation of the process of 2-D 
convolution. It has been noted that this decom­
position in the context of image processing ap­
plications can be used to analyse or synthesise 
filtering techniques more simply than conventional 
two-dimensional approaches. There is also a com­
putational advantage in practical applications. It is

hoped that this technique being of general ap ­
plicability will find use in other contexts.
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