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Abstract: Computationally attractive serial algorithms for detecting extrema of 2-D discrete functions are considered for image 
processing applications. It is shown that the algorithms are essentially linear in K  where K  denotes the number o f pels to be 
considered. Experimental results are presented on typical image sets. A parallel algorithm on a pyramid-like architecture is also 
discussed briefly.
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1. Introduction

Detection of 2-D local maxima and minima is 
useful in many image processing problems. One of 
the application areas is texture analysis (Rosenfeld 
and Troy, 1970; Ledley, 1972; Rotolo, 1973; Mi- 
chell et al. 1977) where the number of local gray lev­
el extrema per unit area, i.e., the extrema density 
and related statistics are used as texture properties. 
Recently, Rosenfeld (1984) introduced the concepts 
of fuzzy geometry and topological properties on 
image subsets. It can be shown that connected com­
ponents and holes in the fuzzy sense are the con­
nected components of these extrema. Similarly, 
morphological operations like propagation and 
shrinking may begin from the extremas of the image 
and lead to different shape manipulation and skele­
tonization.

The extreme components of an image are defined 
as follows. Let S  denote the set of all pels of an 
image. Let R be a 8-connected component in S. If 
K is the complement of R in S, then the border of  
R with R is defined as the subset B(R, R) of R, any 
element of which is an 8-neighbor of at least one ele­
ment of R. Now, a component R  in S  is a local max­

imum or more generally, a plateau in S  if the gray 
values of all elements in R are equal and this value 
is greater than the gray value of any element in 
B(R,R).  Similarly, R is a local minimum or valley in
S  if the gray values of pels in R are equal but less 
than the gray value of any element in B(R,R).  Typi­
cal extreme pels in 2-D are shown in Figure 1.

This correspondence is concerned with the algo­
rithm for detecting the extrema. A straightforward 
approach may be the use of level sets in an image. 
The t-level set Lit) consists of pels whose gray levels 
are greater than or equal to t. Let and t2 be con­
secutive gray levels in the image where t2 >  t x. Con­
sider a connected component C of L ( tx). Now, C is 
a maximum or plateau of gray level i x only if 
Cc\L( t2) =  0, i.e, pels of C completely vanish from 
the level set of gray level t 2, as explained in Figure 
2.

This approach can be easily modified for minima 
detection. The main drawback of the algorithm is 
that component labeling is necessary at each level 
set and these components are to be compared with 
those in the previous level set. Hence a better ap­
proach is described below.
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Figure 1. Typical extreme pels.

2. The algorithms

First we describe a method that is efficient if ex­
trema at one gray level are required. It is obvious 
that pels with gray level t t are the only candidates 
for extrema at gray level t t . Consider the case of 
only maxima. If any pel P e L ^ )  has a 8-neighbor 
in S  whose gray level exceeds t u then the connected 
component to which P  belongs cannot be a maxi­
mum. In Figure 2 the pels A ,B ,E ,F  are possible 
candidates of maxima at gray level t t . Of them, B
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1 C , ( t , )  C 2 ( t , )  C 3 ( t , )
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Figure 2. Maxima detection in one dimension. C2(t,) is a plateau 
since C2(t)n L (t2) = 0.
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na and minima are underlined.

has a neighbor C whose gray level exceeds £j ad 
hence the connected component consisting of pet 
A and B cannot be a maximum. The true maxima 
pels are E and F.

Implementation of this idea in 2-D is explained 
by Figure 3. The pels having gray value and no 
higher gray value neighbor are labeled 1, those hav­
ing gray value less than r , are labeled 0, those hav­
ing gray value greater than are left blank while 
those having gray value 1 but also an 8-neighboi 
whose gray value is greater than are labeled 2i 
Next, pels with label 2 are propagated into the pell 
with label 1. The remaining pels with label 1 art

0 0 0 0 0 0 0 0
0 0 1 0 0 1 1 0
0 1 1 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 2 2 0 0

0 2 2 0
2 1 1 0
0 0 0 0:
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0 0 0 0

Figure 3. Detection of 2-D maxima by thresholding, (a) Befoi* 
propagation of label 2 into label 1. (b) After propagation of label 

2. The remaining pels with label 1 are maxima.



maximal pels at level t l4 The approach can be modi­
fied to find minima as well as minima and maxima 
simultaneously. Let this algorithm be called Ex- 
t r e m a - 0 .

If the image contains many gray levels and if ex­
trema should be found at all levels, then this algo­
rithm is not very efficient. However, this basic con­
cept can be extended to find a modified algorithm 
as follows.

In this algorithm we consider the detection of 
maxima and minima simultaneously and in- 
distinguishably. The idea is to find pels that are not 
extrema, find connected components of same gray 
level and delete them. The remaining pels are ex­
treme pels. The algorithm, called E x t r e m a -1 can be 
easily modified to find maxima or minima separate­
ly-

Here the pels are considered in a row scanning 
manner. First, each candidate pel (CAP), is labeled 
as either (a) an extremum or (b) neither a minimum 
or maximum in its 3 x 3 neighborhood. In case (b) 
the CAP is called a collapsible pel (CP). Examples 
of these cases are shown below.

