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FREQUENTIST VALIDITY OF HIGHEST POSTERIOR DENSITY REGIONS 
IN THE PRESENCE OF NUISANCE PARAMETERS

Jayanta K. Ghosh and Rahul Mukerjee

Abstract
Priors ensuring frequentist validity, up to o(n-1 ), of credible regions based on the highest 

posterior density have been characterized in the presence o f nuisance parameters. In this 
connection, the consequences of an orthogonal parametrization have also been discussed.

1. Introduction

In recent years, there has been a revival of interest in problems relating to approximate 
frequentist validity of posterior credible regions. As noted in Tibshirani (1989), apart from 
providing a method for constructing accurate frequentist confidence regions, such studies are 
also helpful in defining noninformative priors which could be potentially useful for compar
ative purposes in a Bayesian analysis. The results available in the literature in this general 
area include those related to the approximate frequentist validity o f one-sided posterior re
gions based on posterior quantiles ([18], [13], [16], [17], [12]), posterior regions based on 
the inversion of likelihood ratio and related statistics ([7], [8]) and highest posterior den
sity (HPD) regions ([14], [9]). We refer to [11] and [15] for further interesting results and 
references.

As for the problem of characterizing priors ensuring approximate frequentist validity of 
HPD regions, it appears that not much work has as yet been done on models involving 
nuisance parameters. In consideration of the current interest on such models, in this work 
we propose to fill up this gap to some extent. As a special case, models with an orthogonal 
parametrization ([5]) have been considered. An advantage of our approach is that it does not 
require an explicit evaluation of all the coefficients involved in the (approximate) posterior 
density of the interest parameter and this keeps the algebra relatively simple (see Section 3).
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2. The HPD Region

Let {X <}, t >  1, be a sequence o f independent and indentically distributed, possibly vector- 
valued, random variables with common density f ( x ;  0), where 9 =  (8i, 92)', #1 is the interest 
parameter and 82 is the nuisance parameter. For notational simplicity, in this and the next 
section, we assume that 9\ and 92 are both one-dimensional, i.e., 9 6  R 2 or some open 
subset thereof. The case where 9\ and 8-1 are both possibly multi-dimensional will be briefly 
discussed in Section 4. W e make the assumptions of [10]. Let 9 have a prior density t(.) 
which is positive and thrice continuously differentiable for all 9. In case ir(.) is not proper, as 
assumed in [10], we shall require that there exists an ng(>  0) such that for all X i , . . . , X v  
the posterior of 8 given X ^  is proper. Let X  =  ( X i , . . . ,  X n)' where n  is the sample
size. All foraial expansions for the posterior, as used here, are valid for sample points in a set 
S, which may be defined along the line of Bickel and Ghosh (1990; Section 2 with m =3),

n
with /Vprobability  1 +  0 (n "2) uniformly on compact sets o f 0. Let 1{Q) — n “ l £  log f (X ;;0).

i=i
Denoting the maximum likelihood estimator of 9 by 9 =  (8\, 82)', for i , j  =  0 ,1 ,2 ,..., let 
1^(9) =  D [D i e ( 8), bn =  ti j t f ) ,  c,, =  - b ^

■ _  f  C20 cn  A 
\ c u  C0 2 J ’

where Z); is the operator of partial differentiation with respect to (?,. The m atrix C  is positive 
definite over the set S mentioned above. Also, we write w =  ff(9), and for i , j  =  0,1,2,..-, 
X,7(0) =  D'l D327r(9), Tij =  Tij(0).

Let h =  ni (9i  — 8X). Then starting from equation (2.2) in [7] or equation (3.1) in [12), it  
can be seen that the posterior density of h, under the prior x (.) , is given by

tt(A|X) =  <t>(h-,Q-1)[l +  n - * { B 1(K ,X)h  +  B3{ X ) h :i}  +  n - l { B 2{ w ,X ) ( h 2 - Q - 1) 

+  B 4(ir ,X )(h *  -  3 Q - 2) +  B e(X ) (h 6 -  1 5 < 2 - 3 ) } ]  +  o ( n - ‘ ) ,  (2.1)

where </>(.; Q~x) is the univariate normal density with mean zero and variance Q~l, Q ~

