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ON CONJUGATE POISSON INTEGRALS AND RIESZ TRANSFORMS 
FOR THE HERMITE EXPANSIONS
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S. T H A N G A V E L U  (BANGALORE)

1. Introduction. Analogues of the classical conjugate harmonic func
tions and conjugate mappings have been studied for a variety of classical ex
pansions such as ultraspherical expansions by Muckenhoupt and Stein in [6]. 
Later similar objects were studied by Muckenhoupt [5] for the Hermite and 
Laguerre expansions on the real line. The conjugate mapping of Mucken
houpt may be termed as the Hilbert transform for the Hermite series. In 
the higher dimensional case analogues of the classical Riesz transforms have 
been studied by several authors (see Meyer [4], Urbina [13] and Pisier [7]). All 
these authors have considered expansions in terms of Hermite polynomials. 
They have proved that when 1 < p <  oo, the Riesz transforms are bounded 
on Lp(Mn, dp) where /x is the Gaussian measure. In the one-dimensional case 
Muckenhoupt has proved that the conjugate mapping is of weak type (1,1). 
But a weak type result is not known for the higher dimensional case.

Our point of departure from the above mentioned works lies in the fact 
that we consider expansions in terms of Hermite functions rather than Her
mite polynomials. In [11] we have defined Riesz transforms for the Hermite 
operator and proved that they are bounded on Lp(Rn, dx). The Riesz trans
forms of Meyer-Pisier-Urbina are defined using the Ornstein-Uhlenbeck 
semigroup whereas our Riesz transforms are related to the Hermite semi
group e~tH. Hermite function expansions are better suited for Lp harmonic 
analysis than Hermite polynomial expansions. This remark is justified for 
example by the fact that in the one-dimensional case the Hermite polyno
mial expansion of an Lp function does not converge in the norm unless p =  2 
whereas Hermite function expansion converges as long as 4 /3  < p < 4. For 
various summability results for the Hermite function expansions see [1], [9],
[10] and [12].

The aim of this paper is to study conjugate Poisson integrals associated 
with Hermite function expansions. Using them we are able to define the Riesz 
transforms even for Ll functions. The Riesz transforms are then shown to 
be of weak type (1,1).



2. Main results. Let $ a be the normalized Hermite functions on Rn 
which are eigenfunctions of the Hermite operator H =  —A  +  \x\2 with 
eigenvalue 2\a\ +  n. If Pk is the projection Pkf  =  J2\a\=k(fi &a)$a then the 
spectral decomposition of H  is written as H =  Y^(kL0(2k+n)Pk- Consider the 
annihilation and creation operators A* =  d/dxj+xj  and Aj =  —d / d x j+ x j .  
The action of these operators on <Pa is given by

(2.1) A j $ a =  {2a3 +  2) 1/2$ a+£j, A*$a =  (2a j ) 1/2$ a- ej

where ej are the coordinate vectors. The Hermite operator H  can be written 
in terms of Aj and A* as H  =  \ X )j= i(AjA* +  A*A3). In analogy with the 
classical Riesz transforms for the Laplacian we define operators Rj and R* 
by Rj — A jH _1/ 2 and R* =  A*H 1/2. The Hermite expansions of R j f  and 
R j f  are given by

OO

(2.2) R j f  =  2<*j +  2)1/ 2(2|a| +  n ) - ^ 2( f , ^ a )^ a+ej,
<y~0
oo

(2.3) i ? ; /  =  ^ ( 2 a , ) 1/ 2(2|a| +  n ) - 1/ 2( / , ^ ) ^ _ er
a=0

Here stands for the sum extended over all multiindices. Rj and R*
may be called the Riesz transforms for the Hermite operator.

Observe that the series defining R j f  and R * f  converge whenever /  is in 
the Schwartz class. It is also clear that Rj and R* are bounded on L2(R n). 
If we can show that for /  in the Schwartz class

(2-4) \\R3f\\p <  C\\f\\p, \\R*f\\p < C\\f\\p

then we can define R j f  and R j f  for Lp functions using a density argument. 
The estimates (2.4) were proved in [11] for 1 < p <  oo. But for p =  1 we do 
not have such an estimate and a priori it is not clear how to define R j  and 
R* on L 1.

To define the Riesz transforms for L 1 functions we introduce the conju
gate Poisson integrals. Let e~tHV2 be the Poisson-Hermite semigroup. The 
Poisson integral of a function /  in Lp(lRn) is then the function

(2.5) u(x ,t)  =  e~tHl/2f(x ) .

