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Abstract

Chaudhuri, B.B., P. Kundu and N. Sarkar, Detection and gradation of oriented texture, Pattern Recognition Letters 14 (1993) 
147-153.

It is difficult to analyze oriented textures by conventional statistical or structural methods. This letter describes an approach 
to characterize texture orientation. The approach is based on directional evidence accumulation as in the Hough Transform. 
Also, a measure to grade the directional image is defined. Illustrative examples are presented to demonstrate the efficiency of 
the approach.
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1. Introduction

Textures which have a dominant local orienta­
tion everywhere, may be called oriented textures. 
Orientation is an important feature in computer- 
based recognition and description o f objects as 
well as in the characterization of texture of a 
region. Analysis o f orientation may be applied to 
practical problems such as detection of defects in 
wood and metal strips under bend and stress, re­
generation o f a missing portion in some texture 
field, etc. Continuous spatial orientation in texture 
is connected to the concepts of flow field and 
coherence which are considered to be intrinsic pro­
perties of images.

Techniques to analyze texture can be classified 
broadly into statistical and structural approaches. 
In statistical approaches, texture is considered to
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be a result of some random process, such as 
Markov random field, or fractal Brownian mo­
tion. In a structural approach, the texture is viewed 
as an irregular repetition of some primitive ele­
ments, called texels. Many oriented textures can­
not be modelled easily by statistical or structural 
approaches and hence need special attention.

The reason of our ability to detect orientation 
has been understood from the discovery due to 
Hubei and Wiesel (1962) that the mammalian 
visual cortex contains orientation selective cells. 
Physiological study of orientation selective mecha­
nism (Schiller et al. (1976)) and psychological 
study of oriented pattern perception (Glass (1969)) 
are reported in the literature. About the com­
putational aspects of orientation, Zucker (1983) 
reported an approach based on the combination of 
outputs of several linear operators. Kanatani 
(1984) used integral geometry to  determine surface 
orientation from the intersection of scan lines with 
the textures curves. Bajcsy (1972, 1973) used 
Fourier power spectra to detect texture direc­



tionality. An interesting work is due to Strassman
(1986) who analyzed the style or texture of brush 
strokes in Japanese paintings in order to create a 
realistic computer paintbrush. Kass and Witkin
(1987) described an algorithm for orientation 
detection that is based on a direction-dependent 
bandpass filter the frequency response of which is 
defined as

F(r, 0) = [iz~rl° ' - r2allXln\r cos 0.

The passband is determined by the values of a, 
and <72- According to the authors, good filter 
response is obtained if the ratios of sigmas lie in 
the range of 2-10. The orientation specificity is 
provided by the cosine dependence of the filter on
0. Rao (1990), on the other hand, finds gradients 
of the Gaussian smoothed image and computes a 
weighted average of the corresponding orientation 
estimates over a neighborhood. Kass and Witkin as 
well as Rao define a coherence measure that 
represents the degree of flow-like texture in the 
neighborhood.

An alternative and simple method of orientation 
detection based on evidence accumulation as in the 
Hough (1962) transform is proposed here. In this 
method, the edge image is formed by the Laplacian 
of Gaussian approach. An orientation histogram 
of dominant local orientation is created from the 
edge image. Next, the peaks and valleys of the 
orientation histogram are detected. The height and 
width of the peaks are used to define a measure of 
texture orientation. Illustrative examples on the 
Brodatz (1966) album textures are presented.

2. Detection of directionality

The directionality analysis is done here in three 
steps namely edge detection, directional histogram 
construction, and peak detection. Finally, a 
measure is proposed to grade the textures as 
strongly or weakly directional.

2.1. Edge detection

The edge image is formed from the gradient vec­
tor of magnitude G and angle 0  with horizontal. 
Consider two masks (Bergholm (1988)):

J) = exp[ -  O'2 + j 2) / o'2], ( 1)
o

h v(i, j ) = exp [ -  (i2 + j 2) / o 2] (2)
a

where —s < i , j < s .
Determination of mask size 5 is a critical issue. 

A big mask needs more computation while a small 
mask can lead to inaccuracy. The mask size is 
chosen in such a way that the minimum magnitude 
of hx or hy at any point ( i , j )  except on the lines 
defined by (0, j )  and ( / ,0) within the mask should 
be at least 0.01. The coordinates of the furthest 
points in the mask are (± 5 , ± 5). At one of such 
points, say (s,s), the value of hx is

hx{s, s) = —r exp [ -  2s2/c t2] ^ 0 .01.
<7

Considering the minimum value of hx(s,s) we 
have

—  e x p [ -2s2/cr2] = 0.01. 
a

An approximate solution o f this equation is given 
by (Bergholm (1988)):

5« c r]/-  log(0.005) -21og a.  (3)

Note that at the points on the lines defined by 
(0, 7), hx is zero while at the points on the line by 
(/, 0), hy is zero.

