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1. Introduction

The mathematical theory of communication of messages

through a quantum information channel is based on the
following three basic principles:

(1) Messages can be encoded as states of a quantum

system with a finite number of levels. As an exam-
ple one can think of a single particle spin systfem
with two levels called spin up and spin down which
can be labelled 0 and 1, respectively. A bunch of
n such ‘independent’ systems can be viewed asa
single quantum system with 2" levels, each level
labelled by a word of length n from the binary
alphabet {0, 1}.

Encoded states can be viewed as inputs of a quar-
tum channel and transmitted. However, at the
receiving end of the channel the output state cab
differ from the input state owing to the presence
of ‘noise’ in the channel.

There is a collection of ‘good’ states at the input
which when transmitted through the channel lead
to output states from.which the input states can be

reconstructed without any error or possibly with
a small error.

"The good states obeying property (iii) can then be used
to encode messages for transmission through the chan-

nel.

Thus any reasonable theory of error correcting

quantum codes should include a proper identification of
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the good states and also an algorithm for (almost) error-
free reconstruction of the input state from a knowledge
of the output state. To formulate such a theory it is es-
sential to understand the notion of a state in quantum
theory. In order to make this presentation reasonably
self-contained we give here a lightning introduction to
quantum probability.

2. Quantum Probability

An elementary quantum system with n levels is described
through an n-dimensional complex vector space of all
column vectors of the form

21
22
|u) = : y 25 € CVj. (21)

Zn

Such a column vector is called a ket vector. To any such
ket vector one can associate a bra vector

(u[ = (51,22, - ,Zn)

which is a row vector, the bar denoting complex con-
Jugate. If |u), |v) are two ket vectors then the matrix
product
(ulv)

i8 a scalar called the scalar product between |u) and |v)
and denoted by (u|v). The space C™ of all such ket
vectors together with this scalar product is called an n-
dimensional Hilbert space and denoted by the symbol H.
Any ket vector |u) can also be viewed as a function u
on the set {1,2,...,n} with u(i) = 2,i = 1,2,.n..,n.

If o) = ¢; Vi then (ufv) = ;Mv(z) = Y Zti.

=1
Sometimes it will be convenient to view the index set
{1,2,...,n} as an abstract set A of n elements, called

an alphabet. If T is an n X n matrix over C then it de-
fines a linear transformation or linear operator on the

-
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Hilbert space by |u) — T|u). Note that (u|T|v) is a
scalar. The space M,(C) of all n x n matrices over C is
an algebra equipped with an involution T — T1 where
the ij-th element of T is the complex conjugate of the
ji-th element of T. T is said to be hermitian if T = Tt
One says that T is nonnegative definite or T > 0 in
symbols if (u|T|u) > 0 for every |u). If T = T? = T?
then T is called a projection (onto its range). If T is a
projection so is I — T, I being the identity matrix. The
sum of all the diagonal elements of T is called its trace
and denoted by Tr T.

A nonnegative definite matrix p of unit trace is called a
state. A hermitian matrix T is called an observable and
for any state p, the scalar quantity Tr pT(= Tr Tp) is
called the ezpectation of the observable T in the state
p. Even though T may not be hermitian we still say
that Tr pT is the expectation of T in the state p. It is
important to note that the map

T — Tr pT

from the space M, (C) into C has all the features of an
averaging procedure:

(i) Trp(aTy + bT3) = aTrpTy + bTrpTa,a,b € C,T1,T2 €
M (C);

(i) If T > 0 then Tr pT > 0;
(iii) Trpl = Trp = 1.

It is good to take a pause and compare these three prop-
erties with what one is familiar with in classical prob-
ability: Consider the algebra A, of all complex valued
random variables on the probability space {1,2,...,n}
equipped with the probability distribution p1, p2, - - -, Pn,

p; being the probability of the elementary outcome ¢.
The map

. JVVV\/L.
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from A, into scalars has the properties
(i') E afi+bfa =aEfi +bEfa, a,b€ C, f1, fo € An,
(Y fG)>0VithenE f>0

(i1t) E 1 = 1 where 1 also denotes the random variable
identically equal to unity.

