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1. Introduction

In the early networks, meant for geographically 
distributed systems, flow control for relieving con­
gestion and prevention of deadlock were achieved 
by “Isarithmic Control”, “ Buffer Storage Control” 
and other means [1,3]. Deadlock in a concurrent 
message-passing computer system [2,6] occurs 
when no message can advance through the inter­
connection network toward its destination because 
the queues at all the nodes are full [4], The last 
paper also surveys contemporary works in this 
area.

The present paper reports a deadlock-free com­
munication structure for a unidirectional loop of 
an arbitrary number of message-passing com­
puters. The basic loop structure may however be 
utilized to synthesize other structures like bidirec­
tional loop, mesh, hypercube etc. Indeed the sug­
gested structure can be used to form the com­
munication kernel of a generalized distributed op­
erating system.

The method suggested here is advantageous 
°ver ordinary flow control algorithms because it

does not generate any additional message traffic 
for its implementation. It is advantageous over the 
method suggested in [4], because it does not have 
to decompose a cyclic structure into an acyclic one 
explicitly via virtual links.

2. Assumptions

We consider a unidirectional loop consisting of 
an arbitrary number of message-passing com­
puters connected in a manner as shown in Fig. 1. 
From now on we shall refer to these computers as 
nodes. Each node can

(a) receive a message from its previous node 
and either absorb it or pass it on to the next node,

(b) also generate a message which it then passes 
on to the next node.

We propose here an identical configuration of 
processes at each node which ensures the 
deadlock-free condition in a totally distributed 
manner. Each node, according to this scheme, 
consists of a group of four processes—a Receiver 
( R ), a Buffer (B ), a Sender ( S ), and a message



Fig. 1. A unidirectional loop of Message Passing Computers 
(MPC).

Originator (O), as shown in Fig. 2. We make the 
following assumptions:

(i) Processes are singly buffered and can, 
therefore, hold only one message at a time.

(ii) All buffers are of the same size, equalling 
that of a predefined message length.

(iii) The interarrival time of messages from the 
O processes are arbitrary but finite.

(iv) While the S  and R processes can delay the 
outputting of a message that they hold by any 
arbitrary period of time (attributable to internal 
processing), the B processes present no such 
processing delay. They output the messages im­
mediately as these are received at the input.

(v) Transfer of message between any pair of 
processes is synchronized and therefore takes place 
only when both the processes taking part in the 
transaction are ready for the transaction.

3. Systems description

The four processes, R, B, S  and O, can be 
categorized under two basic groups—(i) those

Fig. 2. A unidirectional loop of nodes each containing four 
processes; R: Receiver, B\ Buffer, S: Sender, O: Originator.

"RT" group

Fig. 3. State transition diagrams for groups “ R T ’ and “T”; 
RCV: Receive, RQSTXMT: Request To Transmit, XMT: 
Transmit, RDTRCV: Ready To Receive, “ RT” : Receive& 

Transmit, “ T” : Transmit only.

which receive and then transmit, viz., R, B and S, 
that belong to the “ RT” group and (ii) those 
which transmit only and do not receive, viz. 0, 
which forms the “ T” group. The two groups are 
characterized by the state transition diagrams as 
shown in Fig. 3. Note that a process can stay in 
any state for a finite amount of time but the 
transitions are instantaneous. It is also important 
to note that all the states except those connected 
with the actual act of message transmission and 
reception are independently controlled by the in­
dividual processes. Message transfer, on tlje otto 
hand, is an activity between a pair of processes 
and assumption (v) above requires that both 
processes of the pair make the state transitions 
exactly simultaneously. A corollary of this re­
quires, for example, that if two processes P1 and 
P2 intend to transmit messages to another process 
P3, they first send a request for the intended 
transfer. The process P3, when ready, accepts one 
of the requests depending perhaps upon the rela­
tive priorities of P, and P2.

