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Effect of ion temperature on ion-acoustic solitary waves in a two-ion plasma
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The effect of ion temperature on ion-acoustic solitary waves in the case of a two-ion plasma has been investigated using the
pseudopotential approach of Sagdeev. An analytical solution for relatively small amplitudes has also been obtained. Our result
has been compared, whenever possible, with the experimental result obtained by Nakamura. It is found that a finite ion
temperature considerably modifies the restrictions on the Mach number obtained for cold ions.

Les effets de la température des ions sur les ondes solitaires ioniques acoustiques ont été examinés, dans le cas d’un plasma &
deux ions, en utilisant I’approche de pseudo-potentiel de Sagdeev. On a aussi obtenu une solution analytique pour les ampli-
tudes relativement faibles. Notre résultat a été comparé, lorsque la chose était possible, avec le résultat expérimental obtenu
par Nakamura. On trouve qu’une température ionique finie modifie les restrictions sur le nombre de Mach obtenu pour des

ions froids.
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1. Introduction

The evolution of small-amplitude solitary waves studied mainly

y means of the Korteweg—deVries (KdV) equation is of con-
derable interest in plasma dynamics (1, 2). A reductive per-
itbation technique has been used by many authors to show
1at ion-acoustic solitary waves propagating in a collisionless
lasma of hot electrons and cold ions are governed by the KdV
quation (3).

However, the reduction perturbation technique is not suit-
ble for comparatively large amplitudes and, as shown by Sharma
tal. (4), higher order corrections are significant. Recently,
lakamura er al. (5) have used the pseudopotential method to
xplain large-amplitude solitary waves in a two-ion plasma
vith both positive and negative ions; they found experimental
vidence for this.

However, no temperature effect was considered by Naka-
nura et al. in their theoretical formula for the pseudopotential.
thas been shown (6) that the temperature effect is significant
or the solitary-wave solution even with an ion—electron tem-
erature ratio as small as 1/30. So far, we know of no study
hat has been made using Sagdeev’s method (7) to investigate
he effect of ion temperature in a two-ion plasma. The reasons
or taking up the present work are the following. Most of the
jlasma found in nature or the laboratory are composed of
ieveral ion species. Second, the presence of another ion spe-
iies significantly modifies the characteristics of ion-acoustic
waves (8). For example, Ikezi (9) has found that the addition
f small quantities of hydrogen ions to an argon plasma can
revent soliton formation. Finite ion temperatures further restrict
he allowed region for soliton formations. This has been shown
in the present work with the help of separatrices.

The organization of the paper is as follows. In Sect. 2 we
state the basic fluid equations and derive the pseudopotential.
In Sect. 3, solitary-wave solutions are discussed. In Sect. 4,
analytical results are given by expanding the pseudopotential
in terms of ¢ and keeping terms up to third order. Also, an
approximation to the pseudopotential is obtained for small ion
temperatures, keeping only first-order terms for temperature
but terms that are valid to all orders for ¢, the amplitude.
Section 5 is kept for results and discussions.

[Traduit par la revue]

2. Derivation of the pseudopotential and solitary-wave
solutions

The basic fluid equation in one dimension for a collisionless
plasma, a mixture of two warm ions and hot isothermal elec-
trons, is (10)

an,- 9

—_— 4 — i = 0
(1] 5t | o (n;uy)
au,- au,‘ g; ap, Zl 6¢
@ Sty RPo D2
at dx n; ox Bi ox
ap; api ou;
Bl 5 T TP g
%o

[4] =N — Zl n — Zzﬂz

ox>

[5]  ne = no.exp ($)

where i can have values of 1 and 2, the suffixes 1 and 2
denoting, respectively, the heavier and lighter ions. p is the
ratio of the mass of the lighter ion to the mass of the heavier
ion. T, and T, are, respectively, the ion temperature and the
electron temperature. {3 is given by

[6] B=I[1-a)Z + aZ)]

a being the measure of the light-ion concentration and is given
by

_ Zyny
M a=="
and
8) o:=T/T., i=12

All the quantities in the above set of equations have been
normalized to make them dimensionless. The quantities involved
are normalized in the following way.

n; and n., u;, &, and p; are normalized by ng. (electron-
number density), (kT./m;)V'?, (kT./e), and (ng.kT;) respec-
tively. The space and time coordinates x and ¢ are normalized
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by the Debye length (kT /4wn,.)"? and the characteristic time
(4mn./m;)"% To obtain solitary-wave solutions, we make the
dependent variable depend on the single independent variable
§ = x — Vt, where V is the velocity of the soliton. Then from
the above set of equations we get the following integrals of
motions:

_ Vnio

[9] n; = —(V — )
3

(10] pi= V=uy

where i can take the values 1 and 2. In obtaining [9] and [10],
we have used the following boundary conditions: as x — ,
u,—0,p—>1,é&—0,and

{111 ni—ny

Another set of relations can be obtained from [1] and {5] utiliz-
ing the relations [9] and [10]; it is given by

Putting the values of n; and n; given by [12] and [13] into [7]
we get
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where the pseudopotential ¢ is given by
[15] W(b) = Ui (d) + by(d) + 1 —e?
where
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where 6; and 6;, are given by
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Equation [14] has the same form as the equation governing a
particle with a potential ¢ moving in a “potential” | with time
&. Its solution can be written as

dé
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If we neglect terms of order O(a?), then s can be expressed in
a simpler form; viz.,
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When both o; and 0, — 0, our result [20] reproduces the
result of Sharma er al. (4). Note that our definition of . is
different from that in ref. 4.

