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Abstract: The effect of thiourea on brain neurosecretory cells has been analysed using pattern recognition and image processing 
techniques. Preprocessing and primitive extraction are done using fuzzy set theoretic approaches. The syntactic classification 
o f various cellular abnormalities (e.g., normal, initial abnormal, middle abnormal and lethal abnormal), on the other hand, 
has been achieved using ordinary grammar. An experiment for creating various abnormalities is explained. The pattern 
variability in terms of dimension is also statistically analysed.
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1. Introduction

Neurosecretion is a general phenomenon, occur­
ring in all animals, and is nothing but the process 
of synthesis of hormone (called neurohormone) 
from the brain neurosecretory cells. Brain neuro­
secretory cells are located mostly in the first part of 
the insect brain, called parintercerebralis. One of 
these cells is called ‘A’ type which is larger in size, 
and is prone only to some specific stains such as 
chrome hematoxylin and paraldehyde fuchsin [1], 
The ‘A ’ type cells are also predominant in number. 
Most of the physiological functions are regulated 
by these ‘A ’ type cells [1]. The abnormality occur­
ring in these cells, therefore, affects the physiol­
ogical processes e.g., reproductive and oxidative 
mechanisms etc. The abnormalities might occur 
because of pollutants in the environment; thus 
resulting in various cancerous growth.

The study of abnormalities in the neurosecretory 
cells therefore becomes necessary in order to make 
a diagnosis of their cancerous growth. Such an in­

vestigation will also facilitate the diagnosis of 
various abnormalities in the brain neurosecretory 
cells of man.

The present work is an attempt to analyse the 
cell abnormalities by a machine using image pro­
cessing and pattern recognition techniques. In 
order to do this, the brain cells of Periplaneta 
americana (cockroach) have been considered here, 
as an example.

The role of insecticides in creating abnormalities 
in neurosecretory cells of insects has been studied 
by several authors [3-5]. On the other hand, the 
role of thiourea in this regard has not been proper­
ly investigated. Thiourea is a chemosterilant, i.e., 
a chemical which sterilises the reproductive pro­
cesses and inhibits the different biological mech­
anisms [6-8]. In view of the above fact, thiourea 
has been considered in our experiment for creating 
cellular abnormalities. Different concentrations of 
thiourea were injected in creating such abnor­
malities. Abnormalities in the brain neurosecretory 
cells of the cockroach are seen to be reflected in



both the nuclear and cell membrane architecture of 
these cells.

The pattern recognition techniques involved 
here, therefore, incorporate the tasks of prepro­
cessing, primitive extraction and classification of 
different varieties of nuclear and cellular shape 
patterns. The pre (image) processing operations in­
clude enhancement and contour extraction of 
nuclear and cellular patterns corresponding to nor­
mal and abnormal neuron cells. Primitives ex­
tracted are namely, arcs (both clockwise and 
anticlockwise) of different curvature and straight 
lines obtained from the octal code representation 
of contours. Each string thus formed correspon­
ding to the shape of an unknown pattern is finally 
classified using syntactic technique. Both fuzzy 
and nonfuzzy approaches [9-11] have been con­
sidered in the above mentioned operations. Besides 
these, the pattern variability reflected in their 
dimension is also shown experimentally. Results of 
statistical analysis including ‘t ’ test of cellular 
dimension in this context have been discussed.

2. Different stages of neurosecretory cell abnor­
malities

2.1. Experiment fo r  creating abnormalities

Periplaneta americana were reared in the 
laboratory at 30±1°C  and fed on bread with 
water. The female Periplaneta americana from the 
same mother were divided at random into different 
groups for experiments. Each group consisted of 
50 fully matured female cockroaches. Thiourea 
(Analar, BDH, Glaxo Laboratories, India) was 
used for treatment. Thiourea of different doses 
(8 (jl, 16 |xl and 20 fxl/female) were given in a single 
injection through the 4th abdominal segment. The 
control adult female cockroaches were injected 
with an equivalent amount of distilled water and 
kept side by side with the treated cockroaches.