These masks are convolved with the image /

GX = {hX*I), Gy=(hy *l)
to  get

G = (G2 + G 2) and 0 = ta n - 1 [Gy/ G x]. (4)

The gradient vector (G, <p) is computed on a m ask 
o f size 5 x 5 at each pixel o f the image using equa­
tions (l)-(4). The resulting image can be called 
edge image E.

2.2. Dominant direction histogram construction

Let the direction be quantized at 1° interval. For 
an m x m  pixel subimage W  of the edge image E ,  
an array of 180 accumulator bins are defined. Let 
^l^denote the accumulator bin for edge con tribu ­
tion along direction 0.



T h e  contribution  o f a pixel (i , j ) e  W  in the ac­
c u m u la to r  A ^  is G ( i , j )  cos2(8-t/>ij) where 0 ,y is 
t h e  angle o f the gradient at (i , j) .  The contribution 
f r o m  all pixels can be written as

A ^=  E  G ( i , j )  cos2(0-0 ,y);
(i,j)e W

0° < # <  180°. (5) 

A .n  estim ate o f dom inant direction in W  is given by

6 so that

A^=maxA^. (6)
d

Another array, called Histogram array is used. The 
array consists of 180 elements, where element H e 
contains frequency for direction 6.

When a dominant direction d in a sub-image is 
detected by equation (6), H§ is incremented by 1,

D u  3-V"

Figure 1. Texture images from Brodatz (1966) album.



i.e.,
Hg ■Hh+ \ . (7)

However, the plot of Hg against 6 often does not 
show a prominent peak even in strongly directional 
texture image. Hence, a modified histogram is 
generated by incrementing Hg by n,  i.e.,

Hg<
where

M-

-Hg+fi

A f -  180

A w 1.

( 8)

(9)

Note that /u is always positive since the first term 
on its right-hand side is always greater than 1. For 
directional textures, we have consistently found 
sharp peaks, whose positions have been detected 
by the following approach.

2.3. Peak detection

The histogram is smoothed by moving averaging 
to get rid o f spurious peaks of high magnitudes. 
The window size used to compute moving average 
is 11. Although most of the spurious peaks are 
removed by the process, some unwanted peaks and 
valleys may still remain in the histogram. These 
peaks and valleys can be discarded by a simple 
thresholding approach. Let the average height of 
the histogram denote the threshold Tu  i.e.,

Tr = EHg/m.

Then the following steps are taken:

(10)

Step 1. Choose the peaks above and valleys below 
the threshold (r ,) . Discard any valley above and 
peak below the threshold Tt . If ‘v’ denotes a 
valley and ‘p ’ denotes a peak, then the chosen ex­
trema can be represented by a string of the type

vvvv ••• pppp ••• vvvv •••.

Step 2. From each cluster of peaks choose the one 
with maximum height. If Np is the number of 
peak clusters, then Np peaks are chosen in this 
way. Similarly, choose a valley from each cluster 
o f valleys whose height is minimum. Now a se­
quence like vpvpvp ■••is formed. For the /th peak, 
say Ph in this sequence, its immediate left neigh­

bor valley position L v. and immediate right neigh­
bor valley position R v. are detected. (If for the 
first peak a left valley is not detected then the 
histogram value at angle 0 ° is considerd as the left 
valley. Similarly, for the rightmost peak if a right 
valley is not detected then the histogram value cor­
responding to angle 179° is considered as the right 
valley.) Repeat till all N p peaks are encountered.

Step 3. For each i find the span S, corresponding 
to Pj as

S, = R Vi- L vr

A measure of cut-off ratio  of P, can be defined
as

f i  =
h j - T t

hi
( I D

where ht is the height o f  the /th peak P, and Tx is 
given by equation (10).

Also, a measure of sharpness of peak P, can be 
defined as f a = hi/ S i . From  this measure some 
sort of gradation is made as follows:

f a ( 12)
1 + fi2

When the number of peaks is more than one, it 
may be useful to make an overall gradation of 
directionality. For two peaks with heights h {, h2 
and widths Sj and S2, the overall gradation is pro­
posed as

Grade0 =—^— , where F  = .^ 1 + ^  . (13)
1 + F  (S ,+ S 2) /  2

The 'Grade’ is defined in such a way that it lies in 
[0, 1].

