On looseness of error bounds provided by the generalized separability measures of Lissack and Fu

S. RAY
Electronics and Communication Sciences Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700035. India

Received 25 October 1988

Abstract

An expression is obtained for maximum difference between the upper and the lower bounds to Bayesian probability of error in terms of the generalized separability measures of Lissack and $\mathrm{Fu}\left(L_{x}\right)$. The expression gives the magnitude of looseness of error bounds for different values of α.

Key words: Pattern recognition, feature evaluation, Bayesian probability of error, error bounds, probabilistic criteria, separability measures.

1. Introduction

The Bayesian probability of error $\left(P_{\mathrm{e}}\right)$ is an optimum measure of effectiveness of a set of features selected for the purpose of pattern recognition. Owing to the difficulty involved in computation (or estimation) of - P_{e}, various probabilistic separability criteria have been suggested in the past as indirect measures of feature effectiveness [1, Ch. 7]. The generalized separability measures ($L_{\alpha}, 0<\alpha<\infty$), suggested by Lissack and Fu [2], are one such series of feature effectiveness measures defined in terms of the difference between the a posteriori probabilities of pattern classes.

It is worth noting that both the upper and the lower bounds to P_{e} in terms of a measure are indicative of how closely the measure approximates P_{e}. If the resulting upper bound is sufficiently low, then the set of features under consideration are 'acceptable'. On the other hand, a sufficiently high lower bound leads to a 'rejection' decision. Difference between the upper bound and the lower bound is an indicator of the overall closeness of a measure to P_{e}. In this letter some results are proved from which one can know the magnitude of the looseness of the existing P_{e} bounds provided by L_{x}.

2. Error bounds in terms of \boldsymbol{L}_{α}

Suppose the a priori probabilities of the two classes ω_{1} and ω_{2} are π_{1} and π_{2}, respectively ($0<\pi_{1}, \pi_{2}<1$, $\pi_{1}+\pi_{2}=1$). Let $p\left(x \mid \omega_{1}\right)$ and $p\left(x \mid \omega_{2}\right)$ be the class-conditional probability density functions of the feature vector X, assumed to be continuous, in the two classes ω_{1} and ω_{2}, respectively. Then the Bayesian error probability [1, Ch .2$]$ is given by

$$
\begin{equation*}
P_{\mathrm{e}}=\int_{\Omega_{X}} \min \left[\pi_{1} p\left(x \mid \omega_{1}\right), \pi_{2} p\left(x \mid \omega_{2}\right)\right] \mathrm{d} x \tag{1}
\end{equation*}
$$

and the generalized seperability measure proposed by Lissack and Fu [2] is defined by

$$
\begin{equation*}
L_{1}=\int_{\Omega_{x}}\left|P\left(\omega_{1} \mid x\right)-P\left(\omega_{2} \mid x\right)\right|^{x} p(x) \mathrm{d} x, \quad 0<\alpha<\infty \tag{2}
\end{equation*}
$$

Where $P(t, 1, x), i=1.2$ is the a posteriori probability of ω_{i} given $X=x, \Omega_{X}$ denotes the sample space of X and

$$
\begin{equation*}
p(x)=\pi_{1} p\left(x \mid\left(0_{1}\right)+\pi_{2} p\left(x \mid\left(1_{2}\right)\right.\right. \tag{3}
\end{equation*}
$$

denotes the mixture density of X.
Il can be seen that I_{-}, is a straightforward generalization of the Kolmogorov variational distance [3] defined b.

$$
\begin{equation*}
\kappa=!\int_{\pi_{x}} \mid \pi_{1} p\left(x \mid\left(\omega_{1}\right)-\pi_{2} p\left(x\left|\left(\omega_{2}\right)\right| \mathrm{d} x\right.\right. \tag{4}
\end{equation*}
$$

and. for $x=1$. the measure L_{x} reduces to $2 K$. In this case,

$$
\begin{equation*}
I_{1}=2 K=1-2 P_{\mathrm{c}} . \tag{5}
\end{equation*}
$$

I.issack and Fu [2] obtained the following error bounds. For $0<\alpha \leq 1$,

$$
\begin{equation*}
!!1 \quad L_{2}!\leq P_{0} \leq \frac{1}{2}\left\{1-[L x]^{1 / x}\right\} \tag{6}
\end{equation*}
$$

and for $1 \leq x<1$.