All fully matured female cockroaches were 
sacrificed just after three days, i.e., after 72 hours 
of the injection. The entire brain of the female 
cockroach was dissected out quickly and employed 
in Bouin’s fixative. In order to study ‘A’ cells, we 
employed the following stains: chrome hematox­

ylin phloxin (CHP), paraldehyde fuchsin (PF), 
alcian blue, alcian yellow and paraldehyde thionin 
phloxin (PTh-Ph) using Panov's method. After 
staining the slides were dehydrated and mounted 
with DPX.

2.2. Observations

The above experiment revealed that a single in­
jection of thiourea at different concentrations 
(8 nl, 16 pi and 20 pi/female) not only impairs the 
structural architecture of ‘A’ type neurosecretory 
cells and cell nuclei, it also causes reduction in size 
(Table 1) and shrinkage of the cells and nuclear 
membrane (compare Figures 1(b), 1(c) and 1(d) to 
the normal case, Figure 1(a)). Figure 1(a) shows a 
normal ‘A’ type neurosecretory cell. Figure 1(b) 
illustrates the initial change by a 8 nl/female of 
thiourea injection when the nuclear membrane and 
cell membrane become gradually smaller in size. 
At 16 fil/female injection, more deposition of 
neurosecretory material occurs inside the cell and 
the cell size reduces further. This is shown in 
Figure 1(c). Figure 1(d) is related to 20 pi, a lethal 
dose, which is associated with massive degradation 
of the neurosecretory cells. This degradation is due 
to the inhibition of oxidative phosphorylation and 
results in different sizes and shapes of nuclear and 
cellular contours.

Table 1
Effect o f thiourea on brain neurosecretory cell size and on 
nuclear size o f neurosecretory cells o f Periplaneta americana. 
8 (J, 16 (il and 20 fJ/female o f thiourea were injected in cock­
roach and sacrificed after 72 hrs.

Dose Median 
neurosecretory cell 

size ‘A ’ type

Mean ±  S.E. (nm)

Nuclear size of 
the median 

neurosecretory 
cells ‘A ’ type 

M ean± S.E. (nm)

Control 35.06 + 0.89 18.83 ±0.01

//1/female 27.19±0.02* 14.57 + 0.001*
16
//1/female 25.58±0.01* 13.14± 0.003*
24
//1/female 24.83±0.003* 11.35 ±0.29*

S.E. = Standard Error
* denotes P < 0.001, P  is the value of student ‘t’ test



Figure 1. Showing the effect o f thiourea on ‘A ’ type neurosecretory cells o f Pars Intercerebralis region of brains o f Periplaneta 
americana. NM: Nuclear membrane, NSM: Neurosecretory Material, CM: Cell membrane, (a) Normal brain neurosecretory cells 
[lOx 100]. (b) Abnormal neurosecretory cells after injection with thiourea, 8 //1/female [lOx 100]. (c) Abnormal brain neurosecretory 
cells after injection with thiourea, 16 //1/female [10x100]. (d) Lethal brain neurosecretory cells after injection with thiourea,

20//1/female [10x100],

The variation in their size is reflected numerical­
ly by the figures given in Table 1. Regarding the 
variation in shape, it is to be pointed out that the 
shape of the nuclear membrane remains more or 
less circular after doses of 8 and 16 jol/female are 
used. This indicates that the change occurs very 
rarely in the nuclear contour as compared to the 
cell surface contour, except for the dose of 20 pil 
when a massive nuclear breakdown makes its 
shape irregular. In the following sections we shall 
therefore present algorithms for identifying these 
various abnormalities in terms of cellular shape 
patterns only. This together with the discrimina­
tion ability based on their dimension will lead us to 
a final decision on different abnormalities.

3. Recognition algorithms and results

The problem of recognition involves three major 
parts, namely,

(a) preprocessing of cell images with a view to 
extract the edges of nuclear and cellular cells,

(b) primitive extraction of the edge detected 
images, and

(c) syntactic classification into one of the pos­
sible stages among normal and abnormalities.

These are explained below.

