
An efficient k nearest neighbors searching
algorithm for a query line ^

Subhas C. Nandy3 *, Sandip Dasa, Partha P. Goswamib
aAdvanced Computing and Microelectronics Unit, Indian Statistical Institute, 203 B.T. Road,

Kolkata 700 108, India
b Computer Center, Calcutta University, Kolkata 700 009, India

Abstract

We present an algorithm for finding k nearest neighbors o f a given query line among a set of
n points distributed arbitrarily on a two-dimensional plane. Our algorithm requires O(n2) time
and 0 («2/log«) space to preprocess the given set of points, and it answers the query for a given
line in O(k + logn) time, where k may also be an input at the query time. Almost a similar
technique works for finding k farthest neighbors of a query line, keeping the time and space
complexities invariant. We also show that if k is known at the time of preprocessing, the time
and space complexities for the preprocessing can be reduced keeping the query times unchanged.

Keywords: Nearest and farthest neighbor; Query line; Arrangement; Duality

1. In troduction

G iven a set P = { p \ , p 2, . . p n} o f n points arbitrarily distributed on a plane, we
study the problem o f finding k nearest neighbors o f a query line / (in the sense o f
perpendicular distance). The problem o f finding the nearest neighbor o f a query line
was initially addressed in [6]. A n algorithm o f preprocessing tim e and space 0 (« 2)
was proposed in that paper which can answer the query in O (logw) time. Later, the
same problem w as solved using geom etric duality in [1 2], w ith the same tim e and

* This work was done when the first author was visiting School o f Information Science, Japan Advanced
Institute o f Science and Technology, Ishikawa, Japan.

* Corresponding author.
E-mail address: nandysc@isical.ac.in (S.C. Nandy).

mailto:nandysc@isical.ac.in

space complexities. The space complexity o f the problem has recently been improved
to 0 (n) [14], The preprocessing tim e o f that algorithm is O (n lo g n), bu t the query
time is O(«0695). In the same paper, it is shown that if the query line passes through a
specified point, that inform ation can be used to construct a data structure in 0 (« lo g «)
time and space, so that the nearest neighbor query can be answered in 0 (lo g "«) time.

In this paper, we address a natural generalization o f the above problem where the
objective is to report k nearest neighbors o f a query line in the sam e environm ent. W e
use geometric duality for solving this problem. O ur algorithm is based on m aintaining
the levels o f the arrangement [8] o f the duals o f the points in P. The preprocessing time
and space required for creating the necessary data structure are O (n2) and 0 (w2/lo g / j) ,
respectively; the query tim e com plexity is 0 (fc + lo g n), where k is an input at the query
time. The same data structure can be used to report k farthest neighbors o f a query
line with same time complexity.

We have considered the following three constrained cases where k is known at
the time of preprocessing. F or all these cases the tim e and space com plexities for
preprocessing can be reduced significantly, but the query tim es rem ain same.

(i) I f k > log« then for the k nearest neighbors problem, the size o f the data structure
can further be reduced to O (n2/k) keeping the preprocessing and query time
complexities unchanged.

(ii) In particular, w hen the query line is know n to pass through a fixed point q,
we use a random ized technique to construct a data structure o f size O(fcn) in
0 (£n + m in(n log2 « ; kn l o g n)) expected time, which answers k nearest neighbors
o f such a query line in 0 (k -f log w) time. Thus, for the nearest neighbor problem
(i.e., /c = l) , our algorithm is superior with respect to both space required and
query time in com parison to the algorithm proposed in [14]. The preprocessing
time complexity remains same as that o f [14].

(iii) For the k farthest neighbors problem, the preprocessing time and space com plex
ities can be reduced to 0 (k n + n \ o g n) and O(kn) respectively, and the query can
be answered in O (k + log n) time.

2. Applications

Apart from being a variation o f the proxim ity problem s in com putational geometry,
the problem o f finding k nearest/farthest neighbors is observed to be im portant in
different applications as m entioned below.
• Consider that the points are distributed on the floor, and each point is attached with

a pattern characteristics (a quantitative m easure). In pattern classification and data
clustering [14], the query line is considered as a partition line betw een tw o classes
o f patterns. Here, k nearest neighbors o f the query line are considered, and the sum
o f squares o f the pattern characteristics for between and within the partitions are
analyzed to give an idea about the stability o f classification.

• Another application o f k nearest neighbors problem is the linear facility testing.
Suppose we need to install a linear facility, e.g., pipeline, conveyor belt for plant
layout, corridor for light-rail commuter system, etc., with a specified capacity k.

Here the problem is to find the sum o f distances o f k nearest neighbors o f a query
line from itself; the query line indicates the linear facility.

• The k farthest neighbors query has wide spread applications in Statistics, where
the objective is to remove the farthest k elements from the query line. These are
considered as outliers in the data set.

3. G eom etric prelim inaries

F irst we m ention that we need to m aintain an array w ith the points in P, sorted
w ith respect to their ^-coordinates. This requires O (n) space and can be constructed in
0 (n log n) time. I f the query line is vertical, we find the position o f its x coordinate
by perform ing a binary search in the array P. To find its k nearest neighbors, a pair o f
scans (tow ards left and right) are required in addition. So, the query time complexity
is O (k + log /;). It is easy to understand that k farthest neighbors o f a vertical query
line can be obtained in O (k) tim e by scanning the array P from its left and right ends.