5 x(tt , X )  =  B n (7T,X) +  B12(X) ,  B2( ir ,X)  =  B 2l( ir ,X)  +  B22( X ) ,  (2.2a) 

B4(t ,X ) =  B41(tt,X) +  B42(X), B41(r,X) =  Bu(T,X)B3(X), (2.2b) 

B u ( i r , X )  =  TT-^TTio -  cn c^ x o t), B12( X )  =  ^(b12c £  -  bosCuC^2), (2.2c)

B3( X )  =  -(630  — 3621CUC02 +  — ^ac\ico2 )̂  (2--t-

B2i (k , X )  =  (27I-) 1{^20 — 2ciiĈ 27Tii +  gJjCqj2T()2 +  ^lo (̂ >12 — SosCjiCqj1)

+  ^ 2  ^01(^21 — 36i2c11c^21 +  2&o3cn co22)}> (2--e

and B22(X) ,  B42(X) ,  Be (X) ,  like B u ( X ) ,  Bz (X) ,  are functions of X  which are at nws! 
of order 0(1) and do not involve ir or its derivatives. The detailed expressions for Bn (X).



BaiX) ,  Be(X)  are not required in the sequel. From (2.1), it is not hard to see that t(/i|J^) 
can as well be expressed as

i{h\X) =  m  Q ' 1) exp {\n~l BT(x,  X ) -  ^ U ( tt, X , A) } / { 1  +  n~l Bs(*,  X ) }  +  o(n~l), (2.3)

where Br(x ,X )  =  Q ~ ' { B i { * , X ) } 2, Bs{ ir ,X)  =  Q~ 1 B2( i : , X ) + ' i Q - 2Bi (Tr ,X )+ l 5Q- 3B6{X) ,  
and

U ( * , X , h )  =  h2Q - 2 n - * { B l (Tr,X)h +  B3(X )h 3}

+ n ' 1 [B7(w ,X )  +  {B^tt ,  X ) h  +  B3( X ) h 3} 2

- 2 { B 2 ( * , X ) h 2 +  Bt (* ,X )h *  +  B6( X ) h 6}} (2.4)

The inclusion of B 7(n, X )  in U ( v , X , h )  helps in expressing the approximate posterior char
acteristic function (c.f.) of U(ir,X, h) in a neat form.

From (2.1), (2.4), it can be seen after some algebra that the approximate posterior c.f. 
of U(n,X,  h) under the prior ir(.) is given by

(1 -  2 0 "5 [1  +  n~l {F0(TT,X) +  (1 -  2 0 ~ ' F l (ir ,X)  +  (1 -  ^ ^ ^ ( X ) } ]  +  o (n~%

where f  =  (—l)? t ,  and

F0( t t ,X )  =  3 Q - 2{ B 1( T , X ) B 3( X ) - B i ( n , X ) } - 1 5 B 6( X ) Q ~3, (2.5a)

F i ( r , X )  =  3 Q - 2 { B ^ X )  -  B l (w ,X ) B z( X ) }  +  j Q - 3 { B 3( X ) } 2, (2.5b)

F2 ( X )  =  15Q-*\Be( X )  -  ^ { 5 3(.Y )}2]. (2.5c)

For positive integral v, let fi„ ( .)  and oj1/(.) denote respectively the cumulative distribution 
function and the probability density function of a central chi-square variate with v degrees of 
freedom (d.f.). Also, let z 1 be the upper a-point (0 <  a  <  1) o f a central chi-square variate 
with 1 d.f. and

V(, - „ , ( » , * )  =  *a -  (m * (* a) ) - l { f i ( i r , * ) « ! ( * ’ ) +  fiO r.A -jn st*2) +  ^ ( X ) ^ ^ 2)}. (2.6)

Then inverting the above approximate posterior c.f. o f U(Tr,X,h),  which can be justified as 
iQ [3]» [4], [1], we get

P*[U(w,X,h)  <  U{l. a)(ir,X)\X] =  1 - a  +  o (n -1), (2.7)

where pir[.|X] is the posterior probability measure under the prior ?r(.). Writing h =  h(6j), 
by (2.3), (2.7), the HPD region for with posterior coverage probability 1 — a -f-o (n _1) can 
be expressed as

: ir(h(6i)\X)  >  0 (O ;Q '1)e x p ( in _ 1B7(’r ,X )  -  ^ ) ) / ( l  +  '*'‘ 1£ s ( ’r,-X'))}>

which is approximable, up to o(n~l ), by {#i : U(TT,X,h(B{)) <  U(i-a) ( i r ,X) } .