This function satisfies the differential equation

(2.6) d2u -  Hu  =  0, t >  0, i 6 K " .

The conjugate*Poisson integrals are then defined by



We also consider the maximal conjugate Poisson integrals

(2.8) U jf{x )  =  sup \v.j(x,t)\, U *f(x ) =  sup \u*(x,t)\.
0<t<l 0<t<l

The basic results on Uj and U* are given in the following theorem. 

T h e o r e m  1. Assume that n > 2 .  Then we have

( i )  | | ^ / | | p < C l l / I U  l < p < o o ,
(ii) \ {x :U Jf(x)>X }\<C \\f\\1/X.

Similar results also hold for U f .

When /  is a finite linear combination of <£,K’s it is clear that Uj ( x , t )  
converges to R j f  pointwise. If 1 <  p <  oo then Theorem l(i) implies that 
U j ( x , t ) converges to R j f  in the norm and hence the Rj are bounded on 
Lp(Rn), 1 < p < oo.  When p =  1, the weak type inequality (ii) implies that 
U j ( x , t ) converges almost everywhere to a function which we call R jf .  Thus 
for /  in L1(RU), R j f  is defined by

(2.9) R jf {x )  =  lim uj (a;,£).

Clearly, this Rj is of weak type (1,1).

C o r o l l a r y  1. | { z : \Rjf(x)\ >  A}| <  C\\f\\i/X.

We will also prove the following theorem on the boundedness of Rj and 
R* on the local Hardy spaces. First let us briefly recall the definition of 
the local Hardy spaces /i1(Mn). Given a nonnegative Schwartz class function 
(p with f  tpdx =  1 let <pt{x) =  t~nip(x/t) where t >  0. We say that /  G 
h1(IRn) iff the maximal function f * ( x ) =  sup0<t<1 |/ * <Pt(̂ )| belongs to 
L1(Mra). For properties and other characterizations of /i1(R ’1) we refer to 
Goldberg [3].

T h e o r e m  2. The Riesz transforms Rj and R* are bounded on the local 
Hardy space /i1(R ").

Both theorems will be proved in Section 4. In the next section we prove 
certain kernel estimates which are needed in the proof of the theorems.

3. Some estimates on the kernel of the Hermite semigroup.
Consider the Hermite semigroup e~tH. Since e~tH f  =  e~ ('2k+n'>tP k f ,
the kernel of e~tH is given by

OO

+n» $ a (x )$ a(y)-
a=0



In view of Mehler’s formula (see [2]) the above sum equals (2n) n/2K t {x ,  y) 
where

K t(x ,y ) =  (sinh 2t)(3.1) 
with
(3.2) i f ( t ,x ,y ) =  |(|x|2 +  |y|2)coth2i — x ■ j/cosech2i.

We can rewrite <p(t, x, y ) in the following way:
(3.3) tp(t, x, y) — \ |x — y\2 coth 21 +  x ■ y(coth 21 — cosech 21)

=  |\x — y\2 coth 21 +  x ■ y tanh t .

Putting
t/>(t , x ,y )  =  | |x — y\2 coth 21 +  x ■ y(coth 21 — cosech 21)

we write

(3.4) ip(t,x,y) =  \\x -  y\2 coth2t +  ip(t,x,y).

We claim that ip(t,x,y) > 0. This is obvious when x ■ y >  0 and when 
x ■ y <  0 it follows from the inequality \x — y\2 >  —4x ■ y.

Thus we have

(3.5) \Kt(x,y)\ <  C(sinh2i) n' e-n/2p-(\x-y\2/4) coth2t

From this we immediately obtain the following estimates for the kernel of 
e~tH:

(3.6) \Kt(x, y )| <  c r n! 2e ~ ^ - ^ i f  0 <  t <  1,

(3.7) |K t{x, y )| <  Ce~nte - a^ 2 if t >  1,

where a > 0 is a fixed constant. These estimates follow from the trivial 
observation that for 0 < t <  1, sinh2£ =  O(f), cosh2t =  0 (1 ) and for t >  1, 
sinh2£ =  0 ( e 2t) =  cosh2f. To study the conjugate Poisson integrals we also 
need estimates for the derivatives of K t(x,y). Such estimates are given in 
the following two lemmas.

