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INTRODUCTION

There is a long tradition of iii^P ||P $n  
between the statisticians of the Indiaa Statis­
tical Institute and geologists in and'outside 
the Institute. I have myself been 
several research projects of this Mad* In 
one such project (Ghosh et ah, 1981) we 
applied classical and stratigraphic ranking of 
the Gondwana units in an area in Andhra 
Pradesh. In another (Ghosh et ah, 1987) 
we set up a stochastic model for occur­
rence o f earthquakes of different magni­
tudes as well as a method for prediction, 
applying these to data on earthquakes 
in the north east part of India and Japan. 
However the problem that I have found 
most fascinating is the study of changes in 
the distribution of size of sandgrains, as 
measured by changes in weight frequency, 
brought about by flowing water, in nature 
or experimental flumes. Our main findings 
will be presented briefly in this paper. 
Some of the work to be reviewed has not 
been published before.

The paper is organised as follows. 
We first present graphically some of the

relevant data pertaining to samples collected 
from the bed of the river Usri in Bihar and 
experiments on suspension and deposition 
in flumes, carried out in Uppsala and 
Calcutta (Ghosh et ah, 1981, 1986). The 
following questions will then be posed and 
partially answered. Why does the grain 
size distribution approach normality as one 
moves away from the source of the river 
Usri ( Fig. 1 ) ? How does one theoreti­
cally calculate the grain size distribution of 
suspension at a given height in a flow given 
only the size distribution in the bed and the 
flow parameters and how does one explain 
the unimodality, symmetry, or approximate 
normality in the suspension distribution, 
even though these were not present in the 
bed ( Figs. 2, 3, 4 ) ? Finally, how does one 
model deposition, given the distribution of 
sand released in suspension and the para­
meters of the flow as it decelerates ? In 
course of answering these questions we 
develop a sorting hypothesis for normality 
which is based on what we call sorting 
theorems for normality; this is quite different 
from Kolmogorov’s explanation based on 
the Central Limit Theorem. We also provide
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Fig. 1. Lognormality of the Usri data.

a new probabilistic interpretation of the 
Rouse equation as corresponding to the 
steady state of a ( Markovian ) diffusion 
process with a reflecting lower boundary 
and a repelling upper boundary. This 
interpretation, in turn, leads to replacement 
o f the reflecting boundary condition by a 
new partly discrete boundary condition and 
hence to alternatives to the Rouse equation 
which exhibit a “damping” effect. There is 
some experimental evidence to indicate that 
unless one introduces a “damping” in the 
Rouse equation, it will provide poor fit to 
data when the flow velocity is not high.

THE DATA

As indicated earlier, the data will be 
presented graphically. The size is shown 
in the <f>-scale. The symbol <f> will be also 
used to indicate the magnitude of size in 
the <£-scale. Thus the weight frequency for 
a particular size will be shown as 
Sometimes the weight frequency is actually 
a relative weight frequency, adjusted to 
make the total over all <j> equals one.

In Fig. 1, which relates to samples from 
the bed of Usri, weight frequency is plotted 
on a normal probability scale so that a
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Fig. 2-4. Approximate normality in suspension 
concentration as contrasted to the size 
distribution in the bed materials.

normal distribution will be indicated if the 
data falls on a line. The approach to 
linearity and hence to normality is clear 
from  Fig. 1.

Figs. 2, 3 and 4 relate to data and 
predicted values for experiments in suspen­
sion, reported in Ghosh et ah, 1981 and 
Sengupta, 1975, 1979.

The rather unusual bed in Fig. 4 was 
chosen to check that features in the bed if 
they are sufficiently pronounced will be 
reflected in the suspension distribution. This 
was an indirect confirmation of the suspen-
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Fig 5-6. Experimental data on deposition.
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sion models in which both the flow and the 
bed determine the suspension distribution.

Figs. 5 and 6 exhibit data on deposition 
and corresponding values calculated from 
the model (Ghosh et al., 1986).