$$
\begin{equation*}
\left.\frac{1}{2}: 1-\left[L_{x}\right]^{1 \cdot x}\right\} \leq P_{\mathrm{c}} \leq \frac{1}{2}\left\{1-L_{\alpha}\right\} . \tag{7}
\end{equation*}
$$

3. Looseness of error bounds

As indicated above, for $x=1$ the lower and the upper bounds coincide. An increase or decrease in the value of x loosens the bounds. From the following theorem one can obtain information about the magnitude of the loosening of the bounds depending on the value of α.

Theorem. (i) For a given $x>1$ the maximum value of δ (= upper bound - lower bound) is given by

$$
\begin{equation*}
\delta_{\max }=\frac{1}{2}\left\{\alpha^{-1 /(\alpha-1)}-\alpha^{-\alpha /(\alpha-1)}\right\} . \tag{8}
\end{equation*}
$$

(ii) And the value of $\delta_{\text {max }}$ increases with increase in α.

Proof. (i) For $x>1$,

$$
\begin{equation*}
\delta=\frac{1}{2}\left\{1-L_{\alpha}\right\}-\frac{1}{2}\left\{1-\left[L_{\alpha}\right]^{1 / \alpha}\right\}=\frac{1}{2}\left\{\left[L_{\alpha}\right]^{1 / \alpha}-L_{\alpha}\right\} . \tag{9}
\end{equation*}
$$

Differentiating δ with respect to L_{α} one gets

$$
\begin{equation*}
\frac{\mathrm{d} \delta}{\mathrm{~d} L_{\alpha}}=\frac{1}{2}\left\{(1 / \alpha)\left[L_{\alpha}\right]^{1 / \alpha-1}-1\right\} \tag{10}
\end{equation*}
$$

Equating the above expression to zero leads to

$$
\begin{equation*}
L_{\alpha}=\alpha^{-\alpha /(\alpha-1)} . \tag{11}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \delta}{\mathrm{~d} L_{\alpha}^{2}}<0 \tag{12}
\end{equation*}
$$

Thus, the maximum value of δ occurs at the value of L_{α} given in equation (11). Putting this value of L_{α} in (9) gives

$$
\delta_{\max }=\frac{1}{2}\left\{\left[\alpha^{-\alpha /(\alpha-1)}\right]^{1 / \alpha}-\alpha^{-\alpha /(\alpha-1)}\right\}=\frac{1}{2}\left\{\alpha^{-1 /(\alpha-1)}-\alpha^{-\alpha /(\alpha-1)}\right\} .
$$

(ii) Differentiating $\delta_{\max }$ with respect to α,

$$
\begin{align*}
\frac{\mathrm{d} \delta_{\max }}{\mathrm{d} \alpha} & =\frac{1}{2}\left\{\alpha^{-1 /(\alpha-1)}\left[\frac{\log \alpha}{(\alpha-1)^{2}}-\frac{1}{(\alpha-1) \alpha}\right]-\alpha^{-\alpha /(\alpha-1)}\left[\frac{\log \alpha}{(\alpha-1)^{2}}-\frac{1}{\alpha-1}\right]\right\} \\
& =\frac{1}{2}\left\{\frac{\log \alpha}{(\alpha-1)^{2}}\left[\alpha^{-1 /(\alpha-1)}-\alpha^{-\alpha(\alpha-1)}\right]+\frac{1}{\alpha-1}\left[\alpha^{-\alpha /(\alpha-1)}-\frac{1}{\alpha} \alpha^{-1 /(\alpha-1)}\right]\right\} \tag{13}
\end{align*}
$$

