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Abstract
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The point set here consists of pixels from a digital image. First, the digital Voronoi diagram of the set is constructed using
the Euclidean distance. From this diagram a certain planar graph is found which is a subgraph of the Delaunay triangulation
of the point set. Finally, the shape of the point set is computed as a certain subgraph of the planar graph.
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1. Introduction

One common way to define the shape of a finite
set of 2-D points is its convex hull. There is a host
of algorithms to compute convex hulls. But in
many cases the underlying shape from which the
points emerge is not convex. Edelsbrunner et al.
(1983) extended one definition of the convex hull
and proposed a general definition of the shape
(convex or otherwise) of a finite planar set. This is
called a-shape which will find applications in pat-
tern recognition.

The present paper proposes an algorithm to find
the a-shape of a finite set of digital points. In im-
age processing problems, it is sometimes necessary
to reconstruct a shape from a set of pixels or lattice
points (whose coordinates are only integers). Since
our aim here is to find the shape boundary of a
point set including boundary concavities, we will
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consider a-shapes for negative « only. In Section 2
the definitions and results that are relevant for a-
shape (for arbitrary &) computation in the con-
tinuous case, are given. In Section 3 we present
some definitions and results on digital geometry
that are useful for computing a-shapes (for
negative ¢) in the digital case. Computational
techniques are explained in Section 4. Results and
conclusions are given in Section 5.

2. Definitions and results in continuous case
(Edelsbrunner et al. (1983))

Let a be an arbitrary real number. A generalized
disc of radius 1/a is defined as a closed disc of
radius 1/e if a> 0, the closed complement of a disc
of radius —1/¢ if <0, and a closed halfplane if
a=0. For a set S of 2-D points, the a-hull of S is
the intersection of all generalized discs of radius
1/« that contain §. A point P in S is a-extreme in
S if there exists a generalized disc of radjus 1/«
containing S such that P lies on its boundary. Two
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a-extreme points P and Q of S are a-neighbours if
there exists a generalized disc of radius 1/a con-
taining S such that both P and Q lic on its boun-
dary. The a-shape of S is the planar straight line
graph whose vertices are the a-extreme points and
whose edges connect the respective a-neighbours.
As o approaches zero, the a-shape tends to coin-
cide with the convex hull of S.

Proposition 2.1. The a-shape of S is a subgraph of
the Delaunay triangulation of S which can be com-
puted from the closest point Voronoi diagram ( for

a < 0) or the furthest point Voronoi diagram ( for
a>0) of S.

Proposition 2.2. For every edge e in the Delaunay
triangulation of S, there exist real numbers a;,(e)
and o, (e) where oy (€) <oy, (€) such that e is
an edge of the a-shape of S if and only if oy, (e)<
o < Opaxle).

Thus, the edges of the ¢-shape can be identified
after examining the edges of the Delaunay tri-
angulation of S (Edelsbrunner et al. (1983)).

3. Definitions and results in digital case

Let S={P;,i=1,...,n} be a set of pixels in a
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Figure 1. Digital Dirichlet Tesselation of § which is a set of eight
pixels (indicated by underlined labels). Labels ‘i’ mark the ith
Voronoi tile for i=1,2,...,8.

an

PATTERN RECOGNITION LETTERS

February 1993

11111111213122222222222
111111111122222222222
111111111122222222222
111111 %1121222%*2222222
1111111113122222222225
3311111111222222226555
333312111144222225555T5
3333331144444225555655
33333334444444555555°5
333333344444445555%555
333 *%333444*%444555%555
333333344444445555525°5
3333333444444 455550525°5
33333334444444555555°5
666666677 777778888888
66666667 7777778888888
66666667777 7778888888
666 %6667 77 *777888*888
66666667 7777778888888
66666667 7777771888888 S8
66666667 777777188888288

Figure 2. The pixels with underlined labels indicate the Digital
Voronoi Diagram of . Pixels of § have labels ‘¥,

digital image I of size m x m where P;=(r;, ¢;) and
r;, ¢; are integers indicating the row and column
positions respectively of the pixel P;. Let, for any
pixel P with coordinates (r,¢) in I, d(P, P;) denote
the Buclidean distance {(r—r;)%+(c—c;)?}"2 A
matrix M of size mxm is defined as follows.
M(r,c)=i if (1) d(P, P;)<d(P, P;) for all j#i and
(2) d(P, P;)<d(P, P)) for all j<i. In other words,
a pixel Pin I gets as its label the index of its nearest
pixel in S. If P has multiple nearest pixels in S, then
the minimum index among these nearest pixels
becomes the label of P (Figure 1).
Clearly, M(r;,c;)=i for all i.

Definition 3.1. C(i)={(r,c): M(r,c)=i} for i=
1,...,n. ‘

Note that the C(i)’s are non-empty and disjoint
and their union is the whole image 1.

Definition 3.2. C()) is the digital Voronoi polygon
or tile corresponding to P;.