W e now consider the case where the query line is non-vertical. We use geometric
duality for solving these problems. Here, (i) a point p = (a ,b) o f the primal plane
is m apped to the line p ' \ y = ax — b in the dual plane, and (ii) a non-vertical line
I: y = mx — c o f the primal plane is m apped to the point I' = (m ,c) in the dual plane.
The incidence and order relationships betw een a point p and a line I in the primal
plane rem ain preserved among their duals in the dual plane [1 2].

Let H be the set o f dual lines corresponding to the points in P. Let s I (H) denote
the arrangem ent o f the set o f lines H . The num ber o f vertices, edges and faces in
. : / (/ /) are all 0 (« 2) [8], G iven a query line /, the problem o f finding its nearest and
farthest point can be solved as follows:

Nearest-neighbor algorithm : Use the point location algorithm o f [9] to locate the
cell o f s tf(H) containing I' (the dual o f the line /) in 0 (lo g «) time. As the cells o f
the arrangem ent srf(H) are split into trapezoids, the lines p\ and pj lying vertically
above and below / ', can be found in constant time. The distance o f a point p and the
line / in the prim al plane can be obtained from the dual plane as follows:
• D raw a vertical line from the point V which meets the line p ’ at a point tx (l ' ,p ’)

in the dual plane. The perpendicular distance o f the point p and the line I in
the prim al plane is equal to d (l , t x (l ' , p ')) / y / \ + (x (/ ')) 2, where d(-,-) denotes the
d istance betw een two points, and x (l ') is the x-coordinate o f the point I'.

Thus, the point nearest to / in the prim al plane will be any one o f pi or Pj de
pending on whether d(l ' , a(l', p ')) < or > d (l \ a (l ' , p j)) . The preprocessing time and
space required for creating and storing s / (H) are both O (n2) [9], From now onwards,
d (l ' , a (l ' , p ')) w ill be referred as the vertical distance of the line p ' from the point I'.

Farthest-neighbor algorithm: W e construct the lower and upper envelopes o f the
lines in H , and store their vertices in two different arrays, say A\ and A j. This requires
0 (n lo g «) tim e [11]. Now, given the line /, o r equivalently the dual point / ', we draw
a vertical line at x (l r) which hits the edges ea € A \ and e b eAo. Edges ea and ey, can
be located in O (lo g n) time. I f ea and e b are, respectively, portions o f p\ and pj, then
the farthest neighbor o f I is either p, or p , which can be identified easily. Thus for

Fig. 1. Demonstration of levels in an arrangement of lines.

the farthest neighbor problem , the preprocessing tim e and space required are 0 (« lo g «)
and O(«), respectively, and the query can be answered in O (lo g n) time.

W e follow alm ost the same approach for locating k nearest/farthest neighbors o f
a query line. The data structure used in our algorithm stores different levels o f the
arrangement as stated below.

Definition 1 (Edelsbrunner [8]). A point n in the dual plane is at level 9 (0 O^n)
i f there are exactly 9 lines in H that lie strictly below n. The 0-level o f sd(H) is the
closure o f a set o f points on the lines o f H whose levels are exactly 9 in and
is denoted as Xq.

Clearly, the edges o f Xg form a monotone polychain from x = —oo to x = oo. Each
vertex o f the arrangement ,c /(7 /) appears in two consecutive levels, and each edge
o f appears in exactly one level. In Fig. 1, a dem onstration o f levels in an
arrangement s i (H) is shown. The thick chain represents X\. A m ong the vertices o f
X\, those marked with empty circles appear in Xq, and those m arked w ith b lack circles
appear in X2.

4. A lgorithm

In order to make the presentation clear to the reader, we first describe a preprocessing
strategy which can be perform ed in 0 («2) tim e and using 0 («2) space, and it reports
k nearest/farthest neighbors o f a query line in 0 (k + lo g n) time. Next, we modify
our data structure to achieve O (n2/ lo g n) space bound; the preprocessing and query
algorithms are also m odified accordingly but the tim e com plexities rem ain unchanged.

4.1. D ata structure

W e create a balanced binary search tree T, called the prim ary structure, whose
nodes correspond to the levels {0 (0 = 1 , . . . , n} of the arrangement .rJ (H). Each node,
representing a level 9, is attached with a secondary structure, w hich is a linear array

(b M v / b l (c) : | v / | > l

Fig. 2. Augmentation of secondary structure.

contain ing the vertices and edges o f X g in a left to right order. From now onwards,
the secondary structure o f a node containing level 0 will be referred as kg.

T o facilitate our search process, we follow a technique sim ilar to frac tiona l cascading
[5] fo r augm enting the secondary structures o f all the non-leaf nodes in T as described
below .

C onsider an edge eeX g . Let 0/ be the level attached to the left child o f the level 0 in
T . L e t V f be the set o f vertices o f X g t whose projections on the x-axis are completely
covered by the projection o f e on the x-axis. I f | V f\> 1 then we leave the leftmost
vertex o f V f and vertically project the next vertex on e, and do the same for every
alternate vertices o f V f as shown in Fig. 2. All these projections create new vertices at
level 6. W e consider all the edges o f Xg, and for each edge e&Xg, we select a subset
o f vertices o f Xo, whose projections on e create new vertices at level 0. Similarly, a
se lected subset o f vertices o f X g t (the right child o f 8) will also contribute new vertices
at level 0. N ow we have the follow ing lemma.

