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Abstract

Let F(xi,...,x:) and G(xy,...,x;) = Fy,(x1)... Fy (x;), where Fx.(x;), 1<i<k, are the one-dimensional marginal dis-
tributions of F, be two distribution functions on R*. Here, we obtain explicit bounds for the Levy-Prohorov distance
between F and G using some general results due to Yurinskii (1975, Theory Probab. Appl. 20, 1-10).

Keywords: Multidimensional distribution functions; Levy—-Prohorov distance; Cumulants

1. Introduction

It is known that if F and G are two distribution functions on the real line, then

sup  [F(x) -~ Gx)|< sup [P(B) - Q(B)| <2 sup  |F(x) — G(x)|, (1.1)
—XC <X < aC Bes —oC <X LT

where P and Q denote the probability measures corresponding to the distribution functions F* and G, respec-

tively (cf. Prohorov and Rozanov, 1969, pp. 160). Here ¥ is the class of all convex subsets of the real line.

This result does not hold if class  is replaced by class #, the class of all Borel subsets of the real line. See

the counterexample given below due to Babu (1998).

Example 1.1 (Babu, 1998). Let F be the standard normal distribution and G the discrete distribution which

puts mass % at each of the points z,4, 0, z34, and 3 where F(z,) =a for any 0 <a < 1. Then

sup |P(B) — O(B)| = 1
Bes
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as P and Q are mutually singular. But

sup  |F(x) — G(x)|<0.25.

— o0 LX<

So
sup |P(B) — Q(B)|<2  sup  |F(x)— G(x)|

Be# —2c <Y<

does not hold.

The question is whether there is a result analogous to (1.1) in higher dimensions connecting the difference
between two distribution functions and the total variation of the difference between the probability measures
generated by them. The problem arose in estimating the quantity:

/A gdF(xy,...,x¢) — /A gdG(xy,...,x; YdH (X1, .. .ox0)|,
Rk R

where F, G and H denote the distribution functions of (Xi,...,X%), (Xi,...,X;), and (X, ..., X)), respec-
tively.

Remark 1.2. The relation between [, | f(x)—g(x)|dx and sup,. , |[P(B)—Q(B)|, where f and g are densities
of F and G with respect to the Lebesgue measure on R* and 4 is the g-algebra of Borel subsets of R, is
well known. Here F and G could be distribution functions on any finite-dimensional space R*. It is known
that (cf. Strasser, 1985, p. 7)

1
sup [P(5) = Q(B) = 5 [ 1) ~ gt dx

BeA

Result (1.1) quoted at the beginning on the supremum over convex sets on the absolute difference of
probability measures generated by distribution functions on the real line does not hold even for the class of
convex sets in R?. The following example due to Babu (1998) demonstrates the point.

Example 1.3 (Babu, 1998). Let F denote the distribution function corresponding to the uniform measure p
on the unit square. Suppose v denotes the measure that puts mass 0.1 at the upper right vertex of the unit
square, and distributes the rest of the mass 0.9 uniformly on the remaining part of the diagonal. Let G denote
the distribution function corresponding to v. Clearly,

0 if min(x, y)<0,
Fx,y)=< xy if0<x,y<]l,
1 if min(x, y)=1

and
0 if min(x, y) <0,
G(x,y)=1¢ 09min(x,y) if 0 <min(x,y) <1,
1 if min(x, y)=1.
Hence,

A =sup |F(x.y) = Glx, )| = (045)°.

On the other hand, if A denotes the open triangle below the diagonal in the unit square (ie. 4 = {(x,y):
0 <y <x < 1}), then 4 is a convex set, ¥(4)=0 and u(4)=0.5. Consequently, 24 < 0.5 <sup |u(B) — v(B)l,
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where the supremum is taken over all convex sets. Hence the statement that sup{|u(B)—v(B)|: B convex } <24
is false.
However, it should be noted that in both the examples discussed above the two distributions are mutually

singular.
Our aim in this paper is to obtain bounds on the Levy—Prohorov distance between two probability measures
generated by a random vector X=(Xj,...,X;) and another random vector Y=(Y1,...,Y;) where the component

Y; has the same distribution as that of X; for 1<i<k but the components ¥;, 1<i<k are stochastically
independent. We will compute bounds in terms of the moments related to the joint distribution of X. Our
results are based on general results of Yurinskii (1975).