2 4 8 4 2 3
3 8 7 6 2 3
6 6 6 5 4 2
Maximum Minimum
2 4 8
4 8 7
7 7 9
Collapsible pel (CP)

If a CP is encountered, its connected component of 
pels of the same gray level is found and all pels be­
longing to this component are collapsed. The result 
is stored in a matrix whose dimensions are the same 
as that of the original image matrix. The collapsed 
pels are labeled by, say, — 1 in the corresponding 
P o s it io n s  of the result matrix while the extrema are 
labeled by, say, 1. Initially the result matrix is 
empty, i.e., labeled as 0.

In actual implementation, for each CAP, the cor­
responding position in the result matrix is examined 
if the label there is — 1, i.e., if it is already collapsed 
by any previous CP. In case the CAP is already col­
lapsed, no test of maximum or minimum is made. 
In case the CAP is not collapsed and it is found to 
he a CP, its corresponding connected component is 
found and collapsed. Otherwise it is considered as

an extremum. All results corresponding to the cur­
rent CAP are stored in the result matrix.

To work on CAP’s of the first and last row as 
well as columns, two rows and columns with value, 
say, 0 may be appended before and after the first 
and last row as well as columns, respectively. In our 
algorithm we used a stack for component growing 
and collapsing. In brief, the algorithm has the fol­
lowing steps.

Algorithm EXTREMA-1
Step 1: Initialize: Current CAP =  first pel in the 

first row of the image matrix.
Step 2: If the current CAP is collapsed go to Step 

5. Else, continue.
Step 3: Check the 8-neighborhood to find if the 

CAP is a CP or an extremum. A CAP is a CP if at 
least one neighbor has a higher gray level and an­
other neighbor has a lower gray level than that of 
the CAP. Else, it is an extremum. If an extremum, 
enter the corresponding labels in the result file and 
go to Step 5. Else continue.

Step 4: Create the connected component of the 
CP using the subroutine G r o w -S t a c k . By this sub­
routine, the result file is also filled with label — 1 
at corresponding pels of the component.

Step 5: If the last pel in the image is encountered, 
Stop. Else move to the next pel in raster scan mode 
and consider it as the current CAP. Go to Step 2.

Subroutine Grow-Stack

Parameters: Co-ordinates of the CP which has to 
grow; gray level of the CP.

Step 1: Check all 8-neighborhoods for connecti­
vity with same gray level and collapse the connected 
pels, i.e., label the corresponding positions in the re­
sult file by — 1. Store the co-ordinates of the col­
lapsed pels in a stack.

Step 2: If the stack is empty, stop. Else, take the 
topmost entry in the stack and go to Step 1.

The result file contains the labels of the extrema. 
An alternative form of result file may be created 
which initially contains a copy of the image file. The 
gray level at the collapsed pels are changed by the 
label, say, — 1 and all other pel gray levels are left 
intact. Then all pels with non-negative gray levels 
in the result file are the extrema.



If we want maxima and minima distinguished, 
then in the result file we have to lable maxima by, 
say, 1 and minima by, say, 2. Step 3 and Step 5 of 
algorithm E x t r e m a -1 should be modified as fol­
lows:

Step 3: Check the 8-neighborhood. If the CAP gray 
level is not less than that of any of its 8-neighbor­
hoods, then the CAP is called a maximum and la­
beled 1. On the other hand, if the CAP gray level 
is less than that of at least one neighbor but not 
greater than that of any neighbor, then it is called 
a minimum and labeled 2. The condition of CAP to 
become a CP is already given in E x t r e m a - 1. The la­
bels are entered in the result file. If a minimum or 
maximum is encountered, go to Step 5. If a CP is 
encountered, go to Step 4 of algorithm E x t r e m a -1 . 

Step 5(a): If the last pel in the image is encountered, 
go to Step 5(b). Else move to the next pel and go 
to Step 2.
Step 5(b): Generate the connected component of 
same gray level corresponding to each minimum 
pel. Positions corresponding to the pels of this com­
ponent are labeled 2 in the result file.
Step 6: Stop.

For Step 5(b) a growing algorithm like G r o w - 

S t a c k  may be used. The reason for introducing 
Step 5(b) is the fact that in Step 3 if all gray levels 
of pels in a 3 x 3 neighborhood are equal, then the 
CAP is called a maximum although it may be a 
minimum as well. Step 5(b) changes the states of 
these pels in the result file. This modified algorithm 
may be called E x t r e m a -2 .

Table 1

3. Algorithm complexity

First, let us find the computer complexity of the 
algorithms. We consider the worst case perform­
ance on an N  x N  image for the evaluation and 
present typical results on a set of images in the next 
section.

For algorithm E x t r e m a -1 , Step 2 requires one 
comparison per pel. Hence TV2 comparisons are 
needed. If Step 3 is encountered, it may need at best
8 +  7 comparisons to find if the CAP is an ex­
tremum or CP. If all CAP enter Step 3 then 
(8 +  1)N2 comparisons may be needed. The total is 
now \6 N 2.