L em m a 1. A fte r the augm entation step
(i) the pro jection o f an edge o f X g on the x-ax is can overlap on the projections o f

a t m o st two edges o f X g t and a t m ost two edges o f X g t on the x-axis.
(i i) I f the projection o f an edge eGXg on x-a x is overlaps on tha t o f two edges o f

Xq,, they share a com m on vertex o f Xor The sam e result holds fo r Xgt also.
(ii i) T he num ber o f edges a t level 0 is increased to a t m ost \ Eg \ + |E g t \ + \ E g t \ j 2 ,

where E g is the se t o f edges in X g .

P ro o f , (i) Consider the projections o f a selected subset o f vertices o f Xq, on the edges
at level 6. For each edge e e X g , the following three situations m ay arise.

\V f\ = 0 , i.e., the edge e is com pletely covered by an edge at level 9i (Fig. 2(a)).
\V f\ — 1, i.e., the edge e overlaps on exactly two edges at level 0/ (Fig. 2(b)).
\ V f \ > \ . In this case the truth o f the lem m a follows as we have projected every

a lternate vertex o f V f on e (Fig. 2 (c)), and edge e is split into parts after the aug
m entation .

T he same result follows for the projections o f the vertices o f Xg, on the edges
o f X g .

(i i) Follow s from part (i) o f this lemma.
(ii i) Follows from the fact that at m ost ha lf o f the vertices o f each o f X g , and X q i

are pro jected on the polychain at level 9. □

From the original secondary structures o f all nodes in T, we create new secondary
structures as follows:
• The secondary structures for all the nodes appearing at the leaf level o f T will rem ain

unchanged. W e propagate a selected subset o f vertices appearing in the secondary
structure o f each lea f node to that o f its parent as stated above, and m ark the le a f
nodes as processed.

• We select a non-leaf node which is not yet processed but both o f its successors
have already been processed, and construct a linear array w ith the enhanced set o f
vertices and edges form ed by the original vertices that are present in its existing
secondary structure, and the vertices contributed by its both left and right children
due to their projections. The members in the array are ordered from left to right.
This new array will now serve the role o f the secondary structure. W e m ark the
node as processed. I f the node is not the root, w e propagate a selected subset o f its
vertices (after augm entation) to its parent.

• This method o f propagation o f vertices is continued in a bottom -up m anner until
the root o f T is processed.

Lemma 1 remains valid for all the edges appearing in the new secondary structure o f
all non-leaf nodes. The augm ented structure w ill be referred as Its p rim ary
structure T remains the same; from now onwards, will denote the m odified secondary
structure o f node 9.

Lem m a 2. The to ta l num ber o f vertices in the secondary structures o f a ll the levels
o f is O(n1).

Proof. All the vertices o f s# (H) contribute to W e now show that the num
ber o f vertices created in the secondary structures o f all the nodes in T due to the
augmentation remains O (n2). Here we use the term layer to denote the different depth
levels o f the tree T. For the sake o f notational simplicity, let /i = (["log«")). The tree
T has h layers, layer-1 corresponds to the root o f T and the layer indices increase as
we proceed towards the leaves o f T.

Let /?, and n* denote the number o f vertices present in the secondary structures o f
all the nodes in the ith layer o f the tree T before and after the augm entation process,
respectively. Since the secondary structures o f the leaf nodes o f T are not augm ented,
n*h =nf,. At most w/,/2 nodes are propagated to the secondary structures o f the nodes
appearing in the (h — l) th layer o f T. So, n'h __l = « / ,_ i + «/,/2 = «/,_i +n*h/2 . P roceeding
in a similar manner, n* = n, + n*+ j/2 . Thus, the total num ber o f vertices in s i * (H)

is E ?= i n * = n h + (tth-i + nh/2) + (« A_ 2 + « a - i /2 + nh/4) + • • • + («i + n i/2 + «3/
4 + - - - + nh/2 h~ l) ^ 2 Y : t l ni = 0 (n 2). □

Each edge in the secondary structure o f a non-leaf node is attached w ith two pointers,
namely TI\ and 772. Let 9 be a non-leaf node, and 0/ and 0r be its left and right children,
respectively. By Lem m a 1, the projection o f an edge e£A g overlaps on that o f at m ost
two edges o f both /.», and Agr. I f e overlaps on one edge, say e* e l o , then the U\
pointer o f edge e, points to e* . I f e overlaps on two edges, say e* ,e* * € ko , then 771

pointer o f edge e points to the vertex com mon to e* and e**. The pointer 772 o f edge

e is set to point an edge or a vertex com m on to two adjacent edges o f ho, in a sim ilar
manner.

4.2. S ke tch o f the query algorithm s

Given a query line /, we com pute its dual point V. Next, we identify a pair o f
adjacent levels o f s j* { H) and their corresponding edges w hich appear vertically above
and below / ', using the procedure described below.

Definition 2. Let e be an edge in) and a be an arbitrary point in the dual
plane. The coordinates o f the left and right end points o f e be (x le, y le) and (xre,y l) ,
respectively, and the coordinates o f the point a be (x y, y v). The edge e is said to span
horizontally on the po in t a i f the projection o f the edge e on the x-axis contains the
projection o f the point a on x-axis, i.e., x le < x ,

W e start from the root o f T. Let 0root be the level (o f s 'J '(H)) attached to it. We use
binary search to locate the edge e € h g M w hich spans horizontally on I'. I f / ' is below e
we proceed tow ards the left child (0/) o f 0mM in T ; otherwise, we proceed towards the
right child (0 ,). I f search proceeds towards 8/, we can find the edge e*eho , spanning
horizontally on / ' in 0 (1) time using the pointer i7i attached to the edge e. Similarly,
we use the pointer U 2 for the sam e purpose i f search proceeds towards 8r. Proceeding
in a sim ilarly manner, we can identify a level 6 in the le a f layer o f T, and an edge
in its secondary structure hy which is ju s t above or below The other edge defining
the cell can easily be identified from kg_\ or hg+i- This step requires 0 (lo g «) time.
W e shall refer this traversal in T as fo rw a rd traversal.