3. Results and discussion

To demonstrate the performance of our 
algorithm we took 16 texture images from the 
Brodatz (1966) album. They are shown in Figure 1 ■ 
Each of these images is of size 128x128 and the 
image intensity is quantized into 256 gray levels. 
For each image, the edge image is computed using 
equations (1),(2) and (3) taking <7 = 2.0. For each 
edge image, accumulation (A$j is performed on



F ig u r e  2. Strongly oriented texture images. (Local dominant directions are shown by white lines and Global dominant directions are 
shown by white line in black box.) (a) For D17, (b) for D51 of the Brodatz album.

e a c h  12x 12 overlapping window using equation 
( 5 ) ,  and the dom inan t direction in that window is 
f o u n d  with help o f  equation (6).

I t  is to be no ted  that computation on overlap­
p i n g  windows results in a smoother histogram. 
5 0 %  overlap in horizontal direction is used in our 
c a s e .  The additional computation requirement for 
t h e  overlapping case can be reduced if the com­
p u ta tio n  over the overlap region is memorized and 
u s e d  for two windows.

W e considered R ao’s approach to make a com­

parative study. In this approach, an edge image is 
formed in a similar manner as in Section 2.1. The 
direction to which the sum of projections of the 
edge vectors attains a maximum is considered as 
the best estimate for dominant local orientation. 
Let (pjj be the angle that the gradient at pixel ( i , j )  
makes in the m x m  window W . The dominant 
orientation 6 is given by

^ t a n - | g l ^ | C 2 f t j ) S i n ^  <14, 
2
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Figure 3. (a)-(b) Angle histogram of the image D17 and D51 respectively by the proposed method, (c)-(d) Angle histogram of the same
images by Rao’s (1990) method.



Figure 4. Weakly oriented texture images. (Local dominant directions are shown by white lines.) (a) For D04, (b) for D09 of the
Brodatz album.

The oriented textures D17 and D 51 and the local 
dominant directions are shown in Figure 2. The 
dominant direction histograms of these images 
D17 and D51 (from Figure 1) are shown in Figures 
3(a) and 3(b), respectively. The density in these 
plots are obtained by normalizing the frequency 

so that the area under the curve is unity. Com­
paratively, dominant direction histograms due to 
R ao’s approach are shown in Figures 3(c) and 3(d) 
respectively. Some weakly oriented textures D04 
and D09 and their local dominant directions are 
shown in Figure 4, while dominant direction

histograms of the images are shown in Figures 5(a) 
and 5(b), respectively. Dominant direction histo­
grams due to Rao’s approach are shown in Figures 
5(c) and 5(d) respectively.

Choice of window size is an important con­
sideration since it affects the computational com­
plexity and histogram shape. It has been seen that 
a small window size normally results in flat 
histograms. With increase in window size, the 
dominant peaks become more prominent till the 
process saturates. Larger window sizes, on the 
other hand, require more computation. For the
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F'igure 5. (a)-(b) Angle histogram of the images D04 and D09 respectively by the proposed method, (c)-(d) Angle histogram o f the
same images by Rao’s (1990) method.



Table 1

Local dominant direction(s) and texture gradation

Image #  peaks Angle A h Grade Gradcf,

D03 2 f  ^
0.500 4,629 0.177 j 0.446(. 98 0.733 1.330 0.429

D04 1 61 0.747 2.502 0.285
D05 1 50 0.401 8.827 0.102
D09 1 87 0.695 4.389 0.185
D12 1 97 0.851 0.499 0.667

D17 2 f  ^
0.787 0.569 0.637

|  0.797I 126 0.807 0.455 0.688
D24 1 85 0.838 0.689 0.592
D28 1 101 0.714 3.018 0.249
D33 1 99 0.667 2.511 0.285
D51 1 92 0.933 0.079 0.927
D54 0 - - - _
D55 1 163 0.858 0.688 0.592
D68 1 88 0.932 0.087 0.920
D77 1 115 0.889 0.402 0.713

r 94 0.761 1.224 0.449D84 2 0.464
( 163 0.402 5.040 0.165

D92 1 69 0.562 3.917 0.203

current set o f pictures, 12x 12 windows are ap­
proximately optim um .

Dominant peaks of the histogram are considered 
as global orientation of the texture. The global 
orientations are shown inset in the figures o f the 
textures of Figure 2. They conform to our visual 
notion of global orientation. It has been noted that 
the number o f such orientations should not exceed 
two, since our capability of detecting three or more 
global orientations is poor. To suppress the display 
of irrelevant global peaks a threshold on f i] is con­
sidered. Peaks P, for which f n < 1/3 are discarded. 
As a result, the number of peaks did not exceed 
two in all o f our experiments.

The feature f i2 is considered to test the sharp­
ness of the dom inant peak and the texture is grad­
ed using the measures in equations (12)—(13). The 
results are shown in Table 1. It is seen that the 
measure is high for strongly oriented texture and 
low otherwise. We can use the inform ation to 
decide whether the conventional statistical or 
structural approach should be applied to the cur­
rent texture under study.
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