The central difference between the algebra A, of ran-
dom variables and the algebra M,(C') of matrices is that
multiplication in A, is commutative whereas multipli-
cation in M,(C) is not. This is the reason why quantum
probability is also called noncommutative probability.

The most fundamental theorem concerning hermitian
matrices (or observables) is the spectral theorem. Ac-
cording to this theorem every hermitian matrix 7" has
the form

k
T= }:A,E,-, (2.2)
i=1
where A1, A9, ..., Ax are distinct real scalars and E1, Eg,

k
..., Ex are projections satisfying ZE,- =1, E;E; =0if
=1
i # j. The set {A, Mg, ..., A\¢} is called the spectrum of
T, the elements \; are the eigenvalues of T and (2.2) is
called the spectral resolution of T. We interpret (2.2) as
follows: the observable T assumes values A1, Ag, ..., Ak
and the ‘event’ that T assumes the value )\; is the pro-
jection E;. When the spectral theorem is applied to a
state p and one also takes into account the fact that
every projection E can be expressed as

d
E =3 |ui)(ud,
=1

where {|u), 1 = 1,2,...,d} is any orthonormal basis for
the subspace {|u) | E|u) = |u)} of all ket vectors fixed
by E, it follows that p can be expressed as

o= ﬁ;mv»mn, (2.3)
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where (p1,ps, . .., Dn) is a probability distribution on the
set {1,2,...,n} and {|v;), i = 1,2,...,n} is an ortho-
normal basis for the Hilbert space C™, i.e., (v;|v;) = &;;
foralli,j =1,2,...,n (where §;; = 1 if i = j and is 0 if
i # j). Equations (2.2) and (2.3) lead to the following
statistical interpretation. In the state p the probabil-
ity that the observable T assumes the value ); is equal
to Tr pE Vi=12,...,k and the expectation of T is

equal to Z)\ Tr pE; = Tr pZ)\ ;E; = Tr pT which links
=1 i=1

the class1cal definition of expectation and the quantum

theoretic definition.

If |u) is any unit vector in C™ then |u)(u| is a projec-
tion whose range is the one dimensional subspace or ray
Clu). Such a projection is also a state. According to
(2.3) every state p can be expressed as a weighted lin-
ear combination of states which are the one dimensional
projections |v;)(v;|, where the weights p; constitute a
probability distribution. One says that p is a convez
combination or a mizture of pure states |v;){v;|. A state
of the form |v)(v| is called pure because if we split [v)(v]
as |v)(v| = pp1 + (1 — p)p2 where 0 < p < 1 and py and
p2 are states then p; = py = |v)(v|. In other words a
pure state cannot be split into a mixture of two distinct
states. We say that the set of all states is a convex set
whose extreme points are precisely one dimensional pro-
jections. When a pure state has the form |v)(v| for some
unit vector |v) it is customary to call the unit vector |v)
(or more precisely the unit ray {\|v), |A| = 1}) itself as
the pure state. What is actually meant is the projection
operator |v)(v|.

The next fundamental notion from quantum probabil-
ity that we need is the combination of several quantum
systems into a single system. Suppose H; = C™,j =
1,2,...,k are the Hilbert spaces describing quantum
systems numbered 1,2,...,k, respectively. We wish to
describe all of them together as a single system. To

MW~
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this end we introduce the tensor ‘product’ of the Hilbert
spaces Hi1, Ha, ..., Hy. If [u;) € H; is given by

Zjl
ij

uj) = ,1<j <k, z€C (2.4)

z in;

define their tensor product |u;) ® |ug) ® - - - ® jux) (which
is also denoted |u;) |ug) - - - |uk)) to be the column vector

lug, wg, - - ue) = | z; |, & =dig-- i, (2.5)

where

Zi = 2151221'2-'-3]“":, ].S ’ir S Ny, T = 1,2,"',k (26)

and the multiindex ¢ runs through in the lexicographic
ordering as in a dictionary. For example, when k =
2,n; = 2,np = 3 the lexicographic ordering for the dou-
ble index 449 is 11, 12,13, 21, 22, 23 so that

