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Abstract

With a brief introduction to three major types o f  uncertainties, randomness, nonspecificity and fuzziness  we discuss various 
attempts to quantify them. We also discuss several attempts to quantify total uncertainty in a system. We then talk about 
some new facets o f uncertainty like, higher-order fuzzy entropy, hybrid entropy and conflict in a body o f evidence. In con
clusion, we indicate some other aspects o f uncertainty that need to be modeled and quantified. ©  1999 Elsevier Science B.V. 
All rights reserved.
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1. Introduction

Consider a simple die throwing experiment. The 
top face may have any one o f the six numbers 
X  =  {1, 2, . . . ,  6}. If  the top face is covered and you 
are asked to guess it, you face a type o f uncertainty. 
If you have played with the die enough number of 
times, the best way you can express your answer 
(ignorance) is to state the /probability o f occurrence 
of different faces. This type o f uncertainty that arises 
because o f randomness in the system is known as 
probabilistic uncertainty.

Now suppose an artificial vision system analyzes a 
digital image o f the top face o f the die and based on 
the evidence gathered suggests the value o f  the un
known top face. Let us call the information provided 
by the vision system, a body of evidence. Suppose the 
body of evidence assigns a confidence value o f 0.67 
to the top face being 1, 2 or 3 and a confidence value

of 0.33 to the top face being 3, 4 or 5; that is, the 
evidence focuses  on the sets {1, 2, 3} and {3, 4, 5}. 
These sets are the focal  elements. Clearly, there is un
certainty in this body of evidence. In fact, there are 
two types o f uncertainties: which o f the two hypo
thesis is true (random nature); and given a hypothe
sis which specific value represents the answer (lack of 
specification). Note that when the experiment is over 
there is no uncertainty about the outcome of the ex
periment. These two types o f uncertainty arise usually 
due to limitations of the evidence gathering system. 
Systems like this can be modeled by Dempster-Shafer 
theory o f evidence.

Finally, suppose the evidence gathered by the vision 
system is ambiguous and the system cannot come out 
with propositions like the previous ones but interprets 
the top face o f the die as, say, high (or low). Here 
a third type o f uncertainty appears due to linguistic 
imprecision or vagueness; this is called fuzzy uncer
tainty (FU). Fuzzy uncertainty differs from probabilis
tic uncertainty (PU) and Nonspecificity (NS) because



it deals with situations where set boundaries are not 
sharply defined. Probabilistic and nonspecific uncer
tainties are not due to ambiguity about set-boundaries, 
but rather, about the belonging o f elements or events 
to crisp sets. Sometimes uncertainty due to fuzziness 
is associated with probabilistic uncertainty also. For 
example, in the die experiment the occurrence of a 6 
supports the fuzzy event HIGH more than a 3 does, but 
there is still an element of chance about the outcome 
of a throw, so the system contains both PU and FU.

The literature is well documented with these three 
types of uncertainty. The best known measure of 
uncertainty for a purely probabilistic system is the 
Shannon’s entropy [27]. Several authors [15] have 
given different expressions for entropy (probabilistic 
uncertainty in a system). Almost all these definitions 
are based on some logarithmic functions o f probabil
ities, and most of them reduce to Shannon’s entropy 
under certain conditions. Pal and Pal [23] proposed a 
definition, which unlike the earlier attempts, is based 
on an exponential gain function.

Uncertainty in Dempster-Shafer framework has 
two facets: one arises due to randomness in the sys
tem and the other from nonspecificity in the evidence. 
Uncertainty due to nonspecificity arises if and only 
if, there is at least one focal set with more than one 
element. On the other hand, uncertainty due to ran
domness, arises if and only if, there is more than one 
focal element. When the evidence is Bayesian, that 
is, when there is complete lack of nonspecificity, (in 
other words, when the focal elements are singletons) 
uncertainty is usually characterized by Shannon’s 
entropy.

Various authors have introduced different measures 
of uncertainty based on different views [14]. Yager 
[34, 35], Higashi and Klir [10], Dubois and Prade 
[2] and Lamata and Moral [19] have proposed mea
sures of nonspecificity. Measures of uncertainty due to 
randomness, variously named, dissonance [35], con
fusion [7, 8], Discord [17], Strife [16] exist. Other 
measures of uncertainty due to randomness have been 
introduced by Smets [29] and Lamata and Moral [19]. 
Measures of total uncertainty for the Dempster-Shafer 
framework have been introduced by Lamata and Moral 
[19] and Klir and Ramer [17] as the algebraic sum of 
the measures of uncertainty due to randomness and 
nonspecificity. Pal et al. [21,22] also introduced a new 
measure of total uncertainty.

