
A single scan boundary removal thinning
algorithm for 2-D binary object

P.K. Saha, B. Chanda and D. Dutta Majumder
Electronics and Communication Sciences Unit, Indian Statistical Institute, 203 Barrackpore Trunk Road, Calcutta 700 035, India

Received 3 September 1991
Revised 10 September 1992

Abstract

Saha, P.K., B. Chanda and D. Dutta Majumder, A single scan boundary removal thinning algorithm for 2-D binary object,
Pattern Recognition Letters 14 (1993) 173-179.

In this paper a new thinning algorithm called Single scan Boundary Removal Thinning Algorithm (SBRTA) is proposed. This
algorithm uses a single scan to remove border points from all sides, i.e., left, right, top and bottom. It is found that SBRTA
preserves topology and produces rotation-invariant good skeletons. The performance of the proposed algorithm has been
compared with those of existing algorithms. The algorithm is computationally efficient.

Keywords. 2-D binary image, single scan 2-D thinning.

1. Introduction

In the context of 2-D binary image processing,
thinning is considered by many researchers as an
iterative procedure which removes black points
(object points) across the boundary until the image
is thinned to a one-point thick black arc, called
skeleton. A good thinning algorithm must preserve
the topology as well as the shape of the original im­
age in the skeleton. Thinning is one of the most
popular preprocessing methods in many problems
of pattern recognition and analysis like character
recognition, finger-print classification etc. This is
due to the fact that (i) it preserves essential struc­
tural information of an image, (ii) it reduces the
space to store topological as well as shape informa­
tion o f an image, (iii) it reduces the complexity of

Correspondence to: Dr. D. Dutta Majumder, ECSU, Indian Sta­
tistical Institute, 203 BT Road, Calcutta 700 035, India.

analyzing the image. Two other image transform a­
tions which are very near to thinning are medial
axis transformation and shrinking. These techni­
ques sometimes fail to preserve topology or shape
information. For example, in many cases discrete
medial axis transformations [4] do not preserve
topology [7], and on the other hand shrinking
reduces a digital open arc to one point and looses
shape information.

During the past few decades, several thinning
algorithms have been proposed [1,3,5,6,8-12],
Naccache and Singhal [8] made a study of 14 thin­
ning algorithms based on iterative erosion of the
boundary. Another approach to thinning is based
on local maximum distance from background [2].
But this approach is not very efficient when the
width of an image is not large enough (for exam­
ple, character recognition and finger-print recogni­
tion). Furthermore, the former approach can be
easily parallelised while the latter cannot be. In this
paper we propose a fast, rotation-invariant thin­

ning algorithm which needs only one scan to check
all boundary points for removal.

Section 2 presents the necessary definitions. In
Section 3, the proposed thinning algorithm, called
Single scan Boundary Removal Thinning Algo­
rithm (SBRTA) is described. Implementation
details are discussed in Section 4. Finally, in the
concluding section, the performance of SBRTA is
compared with that of SPTA [8] along with ex­
perimental results.

2. Definitions and previous works

For convenience, a few definitions which will
appear often in this paper are listed below.

Definitions of 2-D binary image, N(p) of a point
p, 4- (8-) neighborhood, 4- (8-) connectivity, black
and white components are followed as per standard
convention. Nomenclature of points in N(p) is
shown in Figure 1.

Thinning is an image transformation that
reduces a black component to a skeleton by
deleting black points preserving shape and topol­
ogy. Different techniques for thinning exist at
present. However, the approach involving erosion
of black components across their boundaries is fol­
lowed in this paper.

As stated earlier, the proposed thinning algo­
rithm is an iterative procedure, and each iteration
is termed as a pass which is denoted by a pass
number. A black point having at least one white
4-neighbor at the beginning of the pass is con­
sidered to be a boundary point.

A point is called a significant-point if at least
two opposite 4-neighbors of the point are white at
the beginning of the pass. A black point p is called
a break-point if removal of the point creates two or
more black components in N(p). A boundary
point is called a final-point if it remains in the out-

n n n
3 2 i

n
4 P n

0

n n n
5 6 7

Figure 1. 8-neighbors of the point p.

put skeleton. A boundary point is called a flagged-
point if it can be removed, i.e., transformed to
white. So, a point is a flagged-point if it is a boun­
dary point, but neither a significant-point, nor a
break-point nor its deletion vanishes a two-points’
thick protrusion.

3. Basic theory of SBRTA

This algorithm is based on iterative erosion o f
boundary points preserving both shape and topol­
ogy. The algorithm is fast, invariant to rotation by
integral multiple of 90° and produces midline
skeletons. Furthermore, the algorithm allows
reconstruction of original shape like SPTA.