THE SORTING HYPOTHESIS 
FOR NORMALITY

Kolmogorov’s original explanation in 
1941 for normality postulated that changes 
in size occur owing to the breaking up of 
grains, and successive break-ups are inde­
pendent so that one may appeal to the 
Central Limit Theorem. In a somewhat 
simplified form the argument runs as 
follows. Consider a grain of Size XD units, 
in some unit of length. After one unit of 
time, owing to say crushing, the grain 
breaks into smaller particles. A typical 
first generation particle will have size X0.Xj, 
where 0 < X j<  1 represents the relative 
decrease in size. After n units of time, a 
typical nth generation particle will have 
size Xq.Xj, . . . ., X„, 0 < X X< 1 . So in the 
<£-scale this becomes log X0+log Xx+ .  . .+  
log X„, which would be approximately 
normally distributed by the Central Limit 
Theorem for sums of independent random 
variables. The weak link in this chain of 
argument, at least as applied to the Usri 
data is the hypothesis that change in size 
distribution is due to breaking up of grains. 
In the case of the Usri data sorting caused 
by transportation is the main source of 
change in distribution of size. But other 
models that have been proposed using 
effects of breakage, erosipn, and transporta­
tion make so many special assumptions 
that they seem to assume what is to be 
proved or explained and lack the generality

o f  K o l m o g o r o v ’s  a r g u m e n t .  W e  s h o w  b e lo w  

h o w  a  s o r t i n g  h y p o t h e s i s  a lo n e  c a n  l e a d  t o  a  

v e r y  g e n e r a l  a r g u m e n t  f o r  n o r m a l it y .

T h e  a r g u m e n t  r e s t s  n o t  o n  t h e  C e n t r a l  

L im it  T h e o r e m  b u t  o n  a n o t h e r  f u n d a m e n t a l  

t h e o r e m  in  s t a t i s t i c s  w h ic h  s a y s  t h a t  u n d e r  

c e r t a in  v e r y  g e n e r a l  a s s u m p t io n s  a  c o n d i ­

t io n a l  o r  s o  c a l l e d  p o s t e r i o r  d i s t r ib u t io n  is  

a p p r o x im a t e ly  n o r m a l .  T o  f ix  id e a s ,  c o n s id e r  

a  s im p le  e x a m p le  f ir s t .  L e t  O  b e  a  r a n d o m  

v a r ia b le  w it h  p r o b a b i l i t y  d e n s i t y  f u n c t i o n  

( p .d . f . )  77 ( O )  a n d  s u p p o s e  g i v e n  <f>, X l5  . . . .,  

X n a r e  ( c o n d i t i o n a l l y )  in d e p e n d e n t  a n d  

n o r m a l  w it h  m e a n  a n d  v a r ia n c e  1. O n e  

m a y  t h in k  o f  X x, . . . . ,  X n a s  a  s a m p le  f r o m  

a  n o r m a l  p o p u la t i o n  w i t h  <f> a n d  v a r ia n c e  1  

a n d  ( in  t h e  m a n n e r  o f  a  B a y e s ia n )  t h e  p o p u ­

l a t io n  i t s e l f  a s  a  s a m p le  f r o m  a  c o l l e c t i o n  o f  

h y p o t h e t i c a l  p o p u la t i o n s  o v e r  w h ic h  O  h a s  

p .d . f .  i t  (<f>). T h e n  i f  w is  a  s m o o t h  f u n c t i o n  

a n d  n  is  la r g e  t h e  c o n d i t i o n a l  d e n s i t y  n ^ / X x ,  

. . . ,  X „ )  o f  ^  g iv e n  X i ,  . . . ,  X n i s  a p p r o x i ­

m a t e ly  n o r m a l  w it h  m e a n  e q u a l  t o  X = ( X i +  

. . . + X n ) / n  a n d  v a r ia n c e  t e n d in g  t o  z e r o .