4.2.1. R eporting o f k nearest neighbors
Let e;t e h () and ei, £ / be the two edges which are vertically above and below /',

respectively, in the cell (o f containing I’. We com pute the vertical distances
o f ea and e h from I’, and report the nearest one. I f ea is closer to /' than et,, we need
to reach an edge o f /.r,-. \ whose horizontal span contains I'. On the other hand, i f e k
is closer to / ' than ea, we need to reach such an edge o f h g -2-

In order to reach an appropriate edge in the inorder predecessor or successor o f a
node during the reporting, we m aintain two stacks .S'| and SS. They contain the edges
(along w ith the level-id) o f ,?/ “(/ /) through w hich the search proceeded from the root
to level 6 — 1 and 6, respectively. Initially, these two stacks are prepared during forward
traversal. A t the tim e o f reporting, these stacks will dynam ically change as described
in the p ro o f o f following lemma.

Lem m a 3. A fte r locating a pa ir o f edges in two consecutive levels o f say
0 — 1 a n d 8, whose horizontal spans contain I', the edges in k levels vertically below
9 — 1 (vertically above 9) can be reported in 0 (k + log n) time.

P roof. W ithout loss o f generality, we consider the m ethod o f visiting o f the edges in
k consecutive levels above the level 8 w hose horizontal span contains I'.

I f the level 0 + 1 , which is the inorder successor o f level 6 in T, is
(i) in its right subtree, then we traverse all the levels that appear along the path

from 0 to 0 + 1 in T. In each move, we use pointers /7 t and 772 to reach an
edge in the next layer whose horizontal span contains I' in constant time. W e
need to store all these edges in the S 2 stack for backtracking, if necessary.

(ii) in some predecessor layer, then we m ay need to backtrack along the path through
which we reached from 9 + 1 to 6 during forward traversal. This can be done
by popping elements from S j stack until we get an edge o f level 9 + 1. Let the
number o f elements popped be <5.

N ote that, after visiting level 8 + 1, i f it needs to proceed to the level 9 + 2, we again
have to move forward <5 layers towards leaf. During this forw ard traversal, the edges
on that path will be pushed in the S 2 stack. But such a forward m ovem ent m ay again
be required after visiting all the levels in the right subtree rooted at level 9 + 1. Thus
apart from reporting, this extra traversal in T m ay be required at m ost twice, and the
length o f the path m ay be at m ost O (logn). This implies that, each o f the k nearest
lines o f I' can be reported in amortized 0 (1) time.

In order to visit the edges in k consecutive levels below 0 — 1, whose horizontal
span contains / ', we need to use the stack S\ in the same manner. □

Thus Lemmas 2 and 3 lead to the following result stating the tim e and space com
plexities o f our algorithm.

Theorem 1. Given a set o f po in ts on a plane, they can be preprocessed in 0 (« 2) tim e
and space such that the problem o f reporting k nearest neighbors o f a given query
line can be solved 0 (k + log «) time.

4.2.2. Reporting o f k fa r th es t neighbors
In the farthest neighbor problem, we find two edges ea e / 1 and whose hori

zontal span contains V, by traversing the tree T from its root to the leaves containing
levels 1 and n. The farthest neighbor o f V is either the line containing ea or the line
containing e\> as m entioned in Section 3. In order to get the next farthest neighbor, the
search progresses in T to the inorder successor o f level 1 or the inorder predecessor
o f level n depending on which one is reported currently. The process continues until
k lines are reported. H ere also we need to m aintain two stacks 5] and S 2, w hose role
is same as that o f the earlier problem. In each level, the desired edge can be located
in amortized constant tim e using these stacks.

Theorem 2. Given a se t o f po in ts on a plane, they can be preprocessed in 0 (t r) tim e
and space such tha t the problem o f reporting k fa r th e s t neighbors fo r a given query
line can be solved in O (k + lo g «) time.

In this connection it needs to mention that, an alternative m ethod for finding the k-
nearest neighbors o f a query line can be devised using the (1 /n)-cu tting tree in the
dual plane [2,13] keeping the preprocessing tim e and space complexities 0 («2) and the

Fig. 3. Demonstration of Lemma 4.

query tim e com plexity 0 (k + lo g n). But this m ethod cannot solve the other problem s
addressed in this paper.

W e now discuss some modification o f our existing data structure to achieve better
space complexity.

4.3. Further refinement

The follow ing result helps in reducing the space com plexity o f the preprocessed data
structure keeping the preprocessing and query time com plexities invariant.

L em m a 4 (Pach and Agarwal [16, Lem m a 11.4]). L e t 0 \ , @2 , ■ ■ ■,&„ be disjoint col
lections o f levels in an arrangem ent o f n lines. I f each 0 , contains a t least v levels,
then we can p ic k a level 6, £ 0 h such that YTi=\ IE(>, I ^ rrjv . H ere Eg denotes
the se t o f edges a t level 9.