Measures of fuzziness estimate the average am b i
guity in fuzzy sets in some well-defined sense. S e v 
eral authors have attempted to quantify fuzziness in  
a fuzzy set. Deluca and Termini [3] used Shannon’s  
function for a two state system with membership v a l 
ues o f  fuzzy singletons in place o f probabilities to d e 
fine entropy of a fuzzy set. Kaufmann [11] in troduced 
different indices o f fuzziness like linear index of fu zz i
ness and quadratic index o f fuzziness. K nopfm acher 
[13] and Loo [18] showed that some earlier m easures 
o f fuzziness are special cases o f a larger class of m e a 
sures defined in terms of a set o f axioms. Trillas a n d  
Riera [30] also proposed a general class o f fuzziness 
measure. Yager [32, 33] associated fuzziness with th e  
lack of distinction between a proposition and its n e g a 
tion and proposed a family of measures o f fuzziness. 
Higashi and Klir [9] extended Yager’s concept to  a  
very general class of fuzzy complements. Kosko [1 2 ] 
defined a fuzziness measure as the ratio o f the d is 
tances between the fuzzy set A, and its nearest a n d  
furthest nonfuzzy sets. Pal and Pal [23] used an in 
formation function with exponential gain to m easure 
fuzziness in a set. Bhandari and Pal [1] defined a m e a 
sure o f fuzziness as the ratio o f fuzzy divergence b e 
tween A  and its nearest and furthest nonfuzzy s e ts , 
where fuzzy divergence is an information measure f o r  
discrimination between two fuzzy sets. Bhandari a n d  
Pal [1] also used Renyi’s entropy to define a m easure 
o f fuzziness.

These measures of uncertainty do not take into a c 
count all aspects o f uncertainty. In this paper, w ith a  
brief review o f some well known measures o f u n ce r
tainty for each of the three kinds, we discuss so m e  
new facets o f uncertainty and their quantification.

2. Some well-known measures of uncertainty

2.1. Probabilistic uncertainty

Let P = { p \ , . . . ,  p n} be the set o f probabilities 
associated with an n-state system X  = { x \ , . . . , x n }  
where p, is the probability of x t. Although, Shannon 
[27] axiomatically derived a unique expression f o r  
entropy, a measure of probabilistic uncertainty ( o r  
information) associated with the system, we can g e t  
the following intuitively plausible derivation. L e t  
A I (p i )  be loss of ignorance or gain in inform ation



associated with the occurrence o f the ith state o f  the 
system. Then A l ( p i )  should be inversely related to 
Pi because with increase in probability the loss o f  ig
norance decreases. For example, with the occurrence 
of a certain event we do not gain any information or 
lose any ignorance. Moreover, if there are two inde
pendent events x  and y  with probabilities p x and p y, 
the total gain in information from the joint occurrence 
of the two events should be the sum o f information 
gains from the occurrences of the two events in
dividually. In other words, since the probability of 
joint occurrence o f  x  and y  is px.p y, we should have 
A I(px-py) = A l ( p x ) +  A I ( p y ). These two desirable 
properties suggest that A I ( p ) =  -  k lo g (p )  is the 
choice, A: is a positive constant. Therefore, entropy, 
the expected value o f the gain in information (or loss 
of ignorance) associated with the system (assuming 
k =  1) is

n
Hi{P)= -  ^p ilo g ip i) . (1)

1=1

Hi(P)  has been successfully used in many applications 
in science, technology and economics. Eq. (1) has 
many interesting properties like:
PI. 1: H/(P)  is maximum iff p t =  1 jn Vi.
PI. 2: H/(P)  is minimum iff pk =  1 for some k  and 

Pi =  0, i ±  k.
PI. 3: Equalization o f  probability increases entropy. In 

other words, suppose P \  =  { p \ , p 2 , p i , .. ■, p n} 
and P2 = {p i  -  S ,p 2 + d ,p 3 , . . . , p „ }  such 
that pi > p 2, S >  0 and p ) —S >  P 2 +  S. Then 
H ,(P l)  ^  H,(P2).

Viewing each x, g X  as a symbol, let p(s t ) =  prob
ability o f  a sequence o f symbols o f length q. Then 
the qth-order entropy and entropy of the source are, 
respectively, defined as

Hiq) = P(Si) 1° g ( / ,(s<-))
i

and

H =  lim - H {q).q-> oo q

A source is called a stationary source if  for any inte
ger r, p(xi/t\ + r, x 2lt2 + r , . . .  ,x„/t„ + r)  =  p ( x {/tu  
x2jt2, . ■ , ,x n/tn). For a stationary source it can be

shown that [5]
PI. 4: H w  >  H where k  > n, and 
PI. 5: H  =  lim?_ o o ( l / q ) H (q) exists.