3. Frequentist Calculations

We now proceed along the line o f Ghosh and Mukerjee (1991, 1993) to calculate P${U(ir,X,lii 
<  U(i-a)(rr, X ) } .  To that effect, we consider a prior satisfying the regularity condition 
in [1, Section 2 with m  =  3] which are slightly stronger than those in [10], and make Edge- 
worth assumptions as in [1, p. 1078]. Then by (2.2), (2.5), (2.6), after some simplification,

P* ’ [l/(7T,X,h) <  U(l-a)(Tr,X)\X] =  1 — a  -)- n -1 { f l3(z2) — Qi (z2)}g(TT,TTm, X)

+ o (n ~ l ), (3.1a)

where

g { * X , X )  =  -  B2i ( i , X )  +  B , ( T , I ) { B „ ( f  J )  -  1  

+3 Q -2B3(X){Bu (ir%X) -  BU{*,X)} .  (3.H)

The derivation of (3.1) is again based on the inversion o f the approximate posterior c.f. o( 
U(w,X ,h )  under the prior tt*(.).

Let /  =  ( ( / , ; ) )  be the 2 x 2  Fisher information matrix (per observation) at 9 which is 
assumed to be positive definite at each 9. For i , j ,  i ' , j '  =  0 , 1, 2 , . . . ,  let

Ka =  Ee { D \ D { \ o g f ( X u 0 ) } ,  K ^ ,  =  Ee[{D\Di\og f ( X u 6) } {D ' ;  DJ2 l o g / ( ^ , 0)}].

Also, let

A =  I n —lyi A =  —l\i / I n , /i =  +2AATi2+A2ii"o3, 0  =  ^3o+3Ai^2i + 3 A 2/fi2+A Kn3-

Note that A, A, p, iji, Kij,  etc. are all functions of 9.

Let 7t =  t (0 ) , tt' =  ir'(9). By (2.2), (3.1b), under 9,

g ( i r , i r ' ,X )= g ( i r ,T c ' ,9 )  +  o(\),  (3 i

where

g(v,  *■*, 9) =  A - l [ ( 2 0 _1( ^ ^  +  2XD1 D Jir’  +  X2D\w‘ ) -  (2 w ) - 1 (£>2 7r +  2\DXD ^  + ^  

-I- fiD-iir" — (2/227r)_1 fiD2ir

+  w-l (D1ir +  X D ^ i n - X D m -  +  \D 2tt) -  (irm)- \D xwm +  \D 2*')}\ 

+ ^ A - 2V>{(t*)-1(D 1 tt' +  A D jO  -  K- ' iDnr  +  AD 2ir)}. t3-'

In consideration of (3.1a), (3.2a), for a fixed t (.),

P e { U ( x , X , h ) < U {1- a)( rr ,X) }  =  \ - a  +  n- ' {Sl3 ( z2) - n x( z 2) } { (2 i r ) - xH„{9) }

+ o ( n _ 1 ) ,  (3-3)

where the factor {(2tt)~xHr (9)}  in the right-hand side is obtained by integrating g(i 
by parts with respect to a tt' ( 8 ) such that tt'(.) and its first partial derivatives vanish on



the boundary of a rectangle containing 9 and then allowing *•'(.) to converge weakly to the 
degenerate measure at 9. This approach, reminiscent of that in [6], was used earlier in [7] 
and [9]. Explicit calculation, based on (3.2b), shows that

Hr(ff) =  D f ( A ~ lir) +  2D1D 2(A A -l x) +  D\{\2A - xt )  -  D 2 {h(122A ) - ' k }

- D 2(X4>A-2w) -  D i ^ A - * * ) .  (3.4)

By (3.3), for each a,  frequentist validity, up to o(n-1 ), holds for the HPD region for 9\ if 
and only if ir(.) satisfies the partial differential equation

H„(9)  =  0, (3.5)

where H„(9) is given by (3.4). Note that the equation (3.5) does not involve a. This equation 
represents the main result o f  this section.