2. Preliminaries
2.1. Cumulants of functions of random vectors

We extend some results on cumulants of functions of random vectors along the same lines as that of Block
and Fang (1988). They are used later to prove the main results.
Consider a random vector (Xi,...,X,), where E|X;|" < o0, i=1,...,7.

Definition 2.1 (Block and Fang, 1988). The rth-order joint cumulant of (Xj,...,X,), denoted by
cum(Xy,...,X,), is defined by

cum(Xi,.... X)) =Y (=P~ (p— 1! (E HX,) (E HX,) 2.1)

JEn Jjery
where summation extends over all partitions (v,...,v,), p=1,2...,r, of (1,...,r).

For real-valued functions f;, i=1,...,r, assume that E| f/;(X;)|" < oo. The proof of the following lemma is
along the same lines as the proof of Lemma 1 of Block and Fang (1988).

Lemma 2.2. If E|f:(X)|" < oo, then

m

ELfs(X0)... fuX)] = [T ELAGDI =D cum(fi(Xe), & € v1)...cum(fi(Xk), k € v,), (2.2)

i=1

where Y extends over all partitions (vy,...,vp), p=1,....,m—1,of {1,...,m}.
In particular, for m =3, we have

3

ELfi(X0) (X) f3(X6)] — ] ELAG)]

i=1

=cum( f1(X1), 2(X2), /3(X3)) + E[f/1(X1)]eum(f3(X3), f2(X2))
+ E[2(X2)]eum( f1(X), /3(X3)) + E[f3(X)]eum( f1(X1), f2(X2)). (2.3)
Note that

cum(f1 (X)), f2(X2)) = Cov(f1(X1), 2(X2)), (2.4)
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and if £} is differentiable, then
S — /(0= / FIOTE) — Ky (X1)] d, 25)

where

1 if x=0,
e(x) =

0 otherwise

and f’(x) is the derivative of f(x).
Therefore,

E[fl(Xl)]_fl(O):/_ SiGeD)le(xn) — Fy (x1)]dx, (2.6)

where Fy,(x;) is the distribution function of X;.
Then, from Fubini’s theorem, we get

E[(/i(X1) = f1(0))...(fX,) = f:(O)] = E [H / k) - 1(_x..\-,]()4>]dx,]
=17~
= /OO /\OO E (Hfi/(xi)[g(xi) _1(730..\'(](/“)] dX,')
- e i=1
=fx /m I A6 | T]en =D T[eFx)
e T =1

i=1 =1k

A T e@)Fy + - 4+ (1Y F(x)| dx ... dx,.

i<j k#j
2.7)

Here x4 represents (Xi...., Xi—1,Xi415--» Xiy_1>Xj+1,---»%-) and F(x{"~#)) is the distribution function
of X i )
Using the above results we can prove the following theorem.

Theorem 2.3. If E|fi(X;)|" < oo and f; is differentiable for i = 1,...,r, then

cum( f1(X, ),...,f,.(X,.)),:/ / Hﬂ(x,-)cum(x,\/l(xl),...,x)(,,(x,.))dxl ...dx,, (2.8)
- % =]

where

1 of X;zx,
X, () =

0 otherwise.

Proof. The proof follows from (2.7) and the fact that
cum( f1(X1)..... fo(X)) = cum((/1(X1) — f1(0)),....(fi(X,) — £:(0))).

Remark 2.4. Using properties (i) and (iv) in Block and Fang (1988), we can extend the above results to
complex-valued functions f;.
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2.2. Yurinskii's bound

We first discuss some general results on Levy—Prohorov distance due to Yurinskii (1975).
Let F,G and H be probability distributions on R and let | .| be some norm in R*. Let L(F, G) be the Levy-

Prohorov distance between F and G corresponding to | .|, that is, the lower bound of all positive numbers ¢
such that for any closed set 4 € R* and for its e-neighbourhood A° in the sense of the norm |.],
pr(d) < p(A) + e po(d) < pr(d) + ¢, (2.9)

where pp denotes the probability measure corresponding to F.
Suppose that G has a density g(x) satisfying the condition