Definition 3.3. The set of all » tiles is the digital
Dirichlet Tessellation (DDT) of § (Figure 1).

The digital Voronoi diagram (DVD) of S is
defined as follows. It consists of pixels which lie on
the boundary of the tiles such that it is 8-connected
and it has unit thickness. More formally, a pixel
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(r,¢) belongs to DVD if there is a 4-neighbour
(r,¢) of (r,¢) such that M(r,c)<M(r,,c,). Note
that any pixel P which has more than one nearest
neighbour in S belongs to DVD. Also, for any P in
DVD, its distances from its two nearest neighbours
in § differ by at most 1 (Figure 2). This is because
of the digital nature of the geometry. A pixel in
DDT is called interior if it is not in DVD.

Definition 3.4. B(i) = {(r,c) e DVD such that there
is a 4-neighbouring interior pixel (r,¢’) of (r,c)
satisfying M(r’, ¢’y =i} is the boundary of the ith
tile (Figure 3).

Note that B(i) may not be a subset of C(i). This
is because B(i) may belong to an adjacent C(/) due
to the digital nature of the geometry.

Proposition 3.1. B(/) is a digital curve.

Definition 3.5. C’(i)= C(i) - B(i) is the interior of
the ith tile.

Definition 3.6. E(i,j)=B(i)N B(j) is the Voronoi
edge shared by the ith and jth tiles (Figure 3).

Proposition 3.2. A pixel P belongs to E(i, ;) if and
only if P has at least one 4-neighbour in both C'(i)
and C'(j).
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Figure 3. P and P; are the two pixels of S on the top left and
on the top right respectively. B(#) is the set of pixels with labels
‘i"and ‘3 for i=1,2. E(1,2), the set of pixels with labels ‘3°,
is a Voronoi edge. Hence P, is a Voronoi neighbour of P,.
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Proposition 3.3. If E(i,j) is non-null, it is a digital
straight line segment. Also, (r,c)e€ E(i,j) implies
M(r,c)=min{ij}.

Definition 3.7. P; is a Voronoi neighbour of P; if
E(i,j) is non-empty (Figure 3).

Proposition 3.4. P; and P; are Voronoi neigh-
bours if and only if there exist two 4-neighbouring
pixels (ry,¢)) and (ry, ;) such that M(r,c;)=i and
M(r29 ) =J.

Definition 3.8. G(S) is a planar straight line graph
where S is the set of vertices and P;P; forms an
edge if P; and P; are Voronoi neighbours.

Proposition 3.5. If no four points of S are co-
circular, G(S) is the same as the Delaunay tri-
angulation of S. Otherwise, G(S) is a subgraph of
any Delaunay triangulation of S.

Let r=~1/a (¢<0). We define the a-shape of S
as a planar straight line graph A,(S) in the follow-
ing way.

Definition 3.9. For P,P;e S, P,P; is an edge of
A, if there is a disc D of radius r such that
(i) P; and P; are on the boundary of D,
(ii) there is no point of S falling on the open arc
P;P;, and
(iii) there is no point of § in the interior of D.

Proposition 3.6. A,(S) is a subgraph of G(S).
Proposition 3.7. For every edge e of G(S), there
exist real numbers a.;,(e) and a.(e) where
Omin(€) < @max(€) such that e is an edge of A,(S) if
and only if 0min(€) Sa< amay(e)-

We write ryp(e)=—1/apa(e) and rqa(e)=
—1/ay..(e). Thus, the edges of the a-shape can be

identified after examining the edges of G(S) and
their r;, and rg,, values.

4. Computation of g-shape
The computational techniques for a-shapes

9



Volume 14, Number 2

in the digital case are described in this section.
We assume that no two points or pixels of §=
{P,,Py,...,P,} are 8-neighbours of each other.
That is, there is a gap of at least one pixel between
any pair of pixels of S. This can be achieved by
multiplying by two the coordinates of each pixel of
an arbitrary set S.

Computation of DDT(S)

Suppose the pixels of S belong to an image I of
size m x m. For every pixel p=(r,c) in I, we com-
pute the Euclidean distance d; between p and P;.
Find P; such that d;=min d;. If P; is not unique,
we choose the one with minimum j. We label the
pixel (r,¢) as j. That is, M(r,c)=j. The computa-
tional complexity in this step is O(nm?). Parallel

Table 1

Pixel labels Coordinates (row,column)

1 4, 7

2 4,14

3 11, 4

4 1,11

5 11,18

6 18, 4

7 18,11

8 18,18
Neighbouring triplets

(1,2,4), 2,1,4), (3, 1,4), (3,4,6),
4, 1,3), 4,2,5), 4,3,7), 4,5,7),
(5,2,4), (5,4,8), 6,3,7), (7,4,6),