3.1. Enhancement and edge detection
It is seen from Figure 1 that the boundaries of 

the cells are ill-defined (fuzzy). The images there­
fore need contrast enhancement before detecting 
their contours. There are numerous algorithms 
available [9,11] using both fuzzy and nonfuzzy 
techniques to perform this task automatically. 
Here we have adopted the ones formulated by Pal 
and King [12] using a contrast intensification 
(INTR) [13] operator for enhancement and a 
max-min operation based edge detection [14] pro­
cedure.



Figure 2. INT transformation function. Pmn and P'mn are the 
original and enhanced property values of x mn.

For the sake of reader’s convenience, the INT 
transformation function for contrast enhancement 
in fuzzy property domain Pmn is shown in Figure 
2. It is defined for an M x N  dimensional image as

Ti(Pmn) = T{(Pmn) = 2P*n, 0<Pmn^ h  

= T"(Pm„) = 1 -2 (1 - P m„)2,

m = \ ,2 ,.. . ,M \ n = 1 , 2 , N.

Pmn denotes the degree of brightness of the 
(m, «)th pixel intensity xmn. Pmn can be obtained 
from xmn using any S type (monotonically nonde­
creasing) function [12]. The INT operator Tx(Pmn) 
increases the contrast around a boundary (cross­
over points) by increasing those Pmn values which 
are above \  and decreasing those which are below 
y. In general, each Pm„ may be modified to P'mn to 
enhance the image in the property domain by a 
transformation Tr where

Pmn = Tr{Pmn) = Tr (Pm„), 0 SC Pmn ̂  t  ,

=  T;'(pmn), }^pm„*z i ,

r -  1,2......

The transformation function Ts is defined as suc­
cessive applications of the INT operator Tt by the 
recursive relationship

Ts(Pmn) = Tl {Ts_ i(Pmn)}, s = 1 ,2 ,.... (1)

(a) (b)

(c)
(d)

Figure 3. Contours of nuclear and cellular patterns o f the cell 
images of those marked by square in Figure 1. (a) Correspond­
ing to Figure 1(a). (b) Corresponding to Figure 1(b). (c) 
Corresponding to Figure 1(c). (d) Corresponding to Figure 1(d).

It is seen from Figure 2 that as r-> oo, Tr produces 
a two-level (binary) image.

After the enhancement is done, the edges are ex­
tracted by

edges = U U v  (2)
m n

where

Xmn -  nun {Xj j } (3)

Q is a set of N  coordinates ( i,j)  which are within 
the circle of radius 1 centered at the point (m ,n ). 
The details of these preprocessing techniques are 
available in [12,14].

Figure 3 shows the contours of nuclear and 
cellular patterns thus obtained corresponding to 
those marked by squares in Figure 1. Note that 
Figure 1(d) contains only the cellular contour 
pattern.

The edges thus produced may have in some



places more than one pixel width contour resulting 
in spurious wiggles. These are removed (i.e., the 
contours are made single pixel width) by keeping 
only the outer boundary pixels maintaining con­
nectivity among them [15]. This enables us to en­
code the contour using the octal chain code with a 
view to extract the different primitives (lines and 
arcs) for their syntactic classification.

3.2. Primitive extraction

Encoding
For extracting primitives of the patterns, we 

have been guided by the algorithm of Pal et al. [16] 
where it has been possible to provide a natural way 
of viewing the primitives in terms of arcs with 
varying grades of membership from 0 to 1. Here, 
the contours of Figure 3 are first of all encoded 
into one-dimensional symbol strings using the 
rectangular (octal) array method. The directions of 
the octal codes are shown in Figure 4. An octal 
code is used to describe a w-pixel (w> 1) length 
contour by taking the maximum of its grades of 
membership corresponding to ‘vertical’, ‘horizon­
tal’ and ‘oblique’ lines. This approximation of 
using w-pixel (instead of one-pixel) length line 
saves computational time and storage requirement 
without affecting the system performance.