W e now describe a m ethod o f reporting m nearest/farthest neighbors o f a query line.
In order to answer the queries in different cases (as m entioned in Section 1), we have
to choose the value o f m appropriately.

Consider [n/m] disjoint sets o f levels, nam ely 0 i , 0 2, . . . ,0 f„ /„ ^ ,0 , is a collection o f
m consecutive levels { (/— \) m + l , (i — l)m + 2 , . . . , im } for i = 1 , . . . , [n/m j, and ,
consists o f a set o f (n — m * [_n /m \) consecutive levels {m [n /m \ + 1 , mL«/mJ + 2 , . . . , « } .
The partitioning o f levels is dem onstrated in Fig. 3. W e choose levels {9 t, i= 1 , . . . ,
\n jm \ }, w here 0, £ 0 , and) = m in /e<=>, \Xj\, and construct the data structure as de
scribed below.

4.3.1. D a ta structure
O ur prim ary structure is a height balanced tree T whose nodes correspond to the

levels {9j, i= 1 , . . . , [n/m]}. The secondary structure attached with level 0, is an array
containing the vertices and edges on the polychain Xg.. The augm entation step remains
same as described in Section 4.1. The role o f the two pointers I I 1 and I I2, attached

with each edge o f the augm ented structure, rem ain same as mentioned earlier. The
modified data structure will be referred as 38*.

Lem m a 5. The total num ber o f vertices generated in all the levels lo ,,X o 2, . . . , k o inm]
after the augmentation step is O(n2/m) in the worst case.

Proof. See Lem ma 4 and the proof o f Lem ma 2. □

Consider a vertex u and draw a vertical line p from vertex v upwards till it
hits the polychain A0i+r Let Q (v) be the set o f lines o f H that are intersected by
p. As we are not storing all the levels, we need to m aintain Q (v) w ith each vertex
uG .tf* . This will facilitate the query answering. N ote that, 0 ^ |g (r) l 0Q (v)\ = 0
is attained if 0, is the highest level in 0 ,, and 9i+ 1 is the lowest level in 0 ,+i;
similarly, (Q(y)| = 2m is attained if 0[is the low est level in 0 , and Qi+\ is the highest
level in 0 ,+ i). Thus, the total space required for storing Q() for all the vertices o f
38* may be 0 (n 2) in the w orst case (see Lem m a 5). In order to reduce the space
complexity, we store Q() w ith a selected subset o f vertices in each level o f M ". Let
V()i = {t'o, t-1, -..} be the set o f vertices o f /,t> after the augmentation step. W e split V,,
into two subsets Vgl = {i-o, vm, ti,,,, ...} and V^ = Vgj — V j . The num ber o f vertices
in Vgl is 0 ([n/m]). Each o f the vertices in the subset V0l is attached with the list Q().
While answering a query, i f Q () is required for a vertex v ^ V ^ , it w ill be com puted
online from that o f its nearest vertex in Vgl (i.e., the vertex vm j). For this purpose,
we attach two scalar information with each vertex v j£ V (2: (i) a pointer <Z> which points
to the vertex vmy;mj(G Vg), and (ii) an integer W containing either 6, — 1 or 0, + 1 in
which Vj appears in addition to level 0, in s / (H) . I f the vertex is created due to the
augmentation, it cannot appear in two levels o f so the field attached to that
vertex contains 0 .

Each edge e e f ’ is attached with the identifier o f the line (line-id) contributing that
edge. I f e is a part o f the line p't (dual o f the point p ,), its line-id is i.

In addition to the data structure 38*, we need to maintain an array L o f size n which
contains all the lines in H . Its elements are ordered arbitrarily. Each element contains
(i) a pointer field and (ii) a mark bit. The pointer field is used to point the corre
sponding element in a tem porary list T E M P which is used during the preprocessing,
and will be defined in the next subsection. The m ark bit is used for query answering.

Lem m a 6 . The space required fo r storing the additional information a ttached with
a ll the vertices and edges in (ffl* is 0 (n 2/m) in the worst case.

Proof. \V0'\ = n ^ , | / H I Vk \/m + 1. The total num ber o f vertices with which Q () is

attached, is (\^h \/m + 1) = r r in r + n/m in the worst case (by Lem m a 5). The
lemma follows from the fact that the size o f Q() for each o f these vertices is less than
2m. It needs to mention that the total extra space consumed for the set o f vertices in
{ V l i = l . . . , \ n Im 1} and for all edges in M r is O (n2/m) in the w orst case. □

4.3.2. Preprocessing
W e construct the aforesaid data structure in three m ajor steps:
S tep A l: U sing topological line sweep [1], we can construct the levels o f the ar

rangem ent in O (n2) time. By observing the number o f vertices in each level, w e can
identify {0 i , 0 2 , . . . , 0 Note that, we don’t need to store the levels explicitly in
this step, so O (n) space is enough.

S te p A2: Again, we perform topological line sweep [1] to explicitly identify the
vertices and edges on the polychains {X0,X 0l,Xg2, . . . , X 0^imVX„}; here Xq and X„ rep
resen t the low er and upper envelopes o f H , respectively. W ith each edge, its line-id
is attached. W e then augm ent the data structure as described in Section 4.1 to get the
desired structure M *. Next, we consider each level 0,, and identify two sets o f vertices
Vq. and V(2. The pointers attached to the vertices in are appropriately set. The entire
step can be com pleted in 0 (/ r) time.