n(<f>) 77 f 56 ( X , )  
i = l

H e r e ,  ir(^> /X l t X „ ) = ------------------------------------- ( 1 )
n

7T(^>) 77 ( X i )  d (j> 
i = l

V  277

In the special case where 7t{<j>) itself is 
normal with mean n  and variance t2, easy 
direct calculation shows the above ratio is 
a normal density with mean — A)X->-X
and variance At2, where A=(ni2+ l) -1-»-ccO 
as n ->oc. In a non-mathematical way the 
reason why such a result, holds may be



explained as follows. Given Xx, X„, 
the conditional distribution of 4> is “sorted 
out” to lie in a small neighbourhood of X  
and there the logarithm of the conditional 
density can be well approximated by a 
quadratic. But this is the same as saying 
that the conditional density has a normal 
approximation with mean X.

We can now state the following funda­
mental theorem in statistics. Let ^  be a 
random variable with smooth density w(^) 
and given X v  ..., Xn are independent 
and identically distributed with quite a 
arbitrary but smooth density f<j> (x ). Then 
the conditional density ..., Xn) of 4>
given Xx, ..., Xn is approximately normal 
with mean 4  and variance tending to zero. 
Here ir($/Xx, ..., Xn) is defined as above 
and 4, is a function o fX x, ..., Xn satisfying 
the equation

i.e., ^ is the so called maximum likelihood 
estimate of <j>. The reason why this theorem 
holds is again due to the kind of “sorting 
out” of the distribution of <j> given Xx, ..., 
Xn, explained in the previous paragraph. 
A recent reference where a precise state­
ment as well as refinements are provided is 
in Ghosh et at. (1982).

We now provide an explanation along 
these lines for the normality observed in 
Fig. 1. Suppose we are making observations 
at a distance d from the source of Usri. 
Assume that all the sand being observed 
here have been transported from the source 
in n units of time or less. For a grain of 
size <f> the displacements are random vari­
ables Xlf ..., Xn. For fixed <f>, S=X1+ . . .+

Xnis approximately normal, under reasonable 
assumptions, by the Central Limit Theorem . 
The O-distribution at the source may be 
taken to be Then the ^-distribution a t
distance d is just the conditional distribution 
of <f> given S=d. This conditional d istri­
bution is not the same as the conditional 
distribution given Xx, ..., Xn, but an app li­
cation of the arguments in Ghosh etal. (1982) 
will show that this conditional distribution 
also exhibits a sorting effect and, as a conse­
quence of that, its logarithm can be app ro ­
ximated by a quadratic. This amounts to  
a normal approximation. From a non- 
mathematical point of view, sorting takes 
place because given the distance d one 
expects only certain grain-sizes to occur in 
abundance. The conditional distribution 
must, then, be concentrated there.

A few technical remarks are in order. 
If one assumes the Xi’s to have identical 
distribution, then the variance of the 
conditional distribution will tend to decrease 
with d and so the sorting effect will increase. 
Data does not support this. It is partly for 
this reason that identical distribution was 
not assumed above. A better modelling 
will require the distribution to change with 
the distance travelled. One would then 
need to introduce a Markov process. 
Possibly the sorting effect can be established 
in this framework.

The main advantage of our explanation 
over Kolmogorov’s has been indicated 
earlier. Crushing is not the reason fo r 
change in size distribution. The main 
disadvantage of our method as compared 
with Kolmogorov’s is that the logarithmic 
scale for size does not appear so naturally. 
In our argument, any scale, say will do



provide the absolute value of derivative of 
4> with respect to <j> is neither too low nor 
too large.

Finally it must be pointed out that a 
major drawback of this explanation as well 
as those of Kolmogorov and others is that 
when the explanation has been given and 
the mystery cleared up we do not seem to 
have learnt anything of fundamental import­
ance for the sorting process itself. The 
modelling discussed in the next two sections 
is more useful from that point of view.