In order to bring out the true nature of the 
synchronized message transfer between two



"RT" group
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Fig. 4. Modified state transition diagrams for groups “ T” and 
“ RT”; ACT: Activity, EOF: End Of.

processes we split the states indicated in Fig. 3 
into substates. For this we define two predicates 
ACT( ) and EOF( ). ACT(state) represents the 
ACTivity within the state. The EOF(state), on the 
other hand, is a marker state which marks the 
termination of the state. Semantically EOF(state) 
means the readiness of “ state” to proceed to the 
following ACT(state). Note that a process only 
stays in the EOF(state) until all the conditions for 
the following ACT(state) are fulfilled. For exam­
ple, a transmitting process waits in the state 
EOF(RQSTXMT) till the receiving process 
reaches the state EOF(RDTRCV) while a receiv­
ing process waits in EOF(RDTRCV) till the trans­
mitting process reaches EOF(RQSTXMT), in 
accordance with our previous assumption. Here 
RQSTXMT and RDTRCV stand for Request, 
to _ transmit and Ready _ to _ receive respectively. 
The modified state diagrams for the “ RT” and 
“ T ” groups are shown in Fig. 4.

4. Deadlock-free communication structure

Let us assume that the time taken by process B 
in node m to go from the EOF(RCV) state to the 
EOF(RQSTXMT) state be dmb.

It is then possible to ensure deadlock-free oper­
ation of a loop of message passing nodes by

(i) introducing a wait state of duration dm 
between the EOF(XMT) and ACT(RDTRCV) in 
the 5 process of the mth node such that

d m >  dmb (1)

and
(ii) by assigning in the S  process a higher 

priority to the input coming from B over that 
from O when inputs are simultaneously present 
from both these processes.

Definitions

We define that there is a conceptual “ hole” 
present in a process if there is no message in it. 
The concept of the hole is analogous to the hole- 
electron concept in electronics from which the 
term has been borrowed. A message can be passed 
on to a process only if there is a hole in it. After 
the transfer of the message the hole passes from 
the receiver to the sender. Thus the direction of 
the hole flow is opposite to the direction of the 
message flow.

We set the following conditions:
(i) Messages are always ready at all the O 

processes to enter into the system.
(ii) There is no sink within the system.
Absence of any of these conditions in a physi­

cal system however will actually aid further in 
avoiding the occurrence of deadlock.

5. Proof

Let us consider that there are n nodes in the 
system. This means that there will be 3n processes 
in the system which form a loop. As each of the 
processes has a single buffer there will be 3n 
buffers in the system. As a result, deadlock will 
occur if and only if 3n messages are allowed to be 
present in the system simultaneously.



First we consider the situation in which the 
system contains 3n — 1 messages. We shall prove 
that the system will never allow any new message 
to enter into the system (from any of the O 
processes) and will therefore avert the deadlock 
situation. Let us initially suppose that another 
message is allowed to enter into the system caus­
ing a deadlock. We investigate the wth group of 
R -B -S  processes, which has allowed this (3n )th 
input to enter into the system.

Since a new message can enter into the system 
from Om through Sm, it implies that just prior to 
the introduction of this (3«)th message, Sm must 
have had a hole. Again because there were 3n — 1 
messages prior to this introduction, each of the 
3« — 1 processes must have had a message each. 
This in turn implies that Bm also must have con­
tained a message.

Now a message can only be transferred to a 
process which contains a hole as stated earlier. So 
the presence of a hole in Sm implies that the 
immediately previous hole must have been in the 
R of the subsequent group of processes, i.e. the 
(m  + l)th group. So, the transfer between R m and 
Bm must have taken place earlier than the transfer 
between Sm and /?OT + 1.

In the light of the previous discussions, and the 
presence of a priority at the input to Sm, the 
system will not accept any new message if Sm and 
Bm are in the EOF(XMT) and EOF(RQSTXMT), 
respectively. Hence the (3«)th message will not 
enter the system and deadlock cannot occur.

So, we consider the other possible situation in 
which Sm and Bm are in the EOF(XMT) and 
ACT(RQSTXMT) states, respectively. We do not 
care whether this state of condition is reachable or 
not from the initial state of the system. Our only 
consideration is that this is the only possible situa­
tion in which a deadlock may occur.

Since there is no way of determining where in 
the ACT(RQSTXMT) state the process Bm may 
reside, we assume for reasons of stringency that it 
is about to enter the ACT(RQSTXMT) state. This 
in turn implies that Bm is in the EOF(RCV) state. 
Clearly this is the most stringent condition as far 
as the occurrence of deadlock is concerned.