S tep A3: In the last step, we process each pair o f consecutive levels (0,-, 0,+ i) for
i = 0 ,1 , . . . , [n/m], and prepare list Q (v) for each vertex v e Vel . The processing o f this
step is done using the following substeps.

S te p A3.1: [Initialization step]
The pointers attached with all the members in the array L are initialized to NULL.
Create a new list by merging the vertices o f the polychains /.«, and in increasing

order o f their ^-coordinates.
Consider a vertical line segm ent p at the leftmost vertex o f the new list between the

polychains A<j. and , and create a temporary list T E M P with the lines in array L
tha t intersect p. The pointer field attached with each elem ent in the array L is set with
the address o f the corresponding elem ent in the list T E M P .

S tep A3.2: We process the vertices o f the list created in Step A3.1 by sweeping
the vertical line segment p towards right. During the sweep, the two end points o f p
w ill always touch Xoi and Xg.+i, and T E M P contains the lines o f L that intersects p.
F o r a vertex let /below and /above be the line-ids o f two edges which are
incident to v from left as shown in Fig. 4. Now, the follow ing four situations need to
be considered.
(a) I f v appears in levels 0, and 0/ — 1 (see Fig. 4 (a)), no change in the list T E M P

is required.
(b) I f v appears in levels 0, and 0, + 1 (see Fig. 4 (b)), then after processing v;, the

line / above leaves p, and /below appears on p. W e use line-ids attached to /below
and /above to reach the corresponding elements o f array L. The pointers attached
to these two lines help in accessing them in the list T E M P . T E M P is updated by
deleting / above and adding /beiow- Finally, the pointers attached to /below and / above
in the array L are updated accordingly. This step requires 0 (1) time.

(c) I f v appears in levels 0i+i and 0/+i - 1 (see Fig. 4 (c)), /heu,w goes out and / above
enters in the list T E M P . Here also, the necessary updates can be done in 0 (1)
time.

(d) I f v appears in levels 6i+\ and 0,+ i + 1 (see Fig. 4 (d)) no change in T E M P is
required.

S tep A3.3: I f v £ V 0', a copy o f the list TEMP is attached w ith the vertex v as Q (c)

Fig. 4. Updating of TEM P list.

L em m a 7. The preprocessing step requires 0 (n2) tim e in the worst case.

P roof. Steps Al and A2 require 0 (n 2) time. The total tim e com plexity o f Step A3 for
all pairs o f levels {(0/ ,0 ,-+ i) ,i= n/m] } is calculated as follows:

(i) the initialization process (Step A3.1) requires O (n2) tim e in total;
(ii) O (n2/m) vertices are considered in total (Lem m a 6) in Step A3.2, and processing

each vertex needs 0 (1) time, and
(iii) Step A3.3 needs to be executed for O (n2/m 2) vertices in total. For each o f the

vertices, we need to create Q() by copying the list TEM P in it. As the number
o f lines in TEMP at any instant o f tim e can never exceed 2m, Step A3.3 takes
O (n2/m) time during the whole execution. □

4.3.3. Query
Given a query line I, w e com pute its dual point I', and locate the edges o f -M* w hich

are just above and below / ' using the same technique as described in Section 4.2. Let
V lies in the region bounded by the polychains Ae(+1 and X0r We draw a vertical line
segment p* from / ' upwards till it hits the polychain at level m in(0,+3,«), and another
line p*’ from V downwards till it hits the polychain at level m a x (l ,0;_ 2)- H ere also,
we need to create an array A which contains the lines o f H that are intersected by p*
and p**. The m nearest lines o f / ' are obtained by searching the m em bers o f A with
respect to their vertical distances from

Lem m a 8 .

P roo f. Consider the two extreme situations: (i) 6i+ 1 is the m axim um level in & ,r]
and 0i+3 is the m inim um level in ©,-. 3 and (ii) di+\ is the m inim um level in 0,-+1 and
Oi+s is the m axim um level in <9,t 3 . The num ber o f lines hitting p* between Xol+\ and
kf)i+} in case (i) is at least m and that in case (ii) is at m ost 3m. Same result holds for
the set o f lines intersected by p** between the levels 0,- and 0 ,_2. The total num ber
of lines hitting p* and p** between Xtti and Xgj+] m ay be atm ost 2m. Hence the result
follows. □

W e consider six pseudo vertices {w,. j = 1 , 2 , + 3}, where w, is the point o f
intersection o f the polychains w ith the vertical line drawn at / ', i.e., w ith either
o f p* and p**. Lem m a 8 indicates that, in order to find k nearest neighbors o f we
need to consider Q{w , - 2), Q {w ,-1), Q (w ,), Q (w , . ,) and Q{w,+2).

Lem m a 9. Q(wl) can be constructed in O (m) time.

P roof. Let v e k g l is closest and to the left o f Wj. I f v £ Vg' then Q (w j) = Q(v). I f v(E V(f

then we choose a vertex v* € V/ w hich is closest and to the left o f v. v* can be reached
from v using the pointer <P attached to v. W e initialize Q (w ,) by Q (v*) and process
the vertices o f Xq. and Xg +\ starting from vertex v* towards right until v is reached.
W hile processing each vertex we use Step A3.2 (see Section 4.3.2) to update Q (wj).
The result follow s from the fact that the num ber o f vertices to be processed between
v* and v is at m ost m, and processing each vertex requires 0 (1) time. □

The m ajor steps in the query algorithm are listed below.
S tep Bl: Locate the edges o f 'M*' w hich are just above and below the point I' (dual

o f the query line /) as described in Section 4.2.
S te p B2: Use the m ethod described in Section 4.2.1 (using 77, and IJ2 pointers

attached w ith the edges o f M *) to obtain the points W /eXg. for j = i - 2 , i - 1 ,i,
i + 1 , i + 2, i + 3.