(7,4.8), 857

Edges of G(S)  Centres of Delaunay circles

Fmin Fmax
1,2 (6.64,10.50) 3.50 o
1,4) (6.64,10.50), (8.36,7.50) 4.03 4.39
(PA)) (6.64,10.50), (8.36,14.50) 3.81 4.39
(€AY (8.36,7.50) 3.81 0
3,4 (8.36,7.50), (14.50,7.50) 3.50 4.95
“,5) (8.36,14.50), (14.50,14.50)  3.50  4.95
5,2) (8.36, 14.50) 4.03 o
3,6) (14.50,7.50) 3.50 o
@,7 (14.50,7.50), (14.50,14.50)  3.50  4.95
5.8) (14.50, 14.50) 3.50 o
6.7 (14.50,7.50) 3.50 o0
(7,8 (14.50, 14.50) 3.50 o
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computation is possible here since each of the m?

pixels of I can be simultaneously given a label. In
Figure |, n=8 and m=21,

Computation of edges of G(S) and r,;, and I',,

Definition 4.1. A circle that passes through at least
three pixels of S but does not contain any pixel of
S in its interior, is called a Delaunay circle.

For computing r./rmax values of an edge of
G(S) we will use the following result.

Proposition 4.1. For every edge P,P; of G(S),
there will be exactly one ( for a convex hull edge)

or exactly two (for an interior edge) Delaunay
circles passing through P; and P;.

For every pixel p=(r,¢) in I, its 4-neighbour-
hood is considered. Suppose M(r, ¢) =i. If there are
two pixels p; =(r),¢;) and p, =(r,, ¢;) in the neigh-
bourhood such that p; and p, are 8-neighbours of
each other and M(ry,c,)=j and M(r,,c,) =k with
i#j#*k, then (P, P;,P,) is called a neighbouring
triplet. Note that for every edge of G(S), there is
a neighbouring triplet containing its two vertices.
Thus to find all edges of G(S), it is sufficient to
find all neighbouring triplets. Each pixel of 7 is ex-
amined to see if it gives rise to a neighbouring

¢

Figure 4. A ‘4 pattern is shown by dark lines. The dots are a
random set S of 200 pixels drawn from the pattern.
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Figure S. The a-shape of § is indicated by dark lines and the rest of the Delaunay triangulation by light lines. (a), (b) and (c) show
the a-shapes for r=29, 35 and 189 respectively.

riplet. For such a triplet, P, and P, (as well as P;
ad P,) are Voronoi neighbours. Thus, P;P; and
P.P, are listed as two edges of G(S). Note that the
drcle passing through P;, P; and P, is a Delaunay
tircle, The centre of this circle is computed and
Stored alongwith each of the two edges P,P; and
PP, From Proposition 4.1 it is clear that either
0ne or two such centres will be stored with each
tdge of G(S).

For an edge P,P; of G(S), its ryyp and 7me
Values are computed in the following way. 1f there

are two centres ¢; and ¢, stored against the edge,
then ry;, = half of the length of the edge P,P; and
Imax=max(d;,d,) where d,=Euclidean distance
between P; and ¢, for 1=1,2. If there is only one
centre ¢ associated with the edge P,P;, then
Fmax = 9. If ¢ and Py fall on the same side of PP,
Tmin=half of the length of P;P;. Otherwise,
I'min = Euclidean distance between P; and c.
Given the DDT(S), the time complexity to find
the edges of G(S) and their r,;, and r,,,, values is

of the order O(m?). The number of the edges of

na
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G(S) are of the order of O(n) (Preparata and
Shamos (1985)).

Computation of A,S)

Above we have found all edges of G(S) and the
Fenin @0 Fqy Values for each of them. For any fixed
value of a, let r=-1/a. To get the edges of
A,(S), we find only those edges e of G(S) such
that 7, <7< Fpax- Given G(S), the time needed to
find A, from it is of the order of O(n).

5. Results and conclusions

The output after various computational steps is
given in Table 1 for the set of eight pixels shown
in Figure 1. For a sufficiently large r, say 5.0, there
are seven a-shape edges which form the convex
hull of the eight pixels. We next take a cross (‘ +’)
pattern to demonstrate how our algorithm works.
A random sample S (with uniform distribution) of
200 pixels are drawn from a digital cross pattern
(Figure 4). In Figure 5 the a-shapes of S are shown
for r=-1/a=29, 35 and 189. The choice of an op-
timal ¢ is still an open problem (Toussaint (1988)).
We are currently working on this problem with the
assumption of a uniform distribution.
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Among the steps needed to compute 4, from S,
the most time consuming step is to find DDT(S)
from S. However, a parallel implementation of
this computation is possible. In fact, a SIMD
machine will be quite suitable for the purpose.
Such a machine will also be appropriate for com-
puting G(S) from DDT(S).

Earlier Toriwaki and Yokoi (1988) presented an
algorithm to compute Voronoi diagrams on a
digital plane using the L, metric. But we have used

the L, metric for the computation of Voronoi
diagrams.
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