
A deadlock-free communication kernel
for loop architecture
P. Pramanik and P.K. Das
Department of Computer Science and Engineering, Jadavpur University, Calcutta 700 032, India

A.K. Bandyopadhyay
Department of Electronics and Telecommunication Engineering, Jadavpur University, Calcutta 700 032, India

D.Q.M. Fay
Department of Computer Science, The Queen’s University of Belfast, Belfast, United Kingdom BT7 INN

Communicated by P. Henderson

Keywords'. Operating systems, parallel processing, message-passing multiprocessors, deadlock prevention

1. Introduction

In the early networks, meant for geographically
distributed systems, flow control for relieving con­
gestion and prevention of deadlock were achieved
by “Isarithmic Control”, “ Buffer Storage Control”
and other means [1,3]. Deadlock in a concurrent
message-passing computer system [2,6] occurs
when no message can advance through the inter­
connection network toward its destination because
the queues at all the nodes are full [4], The last
paper also surveys contemporary works in this
area.

The present paper reports a deadlock-free com­
munication structure for a unidirectional loop of
an arbitrary number of message-passing com­
puters. The basic loop structure may however be
utilized to synthesize other structures like bidirec­
tional loop, mesh, hypercube etc. Indeed the sug­
gested structure can be used to form the com­
munication kernel of a generalized distributed op­
erating system.

The method suggested here is advantageous
°ver ordinary flow control algorithms because it

does not generate any additional message traffic
for its implementation. It is advantageous over the
method suggested in [4], because it does not have
to decompose a cyclic structure into an acyclic one
explicitly via virtual links.

2. Assumptions

We consider a unidirectional loop consisting of
an arbitrary number of message-passing com­
puters connected in a manner as shown in Fig. 1.
From now on we shall refer to these computers as
nodes. Each node can

(a) receive a message from its previous node
and either absorb it or pass it on to the next node,

(b) also generate a message which it then passes
on to the next node.

We propose here an identical configuration of
processes at each node which ensures the
deadlock-free condition in a totally distributed
manner. Each node, according to this scheme,
consists of a group of four processes—a Receiver
(R), a Buffer (B), a Sender (S), and a message

Fig. 1. A unidirectional loop of Message Passing Computers
(MPC).

Originator (O), as shown in Fig. 2. We make the
following assumptions:

(i) Processes are singly buffered and can,
therefore, hold only one message at a time.

(ii) All buffers are of the same size, equalling
that of a predefined message length.

(iii) The interarrival time of messages from the
O processes are arbitrary but finite.

(iv) While the S and R processes can delay the
outputting of a message that they hold by any
arbitrary period of time (attributable to internal
processing), the B processes present no such
processing delay. They output the messages im­
mediately as these are received at the input.

(v) Transfer of message between any pair of
processes is synchronized and therefore takes place
only when both the processes taking part in the
transaction are ready for the transaction.

3. Systems description

The four processes, R, B, S and O, can be
categorized under two basic groups—(i) those

Fig. 2. A unidirectional loop of nodes each containing four
processes; R: Receiver, B\ Buffer, S: Sender, O: Originator.

"RT" group

Fig. 3. State transition diagrams for groups “ R T ’ and “T”;
RCV: Receive, RQSTXMT: Request To Transmit, XMT:
Transmit, RDTRCV: Ready To Receive, “ RT” : Receive&

Transmit, “ T” : Transmit only.

which receive and then transmit, viz., R, B and S,
that belong to the “ RT” group and (ii) those
which transmit only and do not receive, viz. 0,
which forms the “ T” group. The two groups are
characterized by the state transition diagrams as
shown in Fig. 3. Note that a process can stay in
any state for a finite amount of time but the
transitions are instantaneous. It is also important
to note that all the states except those connected
with the actual act of message transmission and
reception are independently controlled by the in­
dividual processes. Message transfer, on tlje otto
hand, is an activity between a pair of processes
and assumption (v) above requires that both
processes of the pair make the state transitions
exactly simultaneously. A corollary of this re­
quires, for example, that if two processes P1 and
P2 intend to transmit messages to another process
P3, they first send a request for the intended
transfer. The process P3, when ready, accepts one
of the requests depending perhaps upon the rela­
tive priorities of P, and P2.

