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Abstract

We formulate and solve the « deformed Landau problem. It is shown that, unlike in the Dirac—Coulomb problem, in this case

the energy levels depend on the deformation parameter.

During the last two years the quantum deformation
of Poincaré algebra has been well studied [ 1-6]. One
way to deform the Poincaré algebra is to apply the
contraction process to the SO (3, 2) algebra. Taking
the limit of de Sitter curvature R — a with a suitable
limit of the (real) deformation parameter g such that
k~'=1im(R In q), one obtains that x Poincaré algebra.
Subsequently one can obtain the Dirac equation [4,7].
Recently it has been shown that in the case of the x
Dirac-Coulomb problem [8] the first order perturba-
tion vanishes identically, resulting in no change in the
energy levels. The same result has also been obtained
in the nonrelativistic approximation [9]. Here we shall
study the deformed relativistic Landau problem and our
aim is to find a deformed system whose energy levels
depend on the deformation parameter.

For the sake of completeness we first present some
tesults [7,8] relating to the deformed Poincaré algebra.
The deformed algebra structure is given by (we take
k" l=¢)

[P, ] =0,
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[Pi’P0]=0,
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[M;, P;] =iz Py,
[M;, Po] =0,

[L;, Po] =iP;,

[L;, P;}]=i8;€ " sinh(ePy) ,

[M;, M}] =i M,

[M;, L] =ieuL,,

[L;, ;] = ~i€u[M, cosh(ePo) — ;€’PPiM;}, (1)

where P, = (P, P;) are the deformed energy and
momenta, M; and L; are spatial rotation and deformed
boost generators, respectively. The coalgebra and anti-
pode are given by

AM; =M, QI+I®M,,
APy =Py QI+IQ®P,,
AP, = P, ®exp(€P,) +exp( —€Py) ®P;,
AL, =L; @exp(ePy) +exp(— €Py) OL;

+ L€ [ P, @M, exp(€ePy) +exp( — ePo) M; ®P,],
S(P,)=—P,, SM)=-M,,
S(L;) = —L; + €3iP;. (2)
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The deformed Casimir operators for the « Poincaré
algebra are given by

C, = [2(1/€) sinh(eP,)1*—P;P;,

C, = [cosh(€eP,) — 1e’P,P, )W — W, W,, (3)
where W, = P;M; and

W;=(1/€) sinh(ePy) M; +€;P;L, .

We now write

P,.=P,,

M =M;+m;,

&=L, +exp(—j€Py)l; — L eem; Py,
m=enYiYe, L=—3ivv. (4)

The k deformed Dirac operator & should satisfy the
relations

[9"9_";;]:[99"{1]:[9931]:0 (5)
Such an operator & can be found and is given by {7,8]

D= —exp(— LePy) y:P; + v4(1/€) sinh(ePy)

- %674Pipi . (6)
Also it can be shown that
92=C1(1+%€2C1)=_§3‘C2. (7)

Thus the « deformed Dirac equation reads
[ —exp(~€Py) v,P; + v4(1/€) sinh(eP,)
—sen PPy
=m(1+im?e?) 2y, (8)

In order to bring this equation to a more tractable form,
we operate from the left by exp( eP,), expand and retain
terms up to O(€). The resulting equation is given by

[(vaPo = ¥:P) + 1e(7u(P§ — P.P;) —mPo) 19
=my. €))

We now introduce a gauge field in the following way:

Po—>Py=H=E, P,—>P,=P,—eA,, (10)

and for the vector potential we take

A;=—1Byy, A,=1iBox, A;=0. (11)

Using (10) we can write Eq. (9) as

Hy=[(v4V,P; +vem) — Le((H*— P,P))
= yamH) 4. (1)
This equation is highly nonlinear. To bring it to a mor

reasonable form we follow Ref. [8] and note that th
Hamiltonian corresponding to the undeformed partis

Hy = (V4 7:P; + Yam) . (13)

Now we substitute (13) on the right-hand side of (12}
and the eigenvalue equation is found to be (to O(e))

(Ho~ Ye((H2 ~BB) — yamHo) 16=Ep. (4]

It may be noted that the eigenvalue problem come
sponding to H is the relativistic Landau problem and.
is exactly solvable. We shall solve Eq. (14) exacty
without making any more approximation.

In order to solve (14) we choose the following rep
resentation of the y matrices:

1 0 {0 o
')’4“(0 _1), %_(—0',- 0), (13)

where the g; are the usual Pauli matrices.
Now denoting the left-hand side of Eq. (14) by ,
we can write this equation as

Hy=EY, (16)

H=[(m+%ee0'-B) (1+%em)(r-P:| (17,
‘ L(l-ien)o-P (—m+ieec-B)]’ '

where B= VXA =B,Z is the magnetic field. The
squaring Eq. (16) we find

Hp=E*, (18)
where H2 is given by

D eeB-P
2= + 19
He [eeB-P D_ ]’ 9
D, =(o-P)*teea-B+m?, (20)

and in deriving (19) we have neglected terms of
O(€?). Now taking t to be of the form

=|# 21
4 (‘Pz)’ @0

where ¢; and ¢, are two-component spinors, we cal
write Eq. (19) in the following way:
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[(c-P)*+m*+ emecB) ¢, +€eB-Pp,

=E2‘P1 ’ (22)
[(6P)*+m*— emeo- Bl ¢, + €eB- Py,
=E%p,. (23)

Since the magnetic field is directed along the z axis and
Ppi=p.%» i=1, 2 we can write the above equations
in the form

[D+eema-Bl ¢, + €ep, ¢, =0, (24)
[D—eemo-B] ¢, +€ep, ¢, =0, (25)
where the operator D is defined by
D=P*+m?>~E?’—¢oB. (26)
From (24) we find

_ (D+eema-B) ¢

¢= po (27)
Substituting (27) into (25) we get

(D-eea)(D+ eea) @, =0, (28)
where a is given by

a*=(m?+p2)B2. (29)

From (28) it follows that the energy values are given

by

E2=[m?+eBy(2n+1+1)eB, +p?
+eeBy(m*+p2)''?], n=0,1,2,.... 30)

It is thus seen that the energy levels are deformed.
From (30) it also follows that in the limit of e >0 we
recover the standard Landau levels for a Dirac particle.

Conclusion. Here we have solved the x deformed
relativistic Landau problem. It has been shown that
while deformation does not destroy the basic symmetry
of the problem (i.e. the degeneracy in the angular quan-
tum number), the Landau levels are indeed deformed.
We may hope that some future experiment may perhaps
detect the effect of deformation.

One of the authors (P.R.) thanks M. Tarlini for clar-
ifying certain points of Refs. [7,8].
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