/ lg(x + )y — g(x)|dx<Tlh|, he Rt (2.10)
[R*
for some constant I' > 0. Yurinskii (1975) proved that
L(F,G)<ce (1 + F)/ |x|H(dx) + ¢2 L(F x H,G = H), (2.11)
RA

where ¢; and ¢, are absolute constants and * denotes the convolution operation.
Suppose F and G are distribution functions such that

/Rk |xl' F(dx) < oo, /R x| G(dx) < 00, £= [g] + 1. (2.12)
Further suppose that H is a fixed distribution function on R* with density 4(x) such that

/W lx| A(x)dx < o0 (2.13)
and the characteristic function

n(t) = /w exp(i(t, x))h(x)dx (2.14)

vanishes for {¢[>1. Then it follows from Yurinskii (1975) that there exists an absolute constant C, possibly
depending on the choice of H but not on F or G, such that

; 1/2
I+T ;
LF,G)<C{ —— + ( /| o) =y 0F + 19/ Gtr) - v(t))lzldt> : (2.15)
<1 i=1
where
12
Fwty= | Y [DW®)’ (2.16)
llff=i
and
alelly()
D:( = ——3 2-1
MO = oo, (217
where ¢ and y are the characteristic functions of F and G, respectively, £ = (¢|,....%) and a = («|,..., ;).

Here ||a|| =o; +- - - +o. Throughout the following discussion, the absolute constant may depend on the choice
of H but not on F or G.
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3. Bound in the bivariate case

Suppose F is a bivariate distribution function and it has the density f with marginal distributions Fy and
Fy and densities fy and fy, respectively. Let G(x, y) = Fx(x)Fy(»).
It is easy to see that

y(t,6) = @(11,0)9(0,2)

and hence
oy(t, 1) 0o(t1,0)
o ot (0, 22).
oy(t, ) 39(0,1,)
atz _(p(tho) atz
and

(1, 1) _ d0(t,0) 09(0,1,)
at] 6t2 6tl 6t2

whenever they exist.
In particular, there exists an absolute constant C such that

14T do(t), ¢t do(t,,0 2
LF.G)<C —~—+./ ot 12) — @01, 0)p(0, )2 + | 2212 00(0) g
T <7 on o

) 12
} dt) } 3.1

39(0,1) |

ot

Pt ) d9(11,0) 09(0, 1)

‘ do(t,62)
0t 0t ot ot

atz (P(t],o)

Note that
(p([l’ t2) — (P(t[, O)CP(O, t2) — E[eith-th Y] _ E[eith]E[eilg Y] — COV(eiI]X, eith),

6¢(tl’t2) _ a(P(tl’o)
ot at

op(t,6)
6t2

@(0,1) = E[iXe"* 7] — E[i Xe" ¥ 1E[e""] = Cov(iXe"¥, &),

0p(0,t ) .
‘P(’l’o)%z—) = Cov(e"¥,iYe'7)

and
Po(t,n)  d¢(11,0) 39(0, 1)
ot 0t oh on

under some moment conditions. Let &(¢;,%) be the integrand under the integral sign on the right-hand side
of inequality (2.15). Note that

= Cov(iXe"¥,iyeY)

E(t, 1) = |Cov(e™¥, )2 + |Cov(iXe™X,e" )| + |Cov(e™¥,iYeY)?
+|Cov(iXe"¥,ivet)|2. (32)

It is known that if 4, and h; are real-valued differentiable functions such that Cov(h;(X),h(Y)) exists, then

Cov(hi(X ). h(Y)) = / / 1R ()Hy y(x, y)dxdy,
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where
Hyy(x,y)=P(X >x,Y > y)— P(X >x)P(Y > y)
=PX<x, Y<y)-PX<x)P(Y<y)

(cf. Newman, 1980; Prakasa Rao, 1993). It is easy to see that the above result extends to complex-valued
functions 4;(x) and A,(y) provided that the real and imaginary parts are differentiable. Let

hi(x)=(ix)'e"" and hy(y)=(iy)e™,
where # >0 and 5s>0. Then

B (x) = (ix) it e + r(ix) ™ 'ie",

Ky(y) = (iy)'ine™ + s(iy)~'i

where we interpret the second term on the right-hand side of the above equations as zero whenever r =0 or
s=10. Hence,

lh \

COV(h](X) hz(Y))—/ / 1r|t+|r7\H Y(x y)[ r+s+2x/ystlt2+rslr+v r— lys I+11+s+1x:ys ltls

+i 5 Ty r dx dy. (3.3)

In particular,

oo o
|[Cov(h (X)), h2(Y))] S/ / [x" Yt + X~ Py =Vesl + Xy s + YyStor]|Hy y(x, )| dx dy.