During each pass SBRTA checks boundary
points, and either flags it for removal or marks it
as a final-point belonging to the skeleton. It is w or­
thy to note that a black point, once marked as
final-point is never flagged in subsequent passes.
Thus, in our algorithm each black point on the
boundary is checked just once to decide whether it
is a final-point or a flagged-point. During a pass
different boundary points are classified as follows:

A black point is a left boundary point if «4 is
white at the beginning of the pass,
else
it is a top boundary point if n2 is white at the
beginning of the pass,
else
it is a right boundary point if n0 is white at the
beginning of the pass,
else
it is a bottom boundary po int if n6 is white at the
beginning of the pass.

Thus, it should be noted that if a black point is
a right boundary point then n4 and n2 must be
black at the beginning of the pass, and so on. This
information leads us to use different thresholds for
setting flags to different boundary points, and is
utilized for efficient detection of final-points.

At the beginning of the algorithm the value
—maxint is assigned to all the white points and the
value zero to all the black points. We use m axint
to denote a large positive integer. Thresholds for

removing different types of boundary points in the
i th pass are set as follows:

/ = pass number; (A final-point found during the
/th pass is marked with the value of /'.)

c = (i— l) x 4 — maxint', (Each point having value
less than or equal to c is white at the beginning of
the pass.)

l = c+ 1; (Each point having value equal to / is
removed as a left boundary point.)

t = c + 2; (Each point having value equal to t is
removed as a top boundary point.)

r = c + 3; (Each point having value equal to r is
removed as a right boundary point.)

b = c + 4; (Each point having value equal to b is
removed as a bottom boundary point.)

(i) (i i) (i i i) (i v)

(a)

>c X

<t P

Y y y

X y

X p y

X y

* X

•QVI p X

X X X

X it

X p

X X X

(i) (i i) (i i i) (iv)

(b)

X X X

X p

X •k

X X X

AVI p

#

X

•QVI *

X P

X X X

(i) (i i) (i i i)

(c)

X X X

1 -QVI p X

* X

(i) (i i)

(d)

Figure 2. Window configurations for checking the (a) left, (b) top, (c) right, and (d) bottom boundary points, respectively.

Each point having value greater than b is currently
black.

Unlike SPTA, SBRTA uses different sets of win­
dow configurations for different boundary points
as shown in Figure 2. In these windows, (i) points
marked with ‘x ’ and ‘y ’ are don’t-cares, (ii) blank
points are white at the beginning of the pass, (iii)
points marked with are currently black, and
(iv) at least one of the points marked with ‘ # ’ is
currently black. A boundary point is a final-point
if it matches a corresponding window configura­
tion given in Figure 2(a)-(d).

3.1. Explanation fo r left boundary points

In window Figure 2(a)(i)&(ii), if one of the
points marked with ‘x ’ is black then p is a break­

point, otherw isep is a significant-point. In window
Figure 2(a)(iii)&(iv), p is always a significant-
point. A left boundary point is a final-point if the
boolean expression E, is false, otherwise it is a
flagged-point. E t is given below:

Ei = n0> c ■ (n2> c + n6>c)

■ (n2> b + n3^ b) ■ (n6> b + n5^ b) .

Boolean operators ‘A N D ’ or ‘O R’ are represented
by ‘ • ’ and ‘ + ’, respectively.

3.2. Explanation fo r top boundary points

In window Figure 2(b)(i)&(ii), if one of the
points marked with ‘x ’ is black then p is a break­
point, otherwise p is a significant-point. In window

(a)

(=)

(b)

n >b
y / \ n

r/> b Xflp
y / 4\ y

n >J> fgp

Y /
flP

(d)

Figure 3. The decision tree structures for checking (a) left, (b) top, (c) right, and (d) bottom final-points or flagged-points. Here, ‘fgp’
means that p is a flagged-point, and ‘flp’ means that p is a final-point.

Figure 2(b)(iii), p is always a significant-point. In
Figure 2(b)(iv), p is part of a two-points’ thick pro­
trusion. A top boundary point is a final-point if
the boolean expression E, is false, otherwise it is a
flagged-point. E, is given below:

E, = n6>c -(n4^ t + n0> c + n } ^ c)

■ (n4>b + n} ^ b) - (n0> b + n ^ b) .

3.3. Explanation fo r right boundary points

In window Figure 2(c)(i)&(ii), if one of the
points marked with ‘x ’ is black then p is a break­
poin t, otherwise p is part of a two-points’ thick
pro trusion . In window Figure 2(c)(iii), p is always
p art o f a two-points’ thick protrusion. A right
boundary point is a final-point if the boolean ex­
pression E r is false, otherwise it is a flagged-point.
E r is given below:

E r = («4 > b + n5 < b ■ n6 ̂ b ■ n7 ^ b)

■ (n2>b + n x ^ b) ■ (n6> b + nn ^ b) .

