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Abstract

Saha, P.K., B. Chanda and D. Dutta Majumder, A single scan boundary removal thinning algorithm for 2-D binary object, 
Pattern Recognition Letters 14 (1993) 173-179.

In this paper a new thinning algorithm called Single scan Boundary Removal Thinning Algorithm (SBRTA) is proposed. This 
algorithm uses a single scan to remove border points from all sides, i.e., left, right, top and bottom. It is found that SBRTA 
preserves topology and produces rotation-invariant good skeletons. The performance of the proposed algorithm has been 
compared with those of existing algorithms. The algorithm is computationally efficient.
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1. Introduction

In the context of 2-D binary image processing, 
thinning is considered by many researchers as an 
iterative procedure which removes black points 
(object points) across the boundary until the image 
is thinned to a one-point thick black arc, called 
skeleton. A good thinning algorithm must preserve 
the topology as well as the shape of the original im­
age in the skeleton. Thinning is one of the most 
popular preprocessing methods in many problems 
of pattern recognition and analysis like character 
recognition, finger-print classification etc. This is 
due to the fact that (i) it preserves essential struc­
tural information of an image, (ii) it reduces the 
space to store topological as well as shape informa­
tion o f an image, (iii) it reduces the complexity of
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analyzing the image. Two other image transform a­
tions which are very near to thinning are medial 
axis transformation and shrinking. These techni­
ques sometimes fail to preserve topology or shape 
information. For example, in many cases discrete 
medial axis transformations [4] do not preserve 
topology [7], and on the other hand shrinking 
reduces a digital open arc to one point and looses 
shape information.

During the past few decades, several thinning 
algorithms have been proposed [1,3,5,6,8-12], 
Naccache and Singhal [8] made a study of 14 thin­
ning algorithms based on iterative erosion of the 
boundary. Another approach to thinning is based 
on local maximum distance from background [2]. 
But this approach is not very efficient when the 
width of an image is not large enough (for exam­
ple, character recognition and finger-print recogni­
tion). Furthermore, the former approach can be 
easily parallelised while the latter cannot be. In this 
paper we propose a fast, rotation-invariant thin­



ning algorithm which needs only one scan to check 
all boundary points for removal.

Section 2 presents the necessary definitions. In 
Section 3, the proposed thinning algorithm, called 
Single scan Boundary Removal Thinning Algo­
rithm (SBRTA) is described. Implementation 
details are discussed in Section 4. Finally, in the 
concluding section, the performance of SBRTA is 
compared with that of SPTA [8] along with ex­
perimental results.

2. Definitions and previous works

For convenience, a few definitions which will 
appear often in this paper are listed below.

Definitions of 2-D binary image, N(p)  of a point 
p,  4- (8-) neighborhood, 4- (8-) connectivity, black 
and white components are followed as per standard 
convention. Nomenclature of points in N(p)  is 
shown in Figure 1.

Thinning is an image transformation that 
reduces a black component to a skeleton by 
deleting black points preserving shape and topol­
ogy. Different techniques for thinning exist at 
present. However, the approach involving erosion 
of black components across their boundaries is fol­
lowed in this paper.

As stated earlier, the proposed thinning algo­
rithm is an iterative procedure, and each iteration 
is termed as a pass which is denoted by a pass 
number. A black point having at least one white 
4-neighbor at the beginning of the pass is con­
sidered to be a boundary point.

A point is called a significant-point if at least 
two opposite 4-neighbors of the point are white at 
the beginning of the pass. A black point p  is called 
a break-point if removal of the point creates two or 
more black components in N(p).  A boundary 
point is called a final-point if it remains in the out-

n n n
3 2 i

n
4 P n

0

n n n
5 6 7

Figure 1. 8-neighbors of the point p.

put skeleton. A boundary point is called a flagged- 
point if it can be removed, i.e., transformed to 
white. So, a point is a flagged-point if it is a boun­
dary point, but neither a significant-point, nor a 
break-point nor its deletion vanishes a two-points’ 
thick protrusion.

3. Basic theory of SBRTA

This algorithm is based on iterative erosion o f 
boundary points preserving both shape and topol­
ogy. The algorithm is fast, invariant to rotation by 
integral multiple of 90° and produces midline 
skeletons. Furthermore, the algorithm allows 
reconstruction of original shape like SPTA.

During each pass SBRTA checks boundary 
points, and either flags it for removal or marks it 
as a final-point belonging to the skeleton. It is w or­
thy to note that a black point, once marked as 
final-point is never flagged in subsequent passes. 
Thus, in our algorithm each black point on the 
boundary is checked just once to decide whether it 
is a final-point or a flagged-point. During a pass 
different boundary points are classified as follows:

A black point is a left boundary point if «4 is
white at the beginning of the pass,
else
it is a top boundary point if n2 is white at the
beginning of the pass,
else
it is a right boundary point if n0 is white at the
beginning of the pass,
else
it is a bottom boundary po int if n6 is white at the 
beginning of the pass.