Using the identity $\alpha /(\alpha-1)=1+1 /(\alpha-1)$ in (13) leads to

$$
\begin{align*}
\frac{\mathrm{d} \delta_{\max }}{\mathrm{d} \alpha} & =\frac{1}{2}\left\{\frac{\log \alpha}{(\alpha-1)^{2}} \alpha^{-1 /(\alpha-1)}\left(1-\frac{1}{\alpha}\right)+\frac{1}{\alpha-1}\left[\frac{1}{\alpha} \alpha^{-1 /(\alpha-1)}-\frac{1}{\alpha} \alpha^{-1 /(\alpha-1)}\right]\right\} \\
& =\frac{1}{2}\left\{\frac{\log \alpha}{(\alpha-1)^{2}} \alpha^{-1 /(\alpha-1)}\left(1-\frac{1}{\alpha}\right)\right\} \tag{14}
\end{align*}
$$

It is easy to see that the expression in the right hand side of (14) is positive. Hence the desired result is proved.

For a given $\alpha>1$ the upper and the lower bounds of P_{e} corresponding to the maximum difference between the two bounds are given by

$$
\begin{equation*}
P_{\mathrm{e}}^{\mathrm{U}}=\frac{1}{2}\left(1-\alpha^{-\alpha /(\alpha-1)}\right) \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\mathrm{e}}^{\mathrm{L}}=\frac{1}{2}\left(1-\alpha^{-1 /(\alpha-1)}\right) . \tag{16}
\end{equation*}
$$

Figure 1 shows how the values of $P_{\mathrm{e}}^{\mathrm{U}}$ and $P_{\mathrm{e}}^{\mathrm{L}}$ vary with α. It may be noted that as α increases from 1 to

Figure 1. Looseness in probability of error $\left(P_{\mathrm{e}}\right)$ bounds given by L_{α} for different values of $\alpha \geq 1$.
∞ the maximum difference between the two bounds increases from 0 to 0.5 . This shows how the bounds loosen with increasing α. With increasing α the computation of L_{α} becomes more demanding. Therefore, it appears that there is no advantage in going for high values of α. The bounds corresponding to $L_{2}(x=2)$ are tighter than most of the existing bounds associated with the other two-class measures. As can be seen from Figure 1 the maximum difference between the two bounds in this case is $0.125 . L_{2}$ has the advantage over L_{1} in that L_{2} involves the operation of raising $P\left(\omega_{1} \mid x\right)-P\left(\omega_{2} \mid x\right)$ to the power of 2 which is mathematically more handy to deal with than the difference operation involved in L_{1}.

It is easy to verify that, following a similar procedure as in the theorem above, for $0<\alpha<1$, the maximum difference between the two bounds increases from 0 to 0.5 with decrease in the value of α from 1 to 0 .

4. Concluding remarks

The maximum difference between the upper and the lower bounds to P_{e} in terms of L_{α} monotonically increases from 0 to 0.5 as the value of α increases from 1 to ∞ or it decreases from 1 to $0 . L_{1}$ is directly related to P_{e}. In a two-class pattern recognition problem, therefore, it makes no difference whether we use P_{e} or L_{1}. Mathematical treatment of L_{2} is more convenient than that of L_{1}. Moreover, L_{2} has computational advantage over other L_{α} 's $(\alpha \neq 2)$. As a result of closer relationship with P_{e} and computational advantages, in feature evaluation L_{1} and L_{2} are favoured over other L_{α} 's.

Acknowledgement

Typing of the manuscript by Mr. J. Gupta is gratefully acknowledged. Thanks are due to Prof. D. Dutta Majumder for his interest in the work.

2eferences

[I] Deviser. P.A. and J. Kittler (1982). Pattern Recognition: A Statistical Approach. Prentice-Hall, London.
[2] Lissack. T. and K.S. Fu (1956). Error estimation in pattern recognition via L^{x}-distance between posterior density functions. IEEE Trans. inform. Theory 22, 34-54.
[3] Kalath. T. (1967). The divergence and Bhattacharyya distance measures in signal selection. IEEE Trans. Commun. Technol. 15. 52-6