/uH(x) and fiob(x) representing the 
membership functions for vertical, horizontal and 
oblique lines respectively of a line segment x  mark­
ing an angle 6 with the horizontal line H (Figure 5) 
are defined as [16]

fiv ( x ) = l - \ l / m x \F', \mx \> \,  (4)
= 0, otherwise,

/uH(x) = \ - \mx \F% \mx \< l,  (5)
= 0, otherwise,

5 ^ 3
Figure 4. The directions o f octal codes.

Mob(x )= l- \ ( e - 4 5 ) /4 5 \F% 0 <  \mx \ < °o,
= 0, otherwise.

is a positive constant which controls the 
fuzziness in a set and mx = tan 9.

The equations (4)-(6) are such that

fiY(x)-> 1 as |0| ->90°,

juH( x ) ^ \  as |0| ->0°,

MobW -> 1 as 10|^45°,
and

/ /v W S / 'h W  as \d\ S 45°.

The octal coded chains of cellular patterns for 
all the categories are shown for w = 3 in Table 2.

Segmentation and contour description 
The next task before extraction of primitives and 

description of contours is the process of segmenta­
tion of the octal coded strings. Splitting up of a 
chain is dependent on the constant increase/de­
crease in code values. For extracting an arc, the 
string is segmented at a position whenever a 
decrease/increase after constant increase/decrease 
in values of codes is found [16]. Again, if the 
number of codes between two successive changes 
exceeds a prespecified limit, a straight line is said 
to exist between two curves. In the case of a closed 
curve (as in the case of Figure 3(d)), a provision is 
kept for increasing the length of the chain by ad­
ding first two starting codes to the tail of the 
string. This enables one to take the continuity of 
the chain into account in order to reflect its proper 
segmentation [16]. The flowchart for segmenting a 
chain is available in [11,16],

After segmentation one needs to provide a 
measure of curvature along with direction of the 
different arcs and also to measure the length of 
lines in order to extract the primitives. The degree

Figure 5. Membership function for vertical and horizontal lines.



< --------------a ---------------->
Figure 6. Membership function for arc.

of ‘arcness’ of a line segment x  is obtained using 
the function [16]

juarc(x) = ( l - a / l ) Fc. (7)

a is the length of the line joining the two extreme 
points of an arc x  (Figure 6), I is the arc-length such 
that the lower the ratio a/1 is, the higher is the 
degree of ‘arcness’.

For example, consider a sequence of codes

5 6 6 7

denoting an arc x. For computing its I note that if 
a code represents an oblique line, the correspond­
ing increase in arc-length would be j/2, otherwise 
increase is by unity. Arc diameter a is computed by 
measuring the resulting shifts Am  and An of 
spatial coordinates (along mth and nth axes) due 
to those codes in question. For the aforesaid exam­
ple we have

Am  = 1 + 0 + 0 — 1 =0,

An  = - 1 - 1 - 1 - 1 =  -4 ,

a = VA m 1 + A n2 = 4,

1 = 4.828,

HarcM = 0-643 (for Fc = 0.25).

Since the initial code (5) is lower than the final 
code (7), the sense of the curve is positive 
(clockwise).

Similarly, for sequences

5 6 and 5 6 7

the n arc values are respectively 0.52 and 0.682. The 
figures thus obtained for the different sequences 
agree well with our intuition as far as their degree 
of arcness (curvature) is concerned. Also note that 
the sequences like

5 5 6 6 7 7  and 5 5 5 6 6 6 7 7 7  

have the same /uaTC value as obtained with the

sequence 5 6 7. Similarly, the sequences 5 5 6 6 
and 5 6 have the same //arc value.

The string descriptions of the cellular contours 
in terms of arcs of different arcness and line are 
shown in Table 2. Here, L, V and V denote the 
straight line, ‘clockwise arc’ and ‘anticlockwise 
arc’ respectively. The suffix of V represents the 
degree of arcness of the arc V  and the superscript 
of L  represents the number of line units respective­
ly. As expected, the description of the contour in 
Figure 3(d) involves many ‘sharp’ arcs (high fi 
valued V) whereas the others contain mostly 
‘gentle’ arcs together with consecutive straight line 
segments.