MODELLING SUSPENSION DATA AND THE 
SORTING EFFECT

In the following model the effect of the 
bed-layer is ignored to some extent, the effect 
of this is not serious. For details see Ghosh 
et al. (1981). Denote the distribution or 
rather the density of bed by « # ) . Let 
fy (y)dy be the probability that a grain of 
size ^ will eventually end up at (y -Jd y , 
y + |d y ). (To be more precise fy>(y) may 
be taken to be the limit (as t-»-oo) of f f  
(t, y), the latter on multiplication by dy 
giving the probability of ending up in (y -  J, 
y +  Jdy) after time t). These notations have 
been made consistent with those in the 
previous section so that the similarities 
become clear. The height ‘y’ now plays to 
some extent the role played earlier by the 
distance ‘d \

Once again the formula for size distri­
bution at height y is the same as that of 
the Bayes formula (1) ;

w(0/y)=«-(0) fy(y)/(Total of numerator
over <f>).

For four choices of fy(y)—two o f  which 
were new—the above is shown in Figs.

2 , 3 , 4 .  I f  fy>(y) a g a in  s h o w s  s t r o n g  “ l o c a ­

l i s a t i o n ”  o r  s o r t i n g  e f f e c t s ,  o n e  w o u ld  g e t  

a p p r o x i m a t e  n o r m a l i t y  a r o u n d  th e  m o d e  

o f  I f  f<j>(y )  is  d e t e r m in e d  b y  th e

R o u s e  e q u a t i o n ,  t h e  d e t a i l s  a r c  w o r k e d  o u t  

f o r  t w o  b e d s  ( p a r t ly  t h e o r e t i c a l l y ,  p a r t ly  

n u m e r ic a l ly )  in  G h o s h  a n d  M a z u m d e r  

(1981).

T h e  r e s t  o f  t h is  s e c t i o n  w i l l  b e  d e v o t e d  

t o  a  s t o c h a s t i c  in t e r p r e t a t io n  o f  th e  R o u s e  

e q u a t i o n  f ir s t  in t r o d u c e d  in  G h o s h  a n d  

M a z u m d e r  (1981) m a y  b e  w r i t t e n  a s

e( y ) ^ M . + v̂ ) f, (y) = G

w h e r e  v  ( <j>)  is  t h e  s e t t l in g  v e l o c i t y  a n d  E (y)  

i s  t h e  t u r b u le n c e  d i f f u s io n  c o e f f ic ie n t  a n d  

i s  p r o p o r t i o n a l  t o  U mo)C, t h e  m a x im u m  

v e l o c i t y ,  m a x im u m  b e i n g  t a k e n  o v e r  a  

v e r t ic a l  d i r e c t io n .  E v e n  t h o u g h  th e  f lo w  a s  

w e l l  a s  t h e  d i s p la c e m e n t  is  t h r e e  d im e n s io n a l ,  

w e  a r e  c o n s id e r in g  o n l y  t h e  v e r t ic a l  d ir e c ­

t io n .  I t  c a n  b e  s h o w n  t h a t  in  th e  p r e s e n t  

c o n t e x t  o f  f in d in g  t h e  s t a t io n a r y  d i s t r ib u t io n ,  

t h i s  s u f f ic e s  p r o v id e d  w a l l  e f f e c t s  a r e  n e g l i ­

g ib l e .

As with the v ’s, so with the f</>’s—it is 
common to use the symbol c in this context, 
where c stands for concentration. Note 
that f  and c agree upto a constant of 
normalisation. So in the following fy(t, y) 
and c^(t, y) have been identified for con­
venience. Since <f> will be kept fixed, depen- 
dance on <f> is suppressed in the notation.

The Rouse equation is the steady state 
version of the turbulence diffusion equation

- s r  “  - £ - < - >
with a reflecting boundary condition at the 
bed height which we regard as the lower



boundary of the process. The diffusion 
equation can be rewritten as

8c _  1 82 , x S .
8t 2 Sy2 ( ) 8y * ^

where a =  a(y) =  2s(y), b =  b (y) = e '(y)—v 
and c', e' etc. indicate derivatives with 
respect to y.