L e m m a  1. For 0 < t < 1, there exist positive constants C and a inde
pendent of x, y and t such that the following estimates are valid:

d
(0 dx.

■K t {x ,y ) <  C t ~ ( n + 1 ^ 2 e ~ a \x ~ y \ / 4

(ii) |XjK t (x,y)\ <

(iii)

(iv)

x , ~ K , ( X,y)

d2
K t{x ,y)

< Ct~nl2~xe~a\x~y\211 

< C t~n/2~1e~a\x~y\2/t .



P r o o f .  Since K t(x ,y ) is the product of the one-dimensional kernels 
K t(x j ,y j)  it is enough to prove the lemma in the one-dimensional case. 
First consider

r\

(3.8) — K t( x ,y ) =  (sinh 2 i)_1//2e~<̂ t’:E’y) (y cosech 2t — xcoth2i).

This can be written as the sum of

A t(x ,y )  =  (sinh2f)- '3//2e~¥’(t’x’2/)(i/ — x)

and
B t(x ,y ) =  — 2(sinh£)2(sinh2i)-3 / 2e ~ ^ t’x’J/-):r.

Since 0 < t <  1, we immediately get

(3.9) \At(x,y)\ < Ct~3/2\x -  y\e -\x~y\2/W  < C t~1e_|a:~,/|3/(8t).

Since |B t(x, y ) | <  C\xKt(x, y )| it is enough to prove the estimate (ii) of the 
lemma.

First assume that |x| < 4|y|. Then

\xKt(x, y)\ <  C,* - 1/2|2xy|1/2c - v(t’I -I,).

When xy >  0 we have

(3.10) \xKt(x,y)\ < c t - ^ 2\2xy\1/2e - xytanhte - lx- yl2/{2t) 

and this gives the estimate

\xKt(x,y)\ <  Ct~  1e- l a:-» l3/{2t)

as tanhi behaves like t for 0 < t <  1 so that (txy )1/2e~xyta'nht is bounded. 
When xy  < 0, \2xy\ =  —2xy  <  (x — y )2 and so

\xKt(x,y)\ < C t - l/2\x -  y \ e ~ ^ 2̂  < C t~ ie -\*-y\2/m .

This settles the case when |x| <  A\y\.
Next assume that \x\ >  4|y|. In this case when xy  > 0,

^<p(t,x,y) =  | (coth 2 t ) (x2 +  y2) — ^xy cosech 2t

> |(coth2t ) {x 2 — 2\xy\) > | (coth2i)x2.

This proves that

\xKt(x,y)\ < C t - 1/2\x\e-{coth2t)x2/8e - ]x- yl2/{4i)

and this is certainly bounded by a constant times i _ 1 exp( —\x — y\2/{At)). 
When xy  <  0,

\(p(t,x,y) =  |(coth2t ) {x2 +  y2) -  |xycosech2i > |(coth2£)x2 

and we get the same estimate as before.



Now consider the second derivative of K t(x, y):

(3-11) ^ K t(x ,y ) =  (sm h 2t)-V 2e ^

— 2(sinht)2(sinh2i)~5/ 2x(a: — y cosh 2t)e~'p.

It follows that d2K t/dxdy is a sum of the terms (sinh 2t)~3/2e~'p, (sinhi)2 x 
(sinh2t)~5/2x(x  — y)e~'p and (sinh£)4(sinh2£)-5 / 2a:ye~¥\ All the terms can 
be estimated as before to get (iii). The estimation o f x(d/dy)K t(x ,y )  is 
similarly done.

L e m m a  2. For t >  1 the following estimates are valid with two positive 
constants C and b independent of x ,y  and t:

(i) \XjK t { x , y ) \ < C e - nte - b\x'y\\

< Ce~nte~b\x~y^ .(ii)

The proof is very similar to that of the previous lemma. We have to use 
the fact that when t > 1 both cosh2£ and sinh2f behave like e 2t. The details 
are omitted.

To establish the boundedness of the Riesz transforms on the local Hardy 
space we need certain estimates for the derivatives of the function a(x, £) 
defined by the integral

OO

(3.12) a (z ,£ )=  /  <~"1/2(cosh2t)~n/ 2e_b^’x^) dt
o

where

(3.13) b(t, x, £) =  1 tanh2£(|x|2 +■ |£|2) +  2ix ■ £ sinh2 t ■ sech 21.

For this function a(x,£) the following is valid.