211221
211222
211223
212221
212222
212223

lu1, ug) =

Similarly, (u1,ug,...,uk] = (ui|{ua] - (ux] = (u1] ®

(ug] ® - - - ® (ug| = (- -+, %, -). The scalar product be-

tween two product vectors |uq, ug, - - -, ug) and |vq,vo, -« -,
k

vg) is equal to H(uilvi). All product vectors of the form
i=1 -
(2.5) span the Hilbert space C™"2™ and we denote it

by HiQH2® - - QHy. If {Iu,—l), Iui2>’ ceny luini>} is an
orthonormal basis for H; then the collection

{|u1j1’u’2jz’ . "U'kjk>v 1<ji<mn,i=12,-- "k}

-
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is an orthonormal basis for Hi®Ho® - Q@ Hy.

If A; is a matrix of order n; x n; and each A; is viewed
as a linear transformation or an operator in H; then one
defines the product linear operator A ® A2 ® --- ® Ag
in H; ® Ha ® - -- ® Hy, by

A1®A®- - @A |uy, ug, - -+, ug) = |Ajuy, Agug, - - -, Apug)

for all product vectors and extending it linearly to all
linear combinations of such product vectors. Such a

product operator (or matrix) is well defined and one
has

(A1®A2®- @A) (B1®By®- - ®By) = A1B1®A2B2®

- @ AkBr, (A1® 42,0 @A)t = Al@Al®- - ® AL
A®A® - ®A;1Q(adi +8B)®Ai1 Q- ® Ag
= 0A1042Q - - Ar+BA10A2Q - -QAi_1®Bi®Ai+1®
o ® Ap.

In particular, if each A; is hermitian so is their produét

A1 ® A2 ® - -- ® Ag. Similarly if each A; is unitary so is
their product. It is a simple exercise to check that

TTA® - @A, =TT Tr A,

If p; is a state in H; Vi then p1 ® po ® - - - ® pi is a state
in H; ® Hy ® - - - ® Hy. with the property that for any
product observable A; ® - - - ® Ay its expectation in the
product state p; ® p2 ® - - - ® pi is equal to

Tr (11 ®p2® ®pr)(A1®A2® - ® Ag)
= Tr p1A1 ® p2Ar ® -+ - ® prii
= IIF Tr pid,,

which is the product of the expectation of A; in the state
pi as i varies from 1 to k. Note that a mixture of two
distinct product states is not a product state.

.J\/W\N _
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We now come down to the special case of the Hilbert
space H = C? of dimension 2. Write

0) = (g),m - ((1’) (27)

The ket vectors labelled |0) and |1) constitute an ortho-
normal basis for C? which is viewed as the Hilbert space
of a quantum system with two levels denoted 0 and 1.
In physical language 0 may denote spin up and 1 spin
down for a two level spin system. If ay,as,...,ar is a
binary sequence, i.e., each a; is either 0 or 1 we write

o102+ - ax) = |a1) |az) -+ |ak) = |a1) ® |az) ® - ® |ak).

' (2.8)
As we run through all the words ajas - - - a; of length k
from the binary alphabet {0,1} we see that (2.8) runs
through an orthonormal basis for H®---@H = H®", the
tensor product being k-fold. As already mentioned unit
vectors can be identified with pure states. Thus we have
encoded the set of all binary words of length k as a set
of pure states in a quantum system which is a product
of k elementary systems each of which is described by
h=C2% A statein C? is called a one qubit state, where
qubit is an abbreviation for a quantum binary digit. A
state in H®" is called a k-qubit state. Thus the pure
state |ajasg - - - ak) is a k-qubit state of the product type.
Now consider a ket vector of the form

|u) = Z Qaray-a; |31G2 * * - Q) (2.9)

a1,a2,"0k
where
Y leaaeal’ =1 (2.10)
1,02, ,0k
and ay,as,...,ar vary over {0,1}. Then |u) defines a

pure state which is not a product state. We say that the
state |u) is entangled. One of the interesting questions
of our subject is to define an appropriate measure of this
entanglement.
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input state p

Chamnel +
output etate Tp

&+ noise

Figure 1.