As an illustration, the positions of segmentation 
are shown by a comma (,) only for strings in 
Figure 3(d). It is to be mentioned here that the ap­
proach adopted here to define and to extract arcs 
with varying grades of membership is not the only 
way of doing this. One may change the procedure 
so as to result in segments with membership values 
different from those mentioned here.

3.3. Syntactic classification

After the primitive extraction is over, the next 
and final task is to classify them using four gram­
mars. Here we have used the following simple 
alphabet of five primitives

Vj= {a,fi,l, a, fi} (8)

where

a  = clockwise sharp curve with ,uarc^0.64,
/?= clockwise gentle curve with //arc<0.64,
/ = line segment with unit length.

G and fi are the anticlockwise versions of a  and fi 
respectively. The primitives a, fi and I thus 
classified with thresholding over fi domain are 
shown in Figure 7. With these primitives, the pat­
terns X  (contour descriptions) in Table 2 can be 
represented as follows.

= fi2p 2fififil4fi2ip2la l4fi4fi, (9a)

= fifiplfi2W l5filfiafii afila, (9b)

= fififi4fipl2fi2lfil3filfi2la, (9c)

X A = laa2alfi3lfiafilfi2alafifilal. (9d)



Table 2
Encoded strings and their primitive description

Figure 3(a) 8 8 1 8 8 1 8 7 8 7 8 8 1 1 1 8 8 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 3 3 3 4 3 3 3 4 4 5 5 5 5 5 5 5 5 5 5 4 5 4 5  
4 5 4 4 4 5 5

V s iV 5iV 52Vs2V 5iVA9V 52L*VA9V 52L V 52 V49L  K64Z.4 P 52 V S2 V 52 V52 V 52

Figure 3(b) 7 8 7 6 6 7 7 7 7 8 7 7 8 8 8 8 8 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 2 3 3 3 4 3 4 3 4 3 4 5 4 4 5 5 5 5 5 4 4 3

V.52V.52V.52LV52VA9L V 51L 5V 52L V 52V m  VA9 V 52 V s2 Vm  KsiL V m

Figure 3(c) 7 8 7 6 6 6 7 7 7 8 7 8 7 8 8 7 8 8 1  1 1 1 1 1 1 2 1 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 4 5 5 5 5 4 4 3

V 5 2V.52V.51 V.49 V 52 v s2 V 52 V SIL 2 v 49 v 52l  v 51l 3 VA9L  V sl V 52L  Vm

Figure 3(d) 1 1, 1 8 7, 7 8 8 1, 1 1 2 2 3 3, 3 2 1, 1 1, 1 1 2, 2 2 3, 3 3 4, 4 4, 4 4 5, 5 4 3, 3 3 4 5, 5 5, 5 6, 6 6 7, 
7 6 6 5, 5 5, 5 6 6 7, 7 8, 7 7 6, 6 6, 6 7 8, 1 1

L V 6gV 64VM Vm L VA9V 5! Vm L V s, P 68VA9L V 52V 5I Vm L v m v 52vA9l  k 68l

The four context free grammars used are

G i= { V ^ V i,P h S}, i = 1,2,3,4.

Here, V^. and Vj- are the nonterminal and ter­
minal vocabularies of the grammar G, such that 
V .̂ fl Vj=0  (empty set). P, is a finite set of pro­
ductions of the type y/->£ where y/ and £ are 
strings over V=V^.V) Vj, with y/ having at least 
one symbol of V^.. S e  V .̂ is a starting symbol.

If an unknown string X  representing the cellular 
contour of a neurosecretory cell

XeL(Gj ) ,  i=  1,2,3,4,

then it is classified into class C, . The classes C,, 
/=  1,2,3,4, are defined as follows:

Q : normal (Figure 1(a)),
C2: initial abnormal (Figure 1(b)),
C3: middle abnormal (Figure 1(c)),
C4: lethal abnormal (Figure 1(d)).

L(Gj) denotes the language generated by grammar 
Gj-

The production rules P(, i = l , 2 , 3 , 4 ,  for the 
four grammars taking into account all possible 
variations in a class are shown in Table 3. On pars­
ing, the patterns X  (equation (9)) are found to be 
correctly classified.