3.4)
Hence, we have
Ji= [Cov(e™™, &7 )| < to] /oo /oo |Hy y(x,y)|dxdy,
Jr=[Cov(iXe"X 7)< /00 /oo {|xt:82} + |2]}|Hx v (x, )| dx dy,
o0 J—oc
J=|Cov(e™ i¥e™!) < /C: /Z{Jytltzl + 1t} Hy y(x, y)|dxdy (3.5)
and
Ji= |Cov(iXe",ive )| < /x /oo [eytita] + |xti| + |yta] + 11| Hx.y(x, y)| dxdy. (3.6)
Let o
Ay y —/ / "y | Hx.y(x, )| dxdy. (3.7)
Then

< [n]4Py,
J2 = |t1t2|AXY + |t2|AX Y»

S 't1t2|AX}y + |t |A)(‘y
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and
Ja<|tldyy + 0|4y + [0ldYy + 4%y
In particular, it follows that

) <{nnl + (o] + nLl)? + (6] + |16)? + (ael + 6l + o]+ 17}

Suppose the norm [¢| is the Euclidean norm |¢| = (#7 + £3)"2. Note that
B+

2ht
and hence T?/2>tt, if [t|<T. Similarly, for T>1,
2 ) 0, I 5.4
(o] + a6l <206 +165)<L2( T +7 SET’

(ln} + Innl)? <37

and
(at)+ 0+l + 1) <4BE+E+2+1)
T4
<4<7+T2+T2+T2>
< 1374
Therefore,
2

&t,b)<CoT* | max 47,
i=0.] '
j=0,i
for T>1, where C; is an absolute constant and hence, for T>1,
2

/ &o,n)de < | GoT* | max 4%, | | €72
ltl<T i=0,1
j=0,1

2

= 6 i
=TI | max Ayy |,
i=0,1
Jj=0.1

where C; is an absolute constant. Relations (3.1), (3.5) and (3.6) show that, for every T >1,

14T ’
L(F,G)<C3{ —— + T’ max 4,
T i=0.1 ’
J=0.1

3

i
max Ay y

=01
j=0.1

[}

(3.8)

(3.9)

(3.10)

(3.11)
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where C; is an absolute constant. It is clear that (3.11) holds trivially for 0 < T < 1. Suppose T is chosen
so that

1+r i
L 7 max Ay y.
T i=0,1

J=0.1

Then it follows that
1/4

1
T= +Hr -
max _ A)J(’y
Jj=0.1
and
1/4
L(F,G)<Cy { (1 + T)* | max 47, , (3.12)

where C4 is an absolute constant.
Hence the following theorem holds.

Theorem 3.1. Suppose F and G are distribution functions on R? with G(x,y)= Fx(x)Fy(y) where Fy and
Fy are the marginal distributions of F. Further suppose that G has a density function satisfying (2.10) and

/ |x|2F(dx) < oo, / |x|>G(dx) < .

RZ RZ

Let L(F,G) be the Levy-Prohorov distance between F' and G. Then,
1/4

L(F,G)<C{ (1+T)y* | max 4, ,
i=0,1
Jj=0.1

where C is an absolute constant.

Remark 3.2. If the random variables X and Y are associated then, it is easy to check that there exists an
absolute constant C such that

1/4

LF,G)<C{ (1+T)* | max 4] (3.13)

where

ay= [ [ Wb axay
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Note that

2C o0
ASO:/ / Hyy(x,y)dxdy =Cov(X.Y)=0.
—0oC v OC
It is known that bound (3.13) ensures the fact that
1/4
sup |ur(4) = po(4)| <C (1 +T)** | max 4 \ (3.14)
Act

i=0,1
i=0.1

where o/ is the class of Lipschitz sets (cf. Yurinskii, 1975) with respect to F or G. Recall that G(x, y) =
Fy(x)Fy(y) where Fy and Fy are the marginal distributions of F. It is plausible that the bound in (3.14)
cannot be obtained from the bound given in (3.15) below due to Bagai and Prakasa Rao (1991), from the
examples discussed at the beginning of Section 1.