EXAMPLE 1 . Consider the location-scale model with f ( x ; 9 ) =  92x} "  {92 l (x  — # i)}, 
where the location parameter 0i (—oo <  9i <  oo) is o f interest and the scale parameter 
h{> 0) is the nuisance parameter. Then A is a constant, each of I22 and A  is proportional 
to0J2 and each o f  ji and t/> is proportional to 92 3 (provided they exist). Hence, ir(9) cx 1 
satisfies (3.5) (cf. [2]). In a location-scale model if instead the scale parameter is of interest 
then denoting the scale and location parameters by 9\ and 92 respectively it can be similarly 
seen that w(9) oc 1 satisfies (3.5).

In the rest o f  this section, we consider models where global parametric orthogonality ([5]) 
holds, i.e., I 12 equals zero indentically in 9. Then A =  0, A =  In,  pi =  K 21, ip =  K 30, and 
“sing the regularity condition D i l n  =  —( K 30 +  K 10.20), from (3.4) it can be seen that (3.5) 
reduces to

Z M / f ^ A * ) }  +  D ^ t f K w . 20*)  -  D 2 { ( I n l 22r 1 K 2iir} =  0 . (3.6)

Under global param etric orthogonality, priors of the form

x(9)  =  d(92) I1\, (3.7)

*We d{92) (>  0 ) is a function of 92 alone, are of special interest. Tibshirani (1989) showed 
that such priors ensure frequentist validity, up to o(n~%), of the posterior quantiles of B\. It 
ls easy to see that a prior of the form (3.7) satisfies (3.6) if and only if d(82) satisfies

\ D i { $ ( t f io .20 -  K 30)}  -  {<i(52) } - 1D 2{< i(^ ) ( /A /22) - 1Jft:21}  =  0. (3.8)

The above is sim ilar to  but not identical with a condition in [12] who studied the problem 
°f ensuring frequentist validity, up to o(n~l ), o f the posterior quantiles of 9\.

-EXAMPT.F. 9 W e consider a version of the exponential regression model of Cox and 
Re>d (1987). This is given by

f ( x ; 9 )  =  IT’:= 1[0r1e x p (-0 1j f , )e x p {-0 J 1x (,)e_l’1!'i }], x<1)> 1<r) >  °>



where x =  (x (1),. . . ,-r(r))'. - o o  <  9\ < oo, 62 >  0 , r >  2 , and yi,...,yT are constants, not 
all equal, satisfying y, +  . .. +  yr =  0. Then global parametric orthogonality holds and one 
can check that / „  =  yjf +  . . • +  yl. h 2 =  r92 2, K n  -  92 l A i, K 30 =  - t f i 0.20 =  Vi +  ■■•+!/,• 
Hence (3.8) is uniquely satisfied by d(92) oc 02_1. The same solution was reported in [12) in 

their context.
EXAM PLE 3. This relates to the ratio of independent normal means ([5]). Let f ( x :  B) = 

0>(T(1) -  s , ^ ) ) ^ ! 121 -  a2(0 )), where <j>(.) is the standard univariate normal density, x -  
(x ( ,\ x (2))', s x(0) =  9x9nl(9\ +  1)5, s2 (0) =  92/(62 -f 1)5, and 9U 92 >  0. Note that 0, = 
3 ] (9 )/s2 (B) and that under this parametrization global parametric orthogonality holds. Here 
/ „  =  QH(91 +  l ) 2, / „  =  1, K 2l =  - 9 2/(92 + 1)2, K m =  - 3 /T10.2o =  69182/(Bil +  l ) 3. Hence it 
can be seen that no solution to (3.8) is available, i.e., no prior o f the form (3.7) satisfies (3.6). 
Nevertheless, (3.6) does have a solution, e.g., ft(8 ) =  B2 (6\ +  1) solves (3.6). Unfortunately, 
however, under this solution of (3.6), the posterior of 9 given X  may not be proper even for 
large n unless the parameter space is so restricted that 3-2(6) is bounded away from  zero.