Thus, it should be noted that if a black point is 
a right boundary point then n4 and n2 must be 
black at the beginning of the pass, and so on. This 
information leads us to use different thresholds for 
setting flags to different boundary points, and is 
utilized for efficient detection of final-points.

At the beginning of the algorithm the value 
—maxint is assigned to all the white points and the 
value zero to all the black points. We use m axint 
to denote a large positive integer. Thresholds for



removing different types of boundary points in the 
i th  pass are set as follows:

/ = pass number; (A final-point found during the 
/th  pass is marked with the value of /'.)

c = (i— l ) x 4 — maxint', (Each point having value 
less than or equal to c is white at the beginning of 
the pass.)

l = c+  1; (Each point having value equal to / is 
removed as a left boundary point.)

t = c + 2; (Each point having value equal to t is 
removed as a top boundary point.)

r = c + 3; (Each point having value equal to r is 
removed as a right boundary point.)

b = c + 4; (Each point having value equal to b is 
removed as a bottom boundary point.)
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Figure 2. Window configurations for checking the (a) left, (b) top, (c) right, and (d) bottom boundary points, respectively.



Each point having value greater than b is currently 
black.

Unlike SPTA, SBRTA uses different sets of win­
dow configurations for different boundary points 
as shown in Figure 2. In these windows, (i) points 
marked with ‘x ’ and ‘y ’ are don’t-cares, (ii) blank 
points are white at the beginning of the pass, (iii) 
points marked with are currently black, and 
(iv) at least one of the points marked with ‘ #  ’ is 
currently black. A boundary point is a final-point 
if it matches a corresponding window configura­
tion given in Figure 2(a)-(d).

3.1. Explanation fo r  left boundary points

In window Figure 2(a)(i)&(ii), if one of the 
points marked with ‘x ’ is black then p  is a break­

point, otherw isep  is a significant-point. In window 
Figure 2(a)(iii)&(iv), p  is always a significant- 
point. A left boundary point is a final-point if the 
boolean expression E, is false, otherwise it is a 
flagged-point. E t is given below:

Ei = n0> c ■ (n2> c  + n6>c)

■ (n2> b + n3^ b )  ■ (n6> b  + n5^ b ) .

Boolean operators ‘A N D ’ or ‘O R’ are represented 
by ‘ • ’ and ‘ + ’, respectively.

3.2. Explanation fo r  top boundary points

In window Figure 2(b)(i)&(ii), if one of the 
points marked with ‘x ’ is black then p  is a break­
point, otherwise p  is a significant-point. In window
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Figure 3. The decision tree structures for checking (a) left, (b) top, (c) right, and (d) bottom final-points or flagged-points. Here, ‘fgp’ 
means that p  is a flagged-point, and ‘flp’ means that p  is a final-point.



Figure 2(b)(iii), p  is always a significant-point. In 
Figure 2(b)(iv), p  is part of a two-points’ thick pro­
trusion. A top boundary point is a final-point if 
the boolean expression E, is false, otherwise it is a 
flagged-point. E, is given below:

E, = n6>c -(n4^ t  + n0> c + n } ^ c )

■ (n4>b  + n} ^ b ) -  (n0> b  + n ^ b ) .

3.3. Explanation fo r  right boundary points

In window Figure 2(c)(i)&(ii), if one of the 
points marked with ‘x ’ is black then p  is a break­
poin t, otherwise p  is part of a two-points’ thick 
pro trusion . In window Figure 2(c)(iii), p  is always 
p art o f  a two-points’ thick protrusion. A right 
boundary  point is a final-point if the boolean ex­
pression E r is false, otherwise it is a flagged-point. 
E r is given below:

E r =  («4 >  b + n5 < b ■ n6 ̂  b ■ n7 ^  b)

■ (n2>b  + n x ^ b )  ■ (n6> b  + nn ^ b ) .

3.4. Explanation fo r  bottom boundary points

In  window Figure 2(d)(i), n0 is always black. 
Thus, if any of the points marked with V  is black 
then p  is a break-point, otherwise p  is part of a 
tw o-points’ thick protrusion. In window Figure 
2(d)(ii), n0 is always black, thus p  is always a 
break-point. It should be noted that since p  is a 
bo ttom  boundary point and n0 is the same as it 
was at the beginning of the pass, n0 is thus always 
black. It simplifies the boolean expression Eb for 
bottom  boundary point as follows:

E b = n2> b ■ (n4> b  + n5^ b ) .

A  bottom  boundary point is a final-point if Eb 
is false, otherwise it is a flagged-point.

4. Implementation details

In the previous section, the basic theory of 
SBRTA has been explained. This section describes 
the decision trees corresponding to the boolean ex­
pressions for different types of boundary points to 
achieve the result with the minimum number of

comparisons on an average. Also, a schematic 
description of the actual implementation of 
SBRTA is drawn.