If the time taken by process Bm to reach 
EOF(RQSTXMT) from EOF(RCV) is dmb, and

Sm is delayed by this period between EOF(XMT) 
and ACT(RDTRCV), B,n will reach the 
EOF(RQSTXMT) before Sm can enter the 
ACT(RDTRCV) state. Again, since a higher prior­
ity is given to the input coming from Bm over the 
input from Om, no new message can enter into the 
system and hence the system will be free of 
deadlock.

Next, let us consider the situation where there 
are K  number of holes in the system, i.e. 3n-k  
number of messages. If these K  holes are distrib­
uted in exactly K  number of S processes, then 
and then only, K  new messages may enter the 
system, causing a deadlock. However, if sufficient 
delay has been introduced in each of the S 
processes, then none of the 5 processes will allow 
any message to enter into the system, and the total 
number of messages in the system will remain at 
3n -  k.

However, it is possible, although very unlikely, 
that these K holes are distributed in exactly (K/2) 
S  processes and their corresponding B processes. 
Only under this condition, K / 2  number of new 
messages can be introduced into the system. In 
other words, we need at least two holes in the 
system for introducing one message.

Let the number of messages in the system in 
any arbitrary state i be represented by Nr Then it 
can be seen that

if N, = 3/i — k

then max(Arj + 1) = 3n — k + \ K / 2 \ .  (2)

This process of message introduction continues 
till the condition /c > 2 remains satisfied. When K 
becomes equal to 1 the system becomes stabilized 
through the self-lock mechanism discussed earlier.

6. Discussion

It may be asked whether the solution could not 
have been achieved with only two processes R  and
5. The answer is in the affirmative. However, it 
should be kept in mind that in an actual system  
the process R may go into a state in which it 
processes the message after receiving it. This intro­
duces an arbitrary amount of delay which may not



be easily estimated. On the other hand, the sole 
purpose of process B, defined as a buffer, is to 
receive and then transmit. Hence it is relatively 
simpler to calculate the time which the process B 
takes to inform the process 5  that it has a message 
for the latter.

We have intentionally not considered any sink 
in our analysis of the system in order to make it 
simple. This is contrary to any physical system 
where a message once generated reaches its des­
tination after a finite interval of time. However, 
the presence of sinks aids to prevent the occur­
rence of deadlock by paving the way for new 
messages to enter into the system.

The message-transaction protocol assumed in 
this paper matches with the one defined in Occam 
and the communication structure presented here 
was implemented with Transputers. On experi­
mentation the system was found to run completely 
free of deadlock for a wide range of message 
interarrival times starting from zero. This has been 
reported in [5].

7. Conclusion

In this paper we have shown how a unidirec­
tional loop structure may be made free of deadlock 
with the help of three processes in each node of 
the system, the introduction of priority, and the 
incorporation of a certain delay. We do not, how­
ever, claim this delay to be optimum for the 
prevention of deadlock.

As has been stated earlier, three types of con- 
gestion-control algorithms are in existence. The 
one reported here solves the problem of deadlock 
in a manner which is totally distributed. It is 
advantageous over isarithmic control, because the 
empty packets in the latter also generate traffic 
and overhead. It is advantageous over the method 
suggested in [4], because it does not have to de­
compose a cyclic structure into an acyclic one 
explicitly via virtual links.

It is also obviously at an advantage over end-

to-end flow control, because there is no need to 
reserve buffers in the receiver which also contrib­
utes to system overhead.

This structure behaves as if a predetermined 
number of messages (3n — 1) may reside in the 
system at any point in time. Whenever the number 
of messages reaches that value, no more inputs are 
accepted. But the structure is self-regulatory and 
the regulation occurs automatically without any 
explicit communication taking place among the 
nodes. This self-regulatory mechanism prevents 
the occurrence of deadlock.

The structure ensures the presence of at least 
one hole in the system. The presence of this hole 
causes a temporal ordering of the processes form­
ing the loop and implicitly converts the loop into 
an acyclic structure, thus preventing the occur­
rence of deadlock.

This basic technique can be used to synthesize 
other structures such as bidirectional loop, mesh, 
hypercube etc. and may form the communication 
kernel of a distributed operating system. This will 
be reported in a future paper.
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