3.4. Explanation fo r bottom boundary points

In window Figure 2(d)(i), n0 is always black.
Thus, if any of the points marked with V is black
then p is a break-point, otherwise p is part of a
tw o-points’ thick protrusion. In window Figure
2(d)(ii), n0 is always black, thus p is always a
break-point. It should be noted that since p is a
bo ttom boundary point and n0 is the same as it
was at the beginning of the pass, n0 is thus always
black. It simplifies the boolean expression Eb for
bottom boundary point as follows:

E b = n2> b ■ (n4> b + n5^ b) .

A bottom boundary point is a final-point if Eb
is false, otherwise it is a flagged-point.

4. Implementation details

In the previous section, the basic theory of
SBRTA has been explained. This section describes
the decision trees corresponding to the boolean ex­
pressions for different types of boundary points to
achieve the result with the minimum number of

comparisons on an average. Also, a schematic
description of the actual implementation of
SBRTA is drawn.

4.1. Checking boolean expressions fo r boundary
points

In Section 3, we have explained window con­
figurations for different types of boundary points
and corresponding boolean expressions. A close
observation of these boolean expressions points
out that the average number of points to be check­
ed to reach a decision depends upon the sequence
in which these points are being checked. It also
depends on the nature of the image. However, it is
found that the sequences described by different
decision trees for different boundary points (as
shown in Figure 3) are optimal on an average.

4.2. Schematic description o f SBRTA

As discussed in the previous section, the value
zero is assigned to every black point and the value
—maxint is assigned to every white point. In each
pass, SBRTA needs only one scan of the entire im­
age space in top-down row-wise fashion. During
the scan in the z'th pass, suppose SBRTA considers
a point p . If it is a white or a marked black point
then p is left unchanged and SBRTA skips to the
next point. For each unmarked black point it is
first decided whether the point is a left, top, right
or bottom boundary point. If it is not a boundary
point then also SBRTA skips to the next point.
Now, for any boundary point with zero value, the
corresponding boolean expression is evaluated.
Depending on the result one of the following
operations is performed on the point.

(i) The value l/t/r/b is assigned to a left/top/
right/bottom boundary point if it is a flagged-
point.

(ii) Otherwise the point is a final-point and the
value i is assigned to it.

Finally, the algorithm stops if no point is flagged
during a pass. We have applied the algorithm on
the images given in the paper of Naccache and
Singhal [8]; the results are shown in Figures 4 and
5. The quality of skeleton is as good as that of [8],
while execution time is half. Another result as

shown in Figure 6 reveals that SBRTA is invariant
to rotation by 90° while SPTA is not.

(c)
Figure 4. Experimental results of SBRTA and SPTA: (a)
original image (same as Figure 7(a) of [8]), (b) skeleton obtained

by SBRTA, (c) skeleton obtained by SPTA.

5. Discussion and conclusion

Basic criteria of a good thinning algorithm are
(i) it is efficient in computation, (ii) it produces
good midline skeletons, (iii) it is rotation invariant
(i.e., rotation of image should not change the
overall shape of the skeleton), and (iv) removal o f
any point from the skeleton which has more th an
one black 8-neighbors changes the topology.

Both SPTA and SBRTA produce good skeleton
with the property that removal of any point which
has more than one black 8-neighbors changes the
topology. This section draws a comparison b e­
tween SBRTA and SPTA in terms of cost and ro ta ­
tion invariance.

aanaciaQacmDODDOQDnaDDaaDooDaQDonaoDo
o a o a a a o a n o o n a o o o o o o D D O Q n o a D D o n o c i D o o n
oaannaanaD D aaD aciaaciD Q acm onacic ioonoD O o
□□□□□□□□□□□□□□ooDnnanQaDciocmD DaaonoD
00QU0DaanD0na0D0anDan00DDD0D0DD0QDD0
aooQDQonoanoanoQoacmoDOOcmDonDnDaoao
□□□aoaooaoaaaODaoannanGaaQaooanoaQOOa a a Q a a a a a a o a a a n a o a a o o o a a o a a a o a c ju a a D n□oaocmooocmoaaDnooaDQanaoDaoooooaano
□□□QanaDoooDnoanDODDDaoDDOonDoaooanD□QQQOQDQQOOOQOODDOQQnOnODDnUQDOQDnDD

(c)
Figure 5. Experimental results of SBRTA and SPTA; (a)
original image (same as Figure 8(a) of [8]), (b) skeleton obtained

by SBRTA, (c) skeleton obtained by SPTA.