Some guidelines and practical considerations 
It is seen from Figure 1 that class C4 (lethal ab­

normal) is uniquely different from the other

groups because of its lethality. Unlike the classes 
Ci, C2 and C3, it has only one contour which is 
again star-shaped. Maximum ambiguity lies be­
tween C2 and C3. The only distinguishing feature 
is that C2 has an ascending line whereas, C3 has 
descending characteristic.

Although, the patterns in class C4 have closed 
contour, in practice due to the limitation of the 
pre-processing (digitisation, thresholding, en­
hancement and contour extraction) algorithms, it 
is quite likely that one may fail to preserve this 
closing property. Similar this is the case with 
classes C \, C2 and C3 where the cellular contours 
might happen sometime to be closed. Again, the

(a) (b)

(c)
Figure 7. Different primitives, (a) Primitive a  ((i), (ii) corre­
sponding to ,uarc = 0.68 and 0.64). (b) Primitive p  ((i), (ii), (iij) 
corresponding to j/arc = 0.52, 0.51 and 0.49). (c) Primitive I.



Table 3
Production rules for classes

Class Cj

S -> A iA fi A \ ~>PP or ip  or aP
A  —*B\BBi B\ ->pp or p i  or aft or I ft
B - tC iC B i Ci -> ftp ft or PPu

C -> ///o r  C xl C 1 -+D\D
D -+ D iE Di -> p p i  or fta  or a l  or aft
E -+ a

Class C2

S ^ p A a A -> p B
B ^ C 'C C 1 C l -* p i or ip  or pp
C -> C lD D i D 1 - k xI or Pa or Ipp or p ip
D  -*• IftE  or ftlE
E  -» I 111 IF F->piG  or 1/jG
G -> f ia H  or la H H ^ P P  or Ip or ftl

Class C3

S ^ P A a A -> fiB
B - C ' C C 1 C '- * p i  or ip  or PP
C ^ C XD D X D 1 -> a! or Pa or ipp  or p ip
D ^ f t E E 1 £ '  ->pi or ift or a
E -+ E lF F-> IpG  or ftlG
G -> IftH  or p iH H -* p H
H ^ l l l

Class C4

S -^ lA l A  —* A \B A 2
A \-> a  or Ip or pi A 2 -> a  or p i  or ip
B -+ A 2A 2C C —* A  \ Dl
D -* A 2E p E -> A 2G
G -+ A 2A lP A l -+A{B lA 2
B x^ A 2I Cx c [ ^ a 2h i

H ^ a

gentle arcs may sometime be turned into a straight 
line. All these possible factors have been taken into 
consideration while formulating the grammars.

4. Conclusions and discussion

Pattern recognition techniques have been at­
tempted here in analysing the patterns of brain 
neurosecretory cells. Pattern variability is found to 
be reflected in both size (dimension) and shape of 
nuclear and cellular surfaces. Various patterns of 
abnormalities were created by injecting thiourea. 
Periplaneta americana is taken here as an experi­
mental tool. The algorithms used here will be ap­

plicable to higher mammalian (human too) 
systems. The work has therefore a great signifi­
cance in biological and medical sciences. Both fuz­
zy and nonfuzzy set theoretic approaches have 
been used as a mathematical tool. Fuzzy techni­
ques for extracting the arcs with varying grades of 
membership from 0 to 1 make the primitives 
natural. The grammars used for syntactic 
classification are nonfuzzy which take crisp ter­
minals as input. Crisp primitives were obtained 
with thresholds over the ju.drc domain. Instead of 
nonfuzzy grammars, one can also use fuzzy and 
fractionally fuzzy grammars [17]. Here the 
aforesaid thresholding is not required and single 
grammar for all the classes can be used with dif­
ferent weights assigned to the production rules. 
However, this merit has to be balanced against the 
fact that the fuzzy grammars are not as simple as 
the corresponding nonfuzzy grammars used in the 
present work.
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