Theorem 3.3. Let X and Y be associated random variables with bounded continuous density function fy
and fy, respectively. Then there exists a constant C depending on fy and fy such that

sup [P(X <x, Y <y) — P(X <x)P(Y <y)| <CCov'*(X, Y). (3.15)

4, Bound in the trivariate case

Suppose F' is a trivariate distribution function and it has the density f with marginal distribution Fy, Fy
and Fz and marginal densities fy, fy, and f7, respectively. Let G(x, y,z) = Fy(x)Fy(y)Fz(z). It is easy to
see that

Wit 8) = (11,0,0)0(0, 1, 0)¢(0,0,£)
and hence

oyt 0, 13)  0p(1,0,0)
ot B o

(p(oa t27 0)(P(09 0, t3 )

and
az’y(tlatht:'v) aﬁo(tl,O,O) a(p(o’tZ’O)
at oh - 0[1 atz (P(O, 0 t3)
whenever they exist,

Similarly, we have 0y(t1,22,13)/0t, 0y(11,1,13)/0t3, 0*¥(11,12,83)/0t;0t, and &*y(ty, ta, £3)/0t, Ot;.
Relation (2.15) implies that

1+ T
LF,G)<C {—T— + (/ et 0, 5) = @(11,0,0)0(0, t2,0)0(0,0, 1)
1 <T

2

S0t 2.t 00(1,0,0
et b.3) et )qp(o,tz,O)qo(0,0,ts)
an 811

do(t bt 8¢(0,1,,0 ?
# |20 00,00 22020 0.0,
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oo, t, t c¢(0,0,¢
+| D) g1,0,00000, rz,O)"’(ihﬂ
Bo(tit, ) d¢(1,0,0) 8p(0,t,0) :
+ 61‘161‘2 - atl 61‘2 (P(O, O, t3)
ot t5)  0¢(11,0,0) 80(0,0,1) |
+ 0t 0t3 B on (052 0)7I
1/2
Pt b,t) o010, 0)8g0(0 ,65,0) 3¢(0,0,1) |
010t " ot Ots '

Note that, by Lemma 2.2,
@t 0, 55) — @(11,0,0)9(0, £, 0)(0,0,4)
:E[eirl.\’+i13 Y+il_~,Z] _ E[ein/\']E[eitg)']E[eiI}Z]
_ Cum(elllX ita )" ei[3Z) + E[ei!]X]Cov[eifz Y’ ei[}Z]
+E[e113 Y]Cov[eih/\/’ eit;Z] 4 E[eif3Z]COV[eif|X’ eit:Y]’

do(t, 0, 13)  09(41,0,0)
o on

= Cum(iXe"", ¢, e"?) + E[iXe" ¥ ]Cov[e, &)

#(0,£,0)¢(0,0,43)

+ E[e®"Cov[iXe¥, e?] + E[e"?]Cov[iXe¥, e "],

dp(t.0,13) <P( L6, 0)
ot

ot

= Cum(e”IX 'Yeiiz)’, eif}Z) + E[eith]COV[iYeiIZY’ ei!;Z]

(t],o O) (070at3)

+E[iYe"" [Cov[e"¥, e"?] + E[c"#]Cov[e"¥,iYe""],

do(t, b, t 09(0,0,¢
M — o(t1,0,0)0(0, tz,O)—u
on ot

= Cum(e""", ", iZe'"*) + E[¢""]Cov[e™”,iZe"*]
+E[e""]Cov[e"",iZe" ] + E[iZe"*1Cov[e"", e" ],

Pt n.t3)  89(11,0,0) 89(0,4,0)
ot ot ot of

=Cum(iXe"¥,i¥e"™" &%) + E[i Xe"*Cov[iVe™ "]

©(0,0,13)

+E[iYe"™" 1CovliXe'"¥, e ] + E[e"*]Cov[iXe"¥,ive™ ],

Fo(t,t.t)  3¢(1,0,0) 09(0,0,1)
3) 0 290.0.53)
ot 03 ot 0(0,5,0)—>;

= Cum(iXe"¥, e’ iZe"™?) + E[iXe"¥]Cov[e™",iZe! %]

+E[e""1Cov[iXe"¥,iZe"?] + E[iZe"*]Cov[iXe" ¥, ¢ ']
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(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)
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