(c) (d) (e)
Figure 6. Comparative study between SBRTA and SPTA in
terms of rotation invariance: (a) original image, (b) skeleton o b ­
tained by SBRTA, (c) skeleton obtained by SBRTA after apply­
ing 90° rotation of (a), (d) skeleton obtained by SPTA, (e)
skeleton obtained by SPTA after applying 90° rotation o f (a).

5.1. Comparison in terms o f computational cost

The primary advantage of SBRTA over SPTA is
tha t SBRTA needs only one scan per pass whereas
SPTA needs two scans per pass. The number of
branches of each decision tree corresponding to
each boundary point in SPTA is eighteen. On the
o ther hand, the number of branches of decision
trees corresponding to left, top, right and bottom
boundary points in SBRTA are sixteen, eighteen,
tw entyfour and six, respectively. Thus, the average
num ber o f branches of decision trees in SBRTA is
less th an that of SPTA when all types of boundary
po in ts are equally likely. Furthermore, a black
p o in t once marked as a final point by SBRTA is
never checked for its removal, so each point is
checked only once for removal by SBRTA. Where­
as in SPT A , a black point once it becomes a boun­
dary p o in t is checked in every subsequent pass for
rem oval. In the worst case when a black point is
bo th left (or right) as well as bottom (or top) boun­
dary p o in t, it is checked for removal in both scans
o f subsequent passes. A comparative study of
C PU tim e between SPTA and SBRTA is perform­
ed. F o r 26 letters (i.e., A to Z), their 90° rotated
versions and mirror images, the average CPU time
needed by SPTA is 644.8 millisec and that by
SBRTA is 331.4 millisec.

5.2. Comparison in terms o f rotation invariance

In Figure 6, we have shown an example where
SBRTA is rotation invariant and SPTA is not. The
logic behind this is discussed here.

SBRTA defines significant-points, two-points’
thick protrusions depending on the black-and-
white configuration at the beginning of each pass,
and the windows are designed accordingly. On the
other hand, SPTA has defined end-points, two-
points’ thick protrusions depending on the current

black-and-white configuration. Moreover, the cur­
rent black-and-white configuration in N(p) de­
pends on the direction of the scan. As a result in
case of SPTA, whether or not a tail would be
created from a protrusion depends on its direction,
and is reflected in Figure 6.

References

[1] Arcelli, C. (1979). A condition for digital point removal.
Signal Process. 1, 283-285.

[2] Arcelli, C. and S. de Baja (1985). A width-independent
fast thinning algorithm. IEEE Trans. Pattern. Anal.
Machine Intell. 7, 463-474.

[3] Bel-Lan, A. and L. Montoto (1981). A thinning transform
for digital images. Signal Process. 3, 37-47.

[4] Blum, H. (1967). A transformation for extracting new
descriptors o f space. In: W. Wathen-Dunn, Ed., Models
fo r Perception o f Speech and Visual Form. MIT Press,
Cambridge, MA, 362-380.

[5] Buen, M. (1973). A flexible method for automatic reading
of hand-written numerals. Philips Tech. Rev. 31, 130-137.

[6] Hilditch, C.J. (1969). Linear skeleton from square cup­
boards. In: B. Meltzer and D. Michie, Eds., Machine In­
telligence, Vol. 4. Edinburgh Univ. Press, Edinburgh, UK,
403-420.

[7] Kong, T.Y. and A. Rosenfeld (1989). Digital topology: in­
troduction and survey. Comput. Vision Graphics Image
Process. 48, 357-393.

[8] Naccache, N.J. and R. Singhal (1984). SPTA: a proposed
algorithm for thinning binary patterns. IEEE Trans. Sysl.
Man Cybernet. 14, 409-418.

[9] Pavlidis, T. (1982). Algorithms fo r Graphics and Image
Processing. Springer, Rockville, MD, 195-291.

[10] Rosenfeld, A. (1975). A characterization o f parallel thin­
ning algorithms. Inform. Control. 29, 286-291.

[11] Stefanelli, R. and A. Rosenfeld (1971). Some parallel thin­
ning algorithms for digital pictures. J. /I550C. Comput.
Mach. 18, 255-264.

[12] Tamura, H. (1978). A comparison of line-thinning algo­
rithms from a digital geometry viewpoint. Proc. 4th
Int. Joint Conf. on Pattern Recognition, Kyoto, Japan,
715-719.

	A single scan boundary removal thinning algorithm for 2-D binary object

	P.K. Saha, B. Chanda and D. Dutta Majumder

	1.	Introduction

	4.	Implementation details

	5.	Discussion and conclusion