Let M  be the total number of extreme pels. The 
number of collapsed pels is N 2 — M.  To collapse 
the pels by G r o w -S t a c k , at best eight comparisons 
are needed for each pel. In fact, except for the CP 
with which the subroutine G r o w -S t a c k  is entered, 
all collapsed pels can be detected by seven or less 
comparisons. However, the program becomes more 
complicated and we accept 8(7V2 — M) comparisons 
in the worst case. In addition, the stack is checked 
once for each pel. So, the total number of compari­
sons for collapsing the pels is at most 9(N2 — M). 
The grand total of number of comparisons cannot 
exceed 167V2 +  9(N2 — M).

Next we consider the number of assignments re­
quired in the algorithm. The result array requires 
N 2 assignments of label — 1 or 1. The status of 1 
may need be changed to — 1 and hence N 2 — M  as­
signments may be necessary. However, if the result 
array is initially a copy of the image array, TV2 -  M

Image
number

Number of Number of comparisons/pel Number of assignments/pel

Max. Min. Total Total pels 
in extrema

For
detec.

For pel 
growing

Extra Total 
without with 
extra extra

Detec.
& pel 
growing

Extra Total
with
extra

1 249 239 488 722 3.804 7.414 1.841 11.218 13.059 6.226 0.573 6.799
2 275 235 510 742 4.288 7.370 1.866 11.658 13.524 5.991 0.597 6.588
3 268 234 502 751 4.906 7.350 1.949 12.255 14.205 5.574 0.672 6.246
4 279 277 556 794 4.140 7.255 1.870 11.396 13.266 6.038 0.571 6.609
5 282 273 555 763 4.695 7.323 1.842 12.018 13.860 5.651 0.548 6.200
6 285 286 571 758 4.416 7.334 1.828 11.750 13.578 5.882 0.527 6.409

Average no. of comparisons/pel =  13.582, Average no. of assignments/pel =  6.475, Average extrema =  12.95%, Average pels in ex­
trema = 18.43%.



assignments instead of jV2 4- N 2 — M  assignments 
are at best necessary. In the stack the two co-ordi­
nates and the serial number of each collapsed pel 
should be stored which needs 3 assignments per pel. 
For retrieval, again, 3 assignments per pel are re­
quired. Then, the total number of assignments for 
the stack can be 6(N2 — M).  The grand total of as­
signments can be N 2 +  7(N2 — M ) if the result file 
is not initially a copy of the image file and 
7(jV2 — M)  otherwise.

To separate the maxima and minima by algo­
rithm E x t r e m a -2 , the additional number of com­
parisons needed for collapsing the false maxima is 
9Mi where M t is the number of minimal pels. In 
addition, N 2 comparisons may be necessary to de­
tect the minimal pels, so that they may be propagat­
ed. The number of extra assignments necessary 
when the result file is not initially a copy of the 
image file is 8 in which 6M , is needed for the 
stack and 2Mj is needed for transfer between ar­
rays. In addition, to distinguish between minima 
and maxima we need another array in which N 2 — 
M  assignments are at best required.

It may be noted that the algorithms are of linear 
complexity in N 2 with the constant of proportiona­
lity not exceeding 25.

4. Results and discussion

To test how well the algorithms perform in pract­
ical cases, 6 sets of image arrays were considered for 
extrema detection. The images belong to a single 
frame of a band of LANDSAT-III imagery that 
covers the area around the city of Calcutta. The 
image arrays consist of 64 x 64 pels each and they 
are chosen so that the extrema cover less than 20% 
of the total pels. According to the previous analysis, 
the number of comparisons required by this algo­
rithm increases with the increase in the number of 
collapsed pels and since the collapsed pels cover 
80% of the area, the results presented here are closer 
to the worst case performance. The number of com­
parisons and assignments necessary by the two al­
gorithms are scaled to N 2 and presented in Table 1. 
In this table, the ‘Extra’ columns refer to the addi­
tional computation needed for separating the maxi­
ma and minima pels by algorithm E x t r e m a -2 . It is

seen that the totals are less than the worst case anal­
ysis of the previous section. The programs of the al­
gorithms developed by the authors in Fortran-77 
may be available to the readers on proper corre­
spondence. It should be noted that E x t r e m a -2  can 
return with the connected components of minima. 
For maximal components, however, the results 
should pass through a component labeling algo­
rithm.

The algorithms discussed above are essentially 
serial. However, it may not be difficult to translate 
them into parallel algorithms. An alternative idea is 
to find a parallel algorithm in a pyramidal architec­
ture, where extrema in n x n blocks are hierarchi­
cally merged to 2n x 2n blocks until a single block 
of AT x N  results. The detail of the algorithm will be 
communicated in a separate correspondence.

It is rather straightforward to extend the E x ­

t r e m a - 1 and E x t r e m a -2  algorithms to extrema de­
tection in 3-D with voxel representation of the 
image. Similarly, it is possible to extend the pyrami­
dal parallel algorithm outlined in the previous para­
graph to 3-D image data also.
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