EXAM PLE 4. This relates to the ratio of independent exponential means. Let

/(* ;9) = {a,(0)ss(tf)}-1 expbtt^WrV1) + (aa(*))-1z(2,}J, *(1), *(2) > 0,

where x =  (x^1*, x^2') ', 3 i(B) =  92&l , s2 (9) =  B2BX *, and B\,92 >  0. Note that 9\ = 
3 i (9)/s2(B) and that under this parametrization global parametric orthogonality holds. Here 
h  1 =  \BT\ h i  =  292 2, K 21 =  ± (* A 2) '\  K x  =  - 3 K i0.2Q =  f ^ '3. Hence (3.8) is uniquely 
solved by d(92) rx 92 ' , which is the same as the solution obtained in [12] in their context.

4. Extension to the General Multiparameter Case

Before concluding, we briefly indicate the result corresponding to (3.4) and (3.5) in the 
general multiparameter case. The set-up is as in Section 2 with the change that now 
9 =  (6 1 , . . .  ,9ry  is p-dimensional, 0*1' =  ( B i , . . . , 6g)' represents the ^-dimensional interest 
parameter and B =  (^,+1, . . . ,  dp)' represents the (p-q)-dimensional nuisance parameter, 
where 1 <  q <  p. Let /  =  ( ( / , , ) )  be the p x p per observation Fisher information matrix 
which is assumed to be positive definite at each 9. Let I~ l =  ( (I ' 1)) and for 1 <  i , j ,  k , u  <  p, 
let

/ $ „  =  I'i I ku +  /•<=/->“ +  I'uP k.

Partition /  as

I  =  (  A « )  A » )  )
\ A21) h i )  )  '

where /(n ) is q x  q and / ( i2), / (2i) , / (22) are of appropriate orders. For 1 <  i, j  <  q, let 
Tjj denote the (i, j) th  element o f I{n)  -  / (l2)/ (" 2)/(2i), and for 1 <  t <  9 , q +  1 <  v <  p,

q
define A„, =  I vurut. Also, with the rows and columns of 1 ^  labelled by q ■+■ 1 , . . .  ,/>,



for ? +  1 <  v, v' <  p, let cr„„/, denote the (v, u')tb element o f 1 ^ 2) ■ For 1 <  i,J, k <  p, 
let Lijk =  Efj{DiDjDk log f ( X \; 0 )}, where Di is the operator o f partial differentiation with 
respect to 0,- and for 1 <  i, j ,  k <  q, let

ifrijk =  k -f" Xvk Xvj \ v>k

-j- E*, £ ,/ £*/" Lm'v" Xy\ Xv'jXy/r/c.

where the summation over each of v, v’ , v", is on the range q + 1  to p. It may be noted that 
the quantities defined above are functions of 0 .

Under this set-up, it can be shown that frequentist validity, up to o(n~l ), holds for the 
HPD regions for 6^  if and only if x  — ir(.) satisfies

E.E; [DiDj iP ’ v)  +  2 ZyDiD v(Xvjf j r )  +  Xv'£v,D vDvl(XviXv,i P j Tr)

Sty D  w { ( E . I  \jv&wv “f" 2S vSv/L ,W ^v;^W  

*4“ S ^ S t r Lw'v'*XviXv* ) P ’ * } ]

-  ^E ,E ,E *E v i D M i i k l i j L ^  +  ^ D M j k X v u f i L T ) }  =  0, (4.1)

where the summations on i , j ,  k, u are over the range 1 to q and the summations on w, v, v', v" 
are on the range q +  1 to p. Equation (4.1) generalizes (3.4), (3.5) to the multiparameter 
case. It can be proved proceeding as in Sections 2 and 3 but with heavier notation and 
algebra. It may be checked that (3.4), (3.5) and (4.1) are in agreement with the findings in
[14] and [9] who considered the same problem in the absence of nuisance parameters.
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	Hr(ff) = Df(A~lir) + 2D1D2(AA-lx) + D\{\2A-xt) - D2{h(122A)-'k}

	/(*;9) = {a,(0)ss(tf)}-1 expbtt^WrV1) + (aa(*))-1z(2,}J, *(1), *(2) > 0,



	4.	Extension to the General Multiparameter Case

	/$„ = I'i Iku + /•<=/->“ + I'uPk.