L e m m a  3. For all multiindices a and /3 there exist constants Ca,p inde
pendent of x and £ such that

\D«Dla(x,0\ < CaA l  +  1*1 +  K l)-1- ' 01-^ ! .
P r o o f .  The proof is straightforward. The integral taken from one to 

infinity has exponential decay as a function of |x|2 +  |£|2. So it is enough to 
estimate

l
ao(x, £) =  J t~ 1/2(cosh.2t)~n/2e~b(t’x’^ dt. 

o
For 0 <  t < 1, tanh2i behaves like t and cosh2i =  0 (1 ) so that 

M z , £ ) l < C  /  dt



and this gives the estimate

M * , O I  <  c i 1  + 1 * 1  +  I I I ) - 1 -

In the case of {d/d£j)ao(x,£) we have two terms. The first term, 
1

J* t~1/2(cosh2t)~n/2(tanht)e~b<'t’x’^  dt 
o

is bounded by

111(1 +  W 2 +  |£|2 ) - 3 / 2 < C ( 1  +  |x | +  |£|)
- 2

The other term has a better bound since the derivative falling on x-£(sinh2 t ) 
x (sech 2t) brings down Xj(sinh2 t). Derivatives with respect to x  and higher 
order derivatives are similarly dealt with. This completes the proof of the 
lemma.

4. Conjugate Poisson integrals and Riesz transforms for the 
Hermite expansions. We first prove the following L2 result for the maxi
mal conjugate Poisson integrals.

P r o p o s it io n  4.1. Assume that n >  2. Then

WUjfh <  c \ \ f h ,  \ \ u ; f h  <  C\\f\\2.

P r o o f .  Recall that for /  in L 2(Mn), R j f  has the Hermite expansion
OO

R j f  =  £ ( 2  a,- +  2)1/ 2(2|a| +  n)~1//2(f, <fra)<Pa+ej
a =0

where the series converges in the L 2 norm. From this it follows that

(4.1) e - ^ H~2̂ ,2(R j f )  =  R j(etHl/2f )  =  Uj(x,t).

Thus

U j f ( x ) =  sup \uj(x,t)\=  sup ' Rjf(x)\
0<t<l 0<t<l

and since Rj is bounded on Z,2(M” ) it is enough to show that

(4.2) sup 7 f ( x )  | <  C M f(x )
0<i<l

where M  is the Hardy-Littlewood maximal function.
But in view of the subordinate identity



we have the formula
1 OO

(4.4) e-*(tf-2)1/2 =  _ L  r e - i l u u - V 2 e - {u / 4 ) t\ H -2 )  du

^  0
As we are assuming n > 2, (4.2) will follow once we show that

(4.5) sup \e-u{H~n)f(x)\ < C M f(x ) .
0<u<oo

This is an immediate consequence of the estimates (3.6) and (3.7) for the
kernel K u. This completes the proof of the proposition.

We now come to the proof of the main theorem. In view of Proposi
tion 4.1 and the Marcinkiewicz interpolation theorem it is enough to prove 
the following weak type inequality.

T h e o r e m  4 .1 . Assume n >  2. The maximal conjugate Poisson integrals 
are of weak type (1,1).

P r o o f .  We imitate the standard proof for the weak type inequality 
of Calderon-Zygmund singular integrals. Given /  in L 1 (M” ) we take the 
Calderon-Zygmund decomposition /  =  g +  b (see [8]). Suppose we are given 
a singular integral operator T  defined by a kernel K (x ,  y),

If we assume that T  is bounded on L2(Rn) then the term Tg is taken care 
of, i.e. we obtain

To obtain the same inequality for Tb, what we really need is the estimate

for the derivatives of the kernel K.  Then establishing the weak type inequal
ity for Tb is well known.

Suppose now we have a kernel kt (x ,y )  depending on a parameter t and 
suppose we are interested in the weak type inequality for the maximal op
erator

If we know that sup0<(<1 \Ttf\ is bounded on L2(M” ) then as before the term 
suPo<t<i \Ttg\ is taken care of. The weak type inequality for sup0<t<1 \Ttb\ 
can be established if we know that

(4.6) T f { x ) =  f K (x ,y ) f (y )d y .
R:

\{x:\Tg(x)\>X}\<C\\f\\1/X.

(4.7)
rj

— K (x ,y )  <  C l x - y l - ” - 1

d



with C  independent of t. The proof is merely an imitation of the proof of 
the i-independent case.