3. Solitary-wave solutions

The form of the pseudopotential determines whether soliton
solutions of [14] exist or not. For simplicity we assume o, =
o, = o for the following observations. An analysis similar to
that done by Kuehl and Imen (11) shows that for a positive
initia] velocity, the conditions for existence of solitary-wave
solution are

2
21] v2> (Zl2 + %)/B(l -1+ 30

where r = ny9/nyo and

[22] e® =1+ BoVH)"*[Bnig(l — e®0/2) + }(1 ~ e~30n012)
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where 09 and 8 are given by [18] and
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The inequality [21] is obtained from the inequality (32/0d?)g,=o
< 0, which is the condition for a potential well, and condition
[22] is obtained in the following way, assuming Z; > Z,/p
and o, = 0, = 0. When ¢ satisfies the inequality

[24] (V2 + 30 — 2Z,0/B)? < 120V?

¢ becomes complex. (Note that when Z; > Z,/p, [24] is
approached sooner than the other possibility, V* + 3o —
2Z,$/Bur < 120V2.) In order that the particle moving into the
region ¢ > 0 be reflected before reaching the region of com-
plex U, it is necessary for ¢ (¢ = dg) > 0 where

251 &0 = (V2 + 3¢ — V120V2)B/2Z,

This gives the condition [22]. To give some quantitative results,
we examine the following simple case.

Consider the single-ion case with Z; = 1 and a = 0. In the
absence of the temperature term it can be shown that the solitary-
wave solution in a nondrifting plasma exists only for V satisfying

[26] 1<V<I1.6

In case of o # 0, this inequality gets considerably modified.
For example, if we take o = 1/30, Z, = 1, and a = 0, then
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Fig. 1. Separatrices of [28] with V = 1.1 and p = 0.4. Solid
curves, A and B, are for oy = 0, = 0 and a = 0.1 or 0.5 respectively.
The broken curves, A’ and B, are foro; = 0, = 0.0l anda = 0.1 or
0.5 respectively.

conditions [21] and [23] give
27] 1.049 <V <1.25

Inequality [27] is significantly different from [26] even for a
relatively small value of o. Another factor that is very impor-
tant in two-ion plasmas is the o term, i.e., the light-ion con-
centration. The presence of a finite temperature also puts a
significant restriction on the critical values of a for soliton
formation. In the presence of o, both compressional and rare-
factive solitons are possible although the amplitudes of the two
solitons are not equal to each other (12). To show how tem-
perature restricts the allowed region for soliton formation, we
first write [14] .in the following form:

1 dcb)2 _
(28] 2 ( ir: W)
For soliton formation y(¢$) must be negative.

In Fig. 1, dd/dE is plotted against ¢. The solid curves are
drawn with 0, = o, = 0 and o = 0.1 and 0.5 respectively.
The broken curves, A’ and B’, are drawn with o; = o, = 0.01
and a = 0.1 and 0.5 respectively. Each of the solid and broken
curves represent a bounded solution, and interior and exterior
regions of the separatrices correspond to periodic and aperiodic
solutions respectively.

4. Analytical solution

An analytical solution of [14] for not-so-large amplitudes
can be obtained by expanding d/d¢ in terms of ¢ and keeping

terms up to second or even third order. After a lengthy but

straightforward calculation we get
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FiG. 2. The dependence of the peak velocity on the peak height.

Filled circles (@): r = 0.17; Filled squares (B): » = 0.28 (experi-
mental results).> The solid curves are taken from ref. 5. The solid
lines with open circles (—O—) are the present solution with o =
o, = o = 1/20 and the Mach number normalized by V'1 + 3a. All of
the above curves are drawn with p = 0.476.

__1 2 Z?n,'o( 5 105 o;
BA C=g- &5 \wet 3 v

where we have only kept terms up to O(c?).

Equation [29] can be integrated exactly in the following
way. From [29], integrating once,

d 2
[33] (—d—)) = o;¢? - wd® + azd?

dg
where a; = A, o = 2B/3, and a3 = C/2. Integrating again
and using the condition that at £ = 0, ¢ is to be maximum, we
get :
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Now if we define the width of the soliton to be the value of &,
say § = £, such that

[351 (&) = 0.424(0)
then it can be easily seen from [34] that the width is given by
{ 0.6905(12

(0 — 4o 03)""2

B34 6=

[36] & = ~\/i—&_ cosh™!
1

In the absence of the ¢ term, our result is in complete agree-
ment with the analytical solution of Sharma ez al. (4).

112
+ 1.6905}

5. Results and discussions

To check our calculations we have compared our results
with both previous theoretical and experimental work. On the
theoretical side we have checked our result in the single-ion
plasma case with that of Lai (13), and the result is in complete
agreement with that of Lai’s second-order calculation; the nu-
merical results are also very close to those obtained by Lai. We
have also drawn separatrices to show how a finite ion tempera-
ture reduces the allowed region for soliton formation. Because
temperature plays a significant role in two-ion plasmas, we
think the exact evolution of the pseudopotential will help to
elucidate the criteria for soliton formation. For the two-ion
plasma case, our results have been compared with the experi-
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mental results of Nakamura et al. (5) (taking Z, =1, Z, =
—1). It can be seen from Fig. 2 that by taking into account
temperature effects, the theoretical predictions are closer to the
experimental results. In conclusion, our result shows that tem-
perature effects cannot be neglected for solitary-wave solu-
tions. Also, in the case of multiple-ion plasmas, the present
method can be applied to find the exact pseudopotential for
possible solitary-wave solutions, from which second and higher
order terms can easily be obtained.
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