In order to bring out the true nature of the
synchronized message transfer between two

"RT" group

"T" group

Fig. 4. Modified state transition diagrams for groups “ T” and
“ RT”; ACT: Activity, EOF: End Of.

processes we split the states indicated in Fig. 3
into substates. For this we define two predicates
ACT() and EOF(). ACT(state) represents the
ACTivity within the state. The EOF(state), on the
other hand, is a marker state which marks the
termination of the state. Semantically EOF(state)
means the readiness of “ state” to proceed to the
following ACT(state). Note that a process only
stays in the EOF(state) until all the conditions for
the following ACT(state) are fulfilled. For exam­
ple, a transmitting process waits in the state
EOF(RQSTXMT) till the receiving process
reaches the state EOF(RDTRCV) while a receiv­
ing process waits in EOF(RDTRCV) till the trans­
mitting process reaches EOF(RQSTXMT), in
accordance with our previous assumption. Here
RQSTXMT and RDTRCV stand for Request,
to _ transmit and Ready _ to _ receive respectively.
The modified state diagrams for the “ RT” and
“ T ” groups are shown in Fig. 4.

4. Deadlock-free communication structure

Let us assume that the time taken by process B
in node m to go from the EOF(RCV) state to the
EOF(RQSTXMT) state be dmb.

It is then possible to ensure deadlock-free oper­
ation of a loop of message passing nodes by

(i) introducing a wait state of duration dm
between the EOF(XMT) and ACT(RDTRCV) in
the 5 process of the mth node such that

d m > dmb (1)

and
(ii) by assigning in the S process a higher

priority to the input coming from B over that
from O when inputs are simultaneously present
from both these processes.

Definitions

We define that there is a conceptual “ hole”
present in a process if there is no message in it.
The concept of the hole is analogous to the hole-
electron concept in electronics from which the
term has been borrowed. A message can be passed
on to a process only if there is a hole in it. After
the transfer of the message the hole passes from
the receiver to the sender. Thus the direction of
the hole flow is opposite to the direction of the
message flow.

We set the following conditions:
(i) Messages are always ready at all the O

processes to enter into the system.
(ii) There is no sink within the system.
Absence of any of these conditions in a physi­

cal system however will actually aid further in
avoiding the occurrence of deadlock.

5. Proof

Let us consider that there are n nodes in the
system. This means that there will be 3n processes
in the system which form a loop. As each of the
processes has a single buffer there will be 3n
buffers in the system. As a result, deadlock will
occur if and only if 3n messages are allowed to be
present in the system simultaneously.

First we consider the situation in which the
system contains 3n — 1 messages. We shall prove
that the system will never allow any new message
to enter into the system (from any of the O
processes) and will therefore avert the deadlock
situation. Let us initially suppose that another
message is allowed to enter into the system caus­
ing a deadlock. We investigate the wth group of
R -B -S processes, which has allowed this (3n)th
input to enter into the system.

Since a new message can enter into the system
from Om through Sm, it implies that just prior to
the introduction of this (3«)th message, Sm must
have had a hole. Again because there were 3n — 1
messages prior to this introduction, each of the
3« — 1 processes must have had a message each.
This in turn implies that Bm also must have con­
tained a message.

Now a message can only be transferred to a
process which contains a hole as stated earlier. So
the presence of a hole in Sm implies that the
immediately previous hole must have been in the
R of the subsequent group of processes, i.e. the
(m + l)th group. So, the transfer between R m and
Bm must have taken place earlier than the transfer
between Sm and /?OT + 1.

In the light of the previous discussions, and the
presence of a priority at the input to Sm, the
system will not accept any new message if Sm and
Bm are in the EOF(XMT) and EOF(RQSTXMT),
respectively. Hence the (3«)th message will not
enter the system and deadlock cannot occur.

So, we consider the other possible situation in
which Sm and Bm are in the EOF(XMT) and
ACT(RQSTXMT) states, respectively. We do not
care whether this state of condition is reachable or
not from the initial state of the system. Our only
consideration is that this is the only possible situa­
tion in which a deadlock may occur.

Since there is no way of determining where in
the ACT(RQSTXMT) state the process Bm may
reside, we assume for reasons of stringency that it
is about to enter the ACT(RQSTXMT) state. This
in turn implies that Bm is in the EOF(RCV) state.
Clearly this is the most stringent condition as far
as the occurrence of deadlock is concerned.

If the time taken by process Bm to reach
EOF(RQSTXMT) from EOF(RCV) is dmb, and

Sm is delayed by this period between EOF(XMT)
and ACT(RDTRCV), B,n will reach the
EOF(RQSTXMT) before Sm can enter the
ACT(RDTRCV) state. Again, since a higher prior­
ity is given to the input coming from Bm over the
input from Om, no new message can enter into the
system and hence the system will be free of
deadlock.

Next, let us consider the situation where there
are K number of holes in the system, i.e. 3n-k
number of messages. If these K holes are distrib­
uted in exactly K number of S processes, then
and then only, K new messages may enter the
system, causing a deadlock. However, if sufficient
delay has been introduced in each of the S
processes, then none of the 5 processes will allow
any message to enter into the system, and the total
number of messages in the system will remain at
3n - k.