More generally, one can speak of an alphabet A which
is ‘a finite set containing, say, N elements. Consider
now the Hilbert space CV with an orthonormal basis
{|a),a € N} of ket vectors in C¥. Then (CV)® is
the k-fold tensor product of copies of C which has the
orthonormal basis

laaz -+ ax) = la1)|az) -+ - lag) = |ar) ® |az) ® -+~ ® |ax),

a1,a9,- -+ a; varying in the alphabet A. Thus words of
length k from the alphabet A are Sncoded as pure states
from an orthonormal basis of H®".

3. Quantum Channels with Noise

A quantum channel can be viewed as a box which, for
each input state of a quantum system, produces an out-
put state of another quantum system. See Figure 1.

Mathematically speaking, for each input state p on a
Hilbert space H one has an output state Tp on probably
some other Hilbert space H'. For simplicity we assume
that H = H’. Thus the channel effects a transformation
T on the space of all states of a quantum system. Each
time a ‘signal’ in the form of a state p is fed into the
channel it is transformed into an output state Tp but at
different times the transformations T' may differ! The
nature of channel noise is assumed to be such that T

42
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belongs to a well-defined class of transformations. In
general, the transformation 7" may be nonlinear. Since
our subject is in a state of infancy (just five years old!)
we assume that the transformation T is always ‘affine
linear’, i.e.,

T(pp1+ qp2) = pTp1+ qTp2 (3.11)

for any two sates p1,p2 on ‘H and p,q are nonnegative
scalars satisfying p + ¢ = 1. An example of such a
transformation T is given by

Tp=UpUt, (3.12)
where U is a unitary operator. This is an example of a
reversible transformation in the sense that T has an in-
verse given by T~ !p = UtpU. Such a T transforms pure
states into pure states. Physically speaking, the state
p undergoes a ‘Schrodinger dynamics’ for one unit of
time with U = e™*# H being a selfadjoint matrix. Sup-
pose there is a bunch of unitary operators Uy, Us, . .., Uk
and one of them is chosen at random with probabilities
P1,Po, . - ., Pk Tespectively and applied to a state p. Then
one can say that the output state has the structure

k
Tp = ijUij]T.
Jj=1
Such a T need not be reversible. It can transform a
pure state into a mixed state. More generally, one can
consider transformations of the form

k
Tp=Y LjpL}, (3.13)
j=1
where .
Srln;=1. (3.14)
=1

e~
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Figure 2.

Since p is positive semidefinite each Lij; is positive
semidefinite and so is their sum. Furthermore,

k
TcTp = z Tr Lij;
j=1
k
Tr (3 LIL;)p

j=1
Tr p
= 1

It

Thus Tp is again a state. Transformations of the form
(3.13) with the restriction (3.14) occur extensively in the
physical literature and are known as completely positive
maps. Apparently, one can build (or hope to build) de-
vices which implement transformations of this kind. The
matrices L; in (3.13) are said to corrupt the input state
p and are therefore called error operators. The noise in
the channel is specified by demarcating a class A of ma-
trices operating as linear operators in the Hilbert space
H of the quantum system. It is usually assumed that A
is also a linear space, called the space of error operators
affecting the channel. We now state the basic hypothesis
concerning the operation of the channel in Figure 1. See
Figure 2.

e

 input state p

—

~output state ZL,-pLﬁ, Lie A
i

- moise with error operators from A

. \,\/\N\/v
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Note that the input state p can be pure but the output
state can be mixed! For example, if p = |u)(u| the
output state Zleu)(qtlL; is a sum of rank one positive

j
semidefinite operators which need not be a projection.
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