S tep B3: Create Q(w, _ 2) ,<2(w,- i), Q (w ,), Q (w ,f ,), and Q (w i+2).
S tep B4: Create the array A w ith the members in Q (w , - 2) U Q (w ,- 1) U (?(w ,) U

Q(w,+ i)U Q (h ’, i 2). The m ark bit o f a line is checked prior to its inclusion in A, and
after the inclusion o f a line in array A its m ark bit is set. This ensures that no line is
included m ore than once in A.

S tep B5: Com pute the vertical distances o f all the lines in A from the point / ', and
find exactly m lines closest to / ' using m edian f in d algorithm [7] in O (m) time.

S te p B 6 : Next, each element in array A is considered; its line-id is used to access
the sam e line in the array L in 0 (1) time. Finally, the m ark bit attached to it in the
array L is reset to zero. This step is required for the subsequent query on the same
data structure.

Lem m a 10. For a given set o f n po in ts we can construct a data structure o f size
0 (n 2/m) in O (n2) time, which can report m-nearest neighbors o f a query line I in
0 (m + lo g «) tim e in the worst case.

Proof. The preprocessing time and space com plexities follow from Lem m ata 6 and 7,
respectively. In the query algorithm, Step B1 requires 0 (lo g «) time. As m entioned in
the algorithm, all other steps can be com pleted in O (m) time. □

Theorem 3. I f k is not know n prior to the preprocessing then fo r a given se t o f n
points we can construct a data structure o f size 0 (n2/ lo g n) in O (n2) time, and it can
report k nearest/farthest neighbors o f an arbitrary query line in 0 (k + logw) time.

Proof. We choose m = log n to achieve the space com plexity result. In order to report
k nearest neighbors, we need to consider the following two situations:
• I f k < \o g n , then we need to apply the query algorithm only once; so the query

tim e com plexity follows from Lem ma 10.
• I f k > \o g n , then we need to locate V (the dual o f line I) in the appropriate cell o f

M ' only once. In order to report k nearest neighbors, we m ay need to apply Step
B 2-B 5 o f the query algorithm at m ost k j log n times. Each application returns at
least lo g n points in O (log«) time. Hence the query time com plexity follows. □

5. Constrained query: k is known prior to the preprocessing

5.1. Reporting o f k nearest neighbors o f a query line

The following theorem states that if k > log n, then the space com plexity o f the k
nearest neighbors problem can be improved further.

Theorem 4. I f k is know n prior to the preprocessing and k > log n, then fo r the given
set o f n points we can construct a data structure o f size 0 {n 2/k) in O in2) tim e, and
it can report k nearest neighbors o f an arbitrary query line in 0 (k + log n) time.

Proof. We choose m = k to achieve the preprocessing tim e and space com plexity re
sults. Only a single application o f the aforesaid query algorithm returns k nearest
neighbors in 0 (k + lo g n) time. □

5.2. Reporting o f k nearest neighbors when query line passes through a f ix e d p o in t

W e show that if the query line I passes through a specified point q, then the
preprocessing time and space complexities m ay further be reduced. Here, the point
/ ' (dual o f the line /) w ill always lie on the line h = q' (dual o f the point q).

W e split each line h jE H into two parts hf and h \, where /?■' is the portion
o f hj above h, and li° is the portion o f hj below h. Let H 3 ~ { h \ , h \ , . . . , h l } and
H b = {h \,h 2, . . . ,h ^ } . W e use and si,:ii (H '°) to denote (<&)-levels above
and below h, respectively.

In [18], the zone theorem for line arrangem ent [15] is used to show that the com
plexity o f both ,c/,;/.(//a) and s i <i({H h) are O (nk). A random ized algorithm is pro
posed in [18] which com putes s i . f H *) and s i < (H h) in 0 (fo?+m in(« log2 n.kn lo g n))
expected time.

N ext, we com pute the augm ented data structure and s(f*k(H b) as follows:
start from level k and proceed up to level 1 ; at each level, select the set o f alternate
vertices and project them into its next low er level, and create new vertices at that
level. The polychain (secondary structure) at level 6 o f s i ^ k(H a) is denoted as /.^ and
that o f s /* /:(H h) is denoted as W e attach a pointer 77 w ith each edge e, which
points to the vertex/edge in its next higher level that is contained in the horizontal
span o f edge e. The size o f the augm ented structures will rem ain O (n k) (see the proof
o f Lem m a 2).

G iven a query line /, its dual point / ' lies on the line h. Its nearest neighbor is
one o f the edges e t 6 and e.2 G / 'p and they are obtained using binary search in the
respective arrays. To report the next nearest neighbor, we m ove to the next level o f
either or s^*k(H h) using the 77 pointer attached to e\ or <?2. This process is
repeated until k lines are reported.

T heorem 5. I f the query line is know n to pass through a specified p o in t q, and k is
know n in advance, then fo r a given se t o f n points we can construct a data structure
o f size O {nk) in 0 (n k + m in(« log‘ n ,k n lo g «)) expected time, which can report k
nearest neighbors o f such a query line in 0 (k + log/?) time.