However, it is possible, although very unlikely,
that these K holes are distributed in exactly (K/2)
S processes and their corresponding B processes.
Only under this condition, K / 2 number of new
messages can be introduced into the system. In
other words, we need at least two holes in the
system for introducing one message.

Let the number of messages in the system in
any arbitrary state i be represented by Nr Then it
can be seen that

if N, = 3/i — k

then max(Arj + 1) = 3n — k + \ K / 2 \ . (2)

This process of message introduction continues
till the condition /c > 2 remains satisfied. When K
becomes equal to 1 the system becomes stabilized
through the self-lock mechanism discussed earlier.

6. Discussion

It may be asked whether the solution could not
have been achieved with only two processes R and
5. The answer is in the affirmative. However, it
should be kept in mind that in an actual system
the process R may go into a state in which it
processes the message after receiving it. This intro­
duces an arbitrary amount of delay which may not

be easily estimated. On the other hand, the sole
purpose of process B, defined as a buffer, is to
receive and then transmit. Hence it is relatively
simpler to calculate the time which the process B
takes to inform the process 5 that it has a message
for the latter.

We have intentionally not considered any sink
in our analysis of the system in order to make it
simple. This is contrary to any physical system
where a message once generated reaches its des­
tination after a finite interval of time. However,
the presence of sinks aids to prevent the occur­
rence of deadlock by paving the way for new
messages to enter into the system.

The message-transaction protocol assumed in
this paper matches with the one defined in Occam
and the communication structure presented here
was implemented with Transputers. On experi­
mentation the system was found to run completely
free of deadlock for a wide range of message
interarrival times starting from zero. This has been
reported in [5].

7. Conclusion

In this paper we have shown how a unidirec­
tional loop structure may be made free of deadlock
with the help of three processes in each node of
the system, the introduction of priority, and the
incorporation of a certain delay. We do not, how­
ever, claim this delay to be optimum for the
prevention of deadlock.

As has been stated earlier, three types of con-
gestion-control algorithms are in existence. The
one reported here solves the problem of deadlock
in a manner which is totally distributed. It is
advantageous over isarithmic control, because the
empty packets in the latter also generate traffic
and overhead. It is advantageous over the method
suggested in [4], because it does not have to de­
compose a cyclic structure into an acyclic one
explicitly via virtual links.

It is also obviously at an advantage over end-

to-end flow control, because there is no need to
reserve buffers in the receiver which also contrib­
utes to system overhead.

This structure behaves as if a predetermined
number of messages (3n — 1) may reside in the
system at any point in time. Whenever the number
of messages reaches that value, no more inputs are
accepted. But the structure is self-regulatory and
the regulation occurs automatically without any
explicit communication taking place among the
nodes. This self-regulatory mechanism prevents
the occurrence of deadlock.

The structure ensures the presence of at least
one hole in the system. The presence of this hole
causes a temporal ordering of the processes form­
ing the loop and implicitly converts the loop into
an acyclic structure, thus preventing the occur­
rence of deadlock.

This basic technique can be used to synthesize
other structures such as bidirectional loop, mesh,
hypercube etc. and may form the communication
kernel of a distributed operating system. This will
be reported in a future paper.

References

[1] V. Ahuja, Design and Analysis of Computer Communication
Networks (McGraw-Hill, New York, 1982).

[2] W.C. Athas and C.L. Seitz, Multicomputers: Message Pas­
sing Concurrent Computers, IEEE Computer (August,
1988) 9-24.

[3] C.G. Bell, A. Newell and D.P. Siewiorek, Computer Struc­
tures: Principles and Examples (McGraw-Hill, New York,
1982).

[4] W.J. Dally and C.L. Seitz, Deadlock-free message routing
in multiprocessor interconnection networks, IEEE Trans.
Comput. C-36 (5) (1987).

[5] P.K. Das and D.Q.M. Fay, Performance studies of multi­
transputer architectures with static and dynamic links, in:
Proc. Euromicro ’88 Con/., Zurich, Switzerland (1988) 281—
289.

[6] C.L. Seitz, W.C. Athas, W.J. Dally, R. Faucette, A.J.
Martin, S. Mattisson, C.S. Steele and W.K. Su, Message-
Passing Concurrent Computers, Their Architecture and Pro­
gramming (Addison-Wesley, Reading, MA, 1986).

	A deadlock-free communication kernel for loop architecture

	P. Pramanik and P.K. Das

	A.K. Bandyopadhyay

	D.Q.M. Fay

	1.	Introduction

	2.	Assumptions

	4.	Deadlock-free communication structure

	5.	Proof

	if N,= 3/i — k

	6.	Discussion

	7.	Conclusion

	References