4.1. Checking boolean expressions fo r  boundary 
points

In Section 3, we have explained window con­
figurations for different types of boundary points 
and corresponding boolean expressions. A close 
observation of these boolean expressions points 
out that the average number of points to be check­
ed to reach a decision depends upon the sequence 
in which these points are being checked. It also 
depends on the nature of the image. However, it is 
found that the sequences described by different 
decision trees for different boundary points (as 
shown in Figure 3) are optimal on an average.

4.2. Schematic description o f  SBRTA

As discussed in the previous section, the value 
zero is assigned to every black point and the value 
—maxint is assigned to every white point. In each 
pass, SBRTA needs only one scan of the entire im­
age space in top-down row-wise fashion. During 
the scan in the z'th pass, suppose SBRTA considers 
a point p . If it is a white or a marked black point 
then p  is left unchanged and SBRTA skips to the 
next point. For each unmarked black point it is 
first decided whether the point is a left, top, right 
or bottom boundary point. If it is not a boundary 
point then also SBRTA skips to the next point. 
Now, for any boundary point with zero value, the 
corresponding boolean expression is evaluated. 
Depending on the result one of the following 
operations is performed on the point.

(i) The value l/t/r/b is assigned to a left/top/ 
right/bottom boundary point if it is a flagged- 
point.

(ii) Otherwise the point is a final-point and the 
value i is assigned to it.

Finally, the algorithm stops if no point is flagged 
during a pass. We have applied the algorithm on 
the images given in the paper of Naccache and 
Singhal [8]; the results are shown in Figures 4 and 
5. The quality of skeleton is as good as that of [8], 
while execution time is half. Another result as



shown in Figure 6 reveals that SBRTA is invariant 
to rotation by 90° while SPTA is not.

( c )
Figure 4. Experimental results of SBRTA and SPTA: (a) 
original image (same as Figure 7(a) of [8]), (b) skeleton obtained 

by SBRTA, (c) skeleton obtained by SPTA.

5. Discussion and conclusion

Basic criteria of a good thinning algorithm are 
(i) it is efficient in computation, (ii) it produces 
good midline skeletons, (iii) it is rotation invariant 
(i.e., rotation of image should not change the 
overall shape of the skeleton), and (iv) removal o f 
any point from the skeleton which has more th an  
one black 8-neighbors changes the topology.

Both SPTA and SBRTA produce good skeleton 
with the property that removal of any point which 
has more than one black 8-neighbors changes the 
topology. This section draws a comparison b e­
tween SBRTA and SPTA in terms of cost and ro ta ­
tion invariance.
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Figure 5. Experimental results of SBRTA and SPTA; (a) 
original image (same as Figure 8(a) of [8]), (b) skeleton obtained 

by SBRTA, (c) skeleton obtained by SPTA.

( c )  ( d )  ( e )
Figure 6. Comparative study between SBRTA and SPTA in 
terms of rotation invariance: (a) original image, (b) skeleton o b ­
tained by SBRTA, (c) skeleton obtained by SBRTA after apply­
ing 90° rotation of (a), (d) skeleton obtained by SPTA, (e) 
skeleton obtained by SPTA after applying 90° rotation o f (a).



5.1. Comparison in terms o f  computational cost

The primary advantage of SBRTA over SPTA is 
tha t SBRTA needs only one scan per pass whereas 
SPTA  needs two scans per pass. The number of 
branches of each decision tree corresponding to 
each boundary point in SPTA is eighteen. On the 
o ther hand, the number of branches of decision 
trees corresponding to left, top, right and bottom 
boundary  points in SBRTA are sixteen, eighteen, 
tw entyfour and six, respectively. Thus, the average 
num ber o f branches of decision trees in SBRTA is 
less th an  that of SPTA when all types of boundary 
po in ts are equally likely. Furthermore, a black 
p o in t once marked as a final point by SBRTA is 
never checked for its removal, so each point is 
checked only once for removal by SBRTA. Where­
as in  SPT A , a black point once it becomes a boun­
dary  p o in t is checked in every subsequent pass for 
rem oval. In the worst case when a black point is 
bo th  left (or right) as well as bottom (or top) boun­
dary  p o in t, it is checked for removal in both scans 
o f subsequent passes. A comparative study of 
C PU  tim e between SPTA and SBRTA is perform­
ed. F o r 26 letters (i.e., A to Z), their 90° rotated 
versions and mirror images, the average CPU time 
needed by SPTA is 644.8 millisec and that by 
SBRTA  is 331.4 millisec.

5.2. Comparison in terms o f  rotation invariance

In  Figure 6, we have shown an example where 
SBRTA is rotation invariant and SPTA is not. The 
logic behind this is discussed here.

SBRTA defines significant-points, two-points’ 
thick protrusions depending on the black-and- 
white configuration at the beginning of each pass, 
and the windows are designed accordingly. On the 
other hand, SPTA has defined end-points, two- 
points’ thick protrusions depending on the current

black-and-white configuration. Moreover, the cur­
rent black-and-white configuration in N(p)  de­
pends on the direction of the scan. As a result in 
case of SPTA, whether or not a tail would be 
created from a protrusion depends on its direction, 
and is reflected in Figure 6.
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