5.3. R eporting o f k fa r th e s t neighbors o f a query line

In this case, we need to m aintain only (i) k levels from bottom starting from level-1
up to the level-/:, denoted by k, and (ii) k levels at the top starting from level-
(n — k + 1) up to level-;?, denoted by ,, o f the arrangem ent .vJ(H). The
num ber o f edges in the o f an arrangem ent H o f n lines in the plane is O (nk)
(see Corollary 5.17 o f [17]) and it can be com puted in 0 (n k + « lo g «) time [10].

A fter constructing we start augm enting the data structure from level-/: and
proceed up to level-1. The process o f augm entation, and the role o f the pointer attached
to each edge o f the augm ented data structure are same as that o f the earlier problem.
A sim ilar m ethod is followed to augm ent it starts from level-(« — k + 1)
and proceed up to level-n.

A fter augm entation, the size o f the data structures will rem ain 0 (nk). As m entioned
in Section 3, the farthest neighbor o f a point V (dual o f the query line /) is either an
edge at level- 1 or an edge at level-/?, and these can be located using binary search.
The rem aining k — 1 farthest neighbors are obtained in a sim ilar manner as described
for the previous problem. Thus we have the following theorem:

Theorem 6 . I f k is known in advance, the given se t o f n po in ts can be preprocessed
in O (n k + n log/?) tim e and 0 (n k) space, such that fo r any arbitrary query line, its
k fa r th e s t neighbors can be reported in O (k + log n) time.

6 . Conclusion

The problem o f finding k nearest neighbors o f a query line am ong a set o f points
distributed arbitrarily on a two-dim ensional plane is studied. O ur preprocessing scheme

creates a data structure o f size 0 («2/ lo g n) in 0 (n 2) time, and the query can be
answered in 0 (1 -blog m) tim e, where k m ay be specified at query time. Some restricted
cases o f the problem are also studied when k is know n prior to the preprocessing.

The average space com plexity o f the problem m ay be im proved to O ((n / k) 2) using
(i) the idea o f ^approxim ation o f the labeling o f arrangement [3] or (ii) the result in
Theorem 11.6 [17]. But the preprocessing tim e m ay be worse than that o f ours (see
[4, Theorem 14]).

Acknowledgements

The authors wish to acknowledge the Prof. T. Asano and Mr. T. H arayam a for helpful
discussions. The critical comments and suggestions given by the referees helped the
authors to improve the presentation o f the paper.

References

[1] P.K. Agarwal, M. de Berg, J. Matousek, O. Schwarzkopf, Constructing levels in arrangements and
higher order Voronoi diagram, SIAM J. Comput. 27 (1998) 654-667.

[2] B. Chazelle, Lower bounds for orthogonal range searching, II: the arithmetic model J. ACM 37 (1990)
439-463.

[3] B. Chazelle, The Descripancy Method: Randomness and Complexity, Cambridge University Press,
Cambridge, 2000.

[4] B. Chazelle, J. Friedman, A deterministic view of random sampling and its use in geometry,
Combinatorica 10 (1990) 229-249.

[5] B. Chazelle, L.J. Guibas, Fractional cascading—II. Applications, Algorithmica 1 (1986) 163-191.
[6] R. Cole, C.K. Yap, Geometric retrieval problems, Proc. 24th IEEE Symp. on Foundation of Computer

Science, 1983, pp. 112-121.
[7] T.H. Cormen, C.E. Leiserson, R.L. Rivest, Introduction to Algorithms, MIT Press, Cambridge, MA,

1990.
[8] H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer, Berlin, 1987.
[9] H. Edelsbrunner, L.J. Guibas, J. Stolfi, Optimal point location in monotone subdivision, SIAM

J. Comput. 15 (1986) 317-340.
[10] H. Everett, J.-M. Robert, M. van Kreveld, An optimal algorithm for the (< A)-levels, with applications

to separation and transversal problems, Int. J. Comput. Geom. Appl. 6 (1996) 247-261.
[11] J. Hershberger, Finding the upper envelope of n line segments in O(nlogn) time, Inform. Process. Lett.

33 (1989) 169-174.
[12] D.T. Lee, Y.T. Ching, The power of geometric duality revisited, Inform. Process. Lett. 21 (1985)

117-122.
[13] J. Matousek, Range searching with efficient hierarchical cutting, Discrete Comput. Geom. 10 (1993)

157-182.
[14] P. Mitra, B.B. Chaudhuri, Efficiently computing the closest point to a query line, Pattern Recognition

Lett. 19 (1998) 1027-1035.
[15] K. Mulmuley, Computational Geometry: An Introduction through Randomized Algorithms, Prentice-Hall,

Englewood Cliffs, NJ.
[16] J. Pach, P.K. Agarwal, Combinatorial Geometry, Wiley, Inc., New York, 1995.
[17] M. Sharir, P.K. Agarwal, Davenport-Schinzel Sequence and their Geometric Applications, Cambridge

University Press, Cambridge, 1995.
[18] C.-S. Shin, S.Y. Shin, K.-Y. Chwa, The widest A-dense corridor problems, Inform. Process. Lett. 68

(1998) 25-31.

	An efficient k nearest neighbors searching algorithm for a query line ^

	Subhas C. Nandy3 *, Sandip Dasa, Partha P. Goswamib

	1.	Introduction

	2.	Applications

	3.	Geometric preliminaries

	4.	Algorithm

	Lemma 8.

	5.	Constrained query: k is known prior to the preprocessing

	6.	Conclusion

	Acknowledgements

	References