For many other properties o f Hi(P), readers can 
refer to [5].

2.2. Uncertainty in Dempster-Shafer (D S)  
framework

Let SC = {x],x2, . . . , x„} be a finite set. In DS frame
work uncertainty is modeled by a basic probability 
assignment (BPA) -  a function m : 2P(9C) —> [0,1], 
such that m(0) =  0 and c  x  m( ^ =  1! &($C) is the 
power set o f  SC.

Let (F  =  {A C 3C \ m(A ) >  0}. The element of are 
called foca l elements as mentioned in the introduction. 
The pair, ( J \ m ) ,  is called a body o f  evidence (BOE) 
and the set SC as the fram e o f  discernment.

We follow Shafer [28] in the following. Proposi
tions o f interest are o f the form “ the true value o f  9 
lies in T ' \  where T CSC and 9 is some quantity whose 
all possible values comprise the frame of discernment, 
SC. Thus, propositions are subsets and vice versa. The 
value m (T)  represents our confidence that the proposi
tion corresponding to T  is exactly true; in other words, 
it represents our confidence that “the true value o f  9 
lies exactly in T, and not in any proper subset o f  T”.

A  BOE is called consonant if  the focal ele
ments can be arranged in a nested sequence such that

At C A2 C • • • C Ak, when \F |=  k, A t G F.

Based on a BPA other measures of confidence are 
defined. A belief measure is a function B e l : !?(SC) —> 
[0,1], defined by

B e l(A )=  Y ,  m(B)•
B C A

It represents our confidence that the value of 9 lies 
in A or in any subset o f A.

A plausibility measure is a function PI :
—> [0,1], defined by

P l ( A ) = l  - B e l ( A ) .

Clearly Pl{A)  represents the extent to which we fail 
to disbelieve A and Pl(A)  ^  Bel(A).

A  belief is called Bayesian, if  Bel(A  U B) = Bel(A)  
+ Bel(B)  where A n  B  =  0. In other words, belief is



Bayesian iff m focuses only on singletons, i.e., m is a 
probability distribution.

The commonality function for m is the function Q : 
2?(3£) -► [0,1], defined by

Q (A )=
A C B

It is well known [28] that all the above three mea
sures o f confidence and the BPA are equivalent, in the 
sense that, each of them can be expressed as a func
tion o f any one of the rest.

Various measures for uncertainty have been pro
posed by different authors for a BPA. Yager [35] pro
posed a measure of conflict, E(m), called dissonance 
defined by

E(m) = -  ^  m(A)\og1Pl(A).
a  e . ?

This measure assumes that there is no conflict in ev
idence, if  and only if, there is at least one point in 
common to all focal elements. Hohle [7, 8] proposed 
a measure o f confusion

C (/n )=  — ^  m (A ) log2Be 1(A).

C  assumes that there is no conflict in evidence, if 
and only if, there is exactly one focal element.

Dissonance and confusion have interesting proper
ties like, for a Bayesian belief E(m)  and C(m) re
duce to Shannon’s entropy. Both E(m)  and C(m) are 
additive for strongly independent BOEs. If  mx and 
my are two BPAs on X  and Y, respectively, and m 
is a BPA o n l x y  such that m(A x B) = mx(A) * 
my(B), A C l ,  B C Y  then E(m) = E(mx) + E(my ). 
Similar is the case for C(m).

Klir and Ramer [17] suggest another measure of 
conflict, named Discord, defined by

D (m )=  -  m (A ) log2 £ m ( B ) j A n B l / l B l
LBeJ

The motivation behind discord is that the degree of 
violation o f B C A should influence the value of the 
conflict measure. Later, Klir and Parviz [16] intro
duced another measure of conflict, viz., strife,

S t(m )=  -  m(A) log2
a  e .Be?

Smets [29] defined a different measure o f  conflict, 
L {m )=  - T , A c . f ]°S iQ ( 'i) -

For nonspecificity also several indices a re  avail
able. Specificity indicates how concentrated is the 
mass assignment on the elements of X .  Y ag er’s 
[34, 35] measure of specificity for belief s truc tu res is 
given by S (m )=  rn(A ) / \A \ .  N ( m ) =  1 — S(m)
is viewed as a measure o f nonspecificity.