Now the conjugate Poisson integral A j H ~ 1/2e~tH ' is given by a ker
nel K 3t (x ,y ).  This kernel can be calculated in the following way. From the 
subordinate identity (4.3) we obtain the formula

a 1e a
1 OO

r e - V ' u - ^ e - ^ ' U u
, Ar J20F

(4.9)

from which we get
1 00

(4.10) H ^ 2e~tHl/2 =  4 =  f  e - t2^ uK ~ V 2e - uH du.

Thus the kernel K j  is given by

(4.11) K Jt (x ,y ) =  ~  J e - t2/{4u)u~1/2(̂  -  +  x ^ j K u{x ,y )  du.

In view of Proposition 4.1 we need only consider the term b in the Calderon- 
Zygmund decomposition. Write

J  K Jt (x ,y)b(y)dy =  f  LJt (x,y)b(y) dy +  J  M ]t {x,y)b(y) dy

where

(4.12) LJt (x ,y )  =  -j=  f  e~t2/(4u)u - 1/2^ -  +  x^J K u(x ,y) du,

1 00 /  F) \
(4.13) M 3t {x ,y ) =  - j=  J  e_t2/(4u)u_1/2^ -  —  +  X j j  K u(x ,y) du.

The estimates of Lemma 2 show that
OO

(4.14) |M/(x, y)\ < C J  e - t2H4u)u - 1/2e - nue - b'x~v'2 du
l

from which it follows that

sup I f  M f(x ,  y)b(y) dy < C  f  e~b\x~y\ \b(y)\dy 
o<t<i1 J

and so it is immediate that this term satisfies the weak type (1,1) inequality. 
From the estimates of Lemma 1 it follows that

01
(4.15) d_

L l(x ,y ) < C f  u - 1/2u“ n/2~1e - a|x- !/l /Udu

< C\x -  y\ -n — 1



with C  independent of t. Therefore, by the previous remarks it is clear that 
the term corresponding to L\ is also of weak type (1,1). This completes the 
proof of Theorem 4.1.

To end this section we give a proof of Theorem 2 on the boundedness 
of Rj and R* on the local Hardy space. For that purpose let us recall the 
definition of the symbol class 5'™0. By a symbol of class S^g we mean a 
function a in C'°°(IRri x Rn) which satisfies the estimates

(4.16) iD^or^ i^ca + ieir-^1
for all multiindices a  and /? where the constant C is independent of x  and £. 
(In the usual definition it is assumed that C  is a function of x but we are 
interested in symbols which satisfy estimates uniformly in x.) Such a symbol 
a defines a pseudodifferential operator a (x ,D )  by

(4.17) a(x, D ) f ( x )  =  f  eix-Zf(Q<T(x,OdZ.

In [3] Goldberg has shown that if a  € 5 i 0 then a ( x ,D ) maps hl bound- 
edly into itself. So, to prove Theorem 2 we need only prove the following 
proposition.

P r o p o s it io n  4.2. Rj and R* are pseudodifferential operators whose 
symbols belong to S® 0.

P r o o f .  Since R j f  =  A jH ~ xl 2f  it is enough to show that H ~ 1//2 is a 
pseudodifferential operator whose symbol belongs to S^q. But

, ,  xl2°~tH .
7rH ~1/2 =  i =  f t '

0J

and so the symbol a(x,£) of H ~ l/2 is given by
1 °°

(4-18) a ( * , 0  =  4 =  f t - 1/2v t (x ,0 d t
0J

where at (x ,£) is the symbol of e~tH. Now for /  in the Schwartz class

(4.19) e - tHf  =  J 2 e~l2M+n)t( f ’ * ° ) * °

and the relations (/,<£„) =  ( f , $ a) and $ a =  ( - i ) H # a show that

(4.20) (? t(x ,0  =  e~lx< y^/e - ('2lo‘\+n)ti\°‘\$a {x )$ a {£,).

In view of Mehler’s formula one obtains

(4.21) * M x ,£ )  =  (27r)~n/2(cosh2t)~n/2e~b(t’x ’°  
where

b(t,x,£) =  |(tanh 2i)(|x|2 +  |£|2) +  2ix • £(sinh21) sech 2t.



This shows that, with some constant Co,
OO

(4.22) a(x, 0  =  Co f t~ 1/2(cosh 2t)~n<2e~Kt’x^  dt.
o

Now the proposition follows from the estimates of Lemma 3.
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