This is the forward equation of a 
Markov process and has the following 
interpretation : If it is at y at time t, then 
locally the particle has a small displacement 
in time dt which is normal with mean b(y)dt 
and variance a(y)dt. I t  can be shown that 
the upper boundary is repelling, so the 
particle can never get there. The behaviour 
a t the lower boundary has to be specified 
to  specify the stochastic diffusion process 
completely. Suppose we have reflection at 
the lower boundary. By the general theory 
o f Markov processes and compactness of 
state space etc. there is a steady state or 
stationary distribution for the particle 
(over y). This satisfies the Rouse equation.

DEPOSITIONAL DATA AND AN IMPROVED 
MODEL FOR SUSPENSION

In course of modelling depositional 
data, vide Figs. 5, 6, we discovered that 
for low to moderate values of Uma3t the 
Rouse equation is not satisfactory. We 
shall only indicate here how it may be 
improved. Experimental and mathematical 
details as well as other aspects of interest 
to geologists and probabilists will be 
found in Bhattacharya and Ghosh ; Ghosh 
et ah (1986).

After studying the data for some time 
it became clear that more grains are left 
in suspension than would be expected from

the Rouse equation which leads to  an  
exponential decay of mass as one moves u p  
vertically. To Introduce such a dam ping  
effect, we began by keeping the same d iffu ­
sion equation but changing the boundary  
condition at the lower boundary as follow s. 
We require

sc' +  (1 — a) c = 0 ,  y=K s 
where ( 1 —a) is the probability that a particle  
which comes in contact with the bed will 
be lifted and Ks is the roughness o f th e  
bed.

If there were a steady state under these 
conditions, the corresponding c would satisfy

— =  O, and so 
ot

—̂ - ( ia c ) - b c  =K ...(2)

i.e., e J l i .+  v c^K  
dy

for a positive K, which can be found by 
comparing with the boundary condition. A  
reflecting boundary would have given K = 0 .  
The previous equation may be written as

The introduction of the new boundary 
condition damps the relative decrease in c 
( namely the left hand side (2a) ) by an  
amount equal to K/c. This formula gives 
a good fit but unfortunately Markov process 
theory tells us, there is no steady state—  
ultimately all particles will settle at the  
bottom because of the boundary condition. 
In a way this is known or felt to be tru e  
even by people who do not know M arkov 
process theory but handle diffusions.

What does the solution mean then ? 
As a sort of answer, suppose we consider



the following partly discrete boundary 
condition, which can only be handled by 
people who know about Markov processes. 
When the particle comes to the lower boun­
dary, it Is partly reflected and partly takes 
a jump back into the process (in this way 
damping the effect of pure reflection). Let 
the jump have a density s(y). Then again 
Markov process theory tells us that a steady 
state solution exists but it can no longer 
be calculated directly from the forward 
equation. Non-standard calculations (Bha- 
ttacharyya and Ghosh) finally lead to an 
equation for the steady state

- ^ ( J a c )  - b c  =

where the right hand side introduces a 
damping factor whose effect diminishes as 
you move up i.e. increases y.

The earlier solution (Ghosh et al., 1981) 
providing good fit to data must be thought 
of as an approximation to this with a single 
K on the RHS for all y. The physical mea­
ning of the jump condition is that when a 
particle is lifted up from the bed by a strong 
vortex then the vortex takes it up quite a bit 
from the bed. Using this boundary condition 
one can also study the process numerically 
as it evolves over time.

The only question that remains to be 
answered is why deposited grains reflect the 
distribution put in suspension. The answer 
is that deposition takes place when the 
velocity diminishes substantially and this 
prevents the sorting mechanism to operate. 
Apparently our experimental and theo­
retical findings about deposition is not in 
uniformity with the prevailing view among 
geologists that the coarse grains are 
deposited first. No such sorting was found 
by us.
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	e(y)^M.+v^) f,(y) =G

	-sr “ -£-<->

	—^-(iac)-bc =K...(2)