Higashi and Klir [10] derived a unique measure 
o f nonspecificity for possibility distributions, called 
U -uncertainty, which has been extended to  a  general 
body o f evidence by Dubois and Prade [2], T h is , U- 
uncertainty, is defined by

I (m )  =  m(A)\og2 \A\.
A 6 /

I (m )  can be viewed as a generalization o f  H a rtley ’s 
information measure because when m (X ) =  1, I ( m )  — 
log2 n =  Hartley entropy.

Lamata and Moral [19] suggested a m easu re  of 
imprecision W (m )=  l o g ( ^  c x  m(A) \A \ ), where 
W (m)  is the logarithm o f the average card ina lity  of 
focal sets; on the other hand, I (m )  is the a v e rag e  of 
logarithm of cardinalities o f  focal sets. T hus essen
tially, both I(m )  and W (m )  characterize th e  same 
type o f information.

2.2.1. Total uncertainty (nonspecificity +  
randomness)

Several authors have tried to get an estim ate o f  total 
uncertainty (TU) in a system (In the literature th e  word 
“total uncertainty” has been used to indicate m easures 
which capture more than one facets o f the uncertainty
-  it may not be an indicator o f  really the to ta l uncer
tainty).

Klir and Ramer [17] defined total uncertain ty  
as the algebraic sum o f D (m )  and J ( m ) ,  i.e., 
T(m ) = D(m)  +  l(m). Lamata and Moral [1 9 ], 0n 
the other hand, added E (m )  and /(m ) to co m p u te  the 
total uncertainty G(m) =  E (m ) + I(m).

Such composite measures o f  uncertainty a re  m ean
ingful as long as the facets o f  uncertainty that a re  quan
tified by the elementary measures like E ( m ), I ( m ), 
etc., are additive in nature. These measures h a v e  in
teresting properties, but examples can be constructed  
where they exhibit intuitively unappealing behav io r 
This has been well analyzed in Pal et al. [21], j n ^2 ]



Pal et al. derived a measure of total uncertainty from 
a set of intuitively appealing axioms. Their measure 
of total uncertainty in a body of evidence is

H (m )=  m (A)\og2{\A\/m{A)}. 
a e f

This measure can be decomposed into two parts 

H(m) = -  £  m(A)log2{m(A)}
AeF

+ m (A)\og2{\A\}
A S F

=  U( m)  +  /(/«).

U(m) is responsible for the randomness in the system 
while I(m )  accounts for the non-specificity. H (m )  has 
several interesting properties like, H (m )  =  Shannon’s 
entropy for a Bayesian belief, H (m ) =  Hartley en
tropy, when m ( X ) =  1. The most interesting property 
is that H (m )  attains the unique maximum value when 
m focuses on all possible subsets o f X  in the most 
uniform manner, i.e., when m(A) =  \A\/K VA C l ,
^ = E " = i* '( 7 )  =  2 " - '.

This is the most chaotic assignment, mass is dis
tributed over all possible subsets, and the mass 
is also uniformly distributed in the sense that 
m(A)l\A\ =m(B)/\B\ = l /K  V A ,B C X .

Note that the other two measures o f  TC  at
tain the maximum value when either m ( X ) =  1 or 
m({x}) =  1/1*1, xeA V

2.3. Fuzzy uncertainty

A measure o f fuzziness estimates the average am
biguity present in a fuzzy set. Consider the properties 
that seem plausible for such a measure. The fuzzi
ness of a crisp set using any measure should be zero, 
as there is no ambiguity about whether an element 
belongs to the set or not. If a set is maximally am
biguous (Ha(x) = 0.5 Vx), then its fuzziness should be 
maximum. When a membership value approaches ei
ther 0 or 1, the ambiguity about belonging o f its ar
gument in the fuzzy set decreases. A fuzzy set A* is 
called a sharpened version A if the following condi
tions are satisfied: fiA*(x) ^  H a ( x )  if  Ha (x)  <  0.5; and 
&<*(■*) ^  Ha(x) if  Ha(x) 5* 0.5.

For a sharpened version A* o f  A the measure of 
fuzziness should decrease because sharpening reduces

ambiguity. Another intuitively desirable property is 
that the fuzziness measure of a set and its complement 
be equal. For example, the ambiguity present in the 
sets TALL and NOT TALL (note that NOT TALL is 
not necessarily SHORT) should be the same.

We now formally define a measure o f fuzziness for 
a discrete fuzzy set A as a mapping H  : P„(X ) —> R + 
that quantifies the degree of fuzziness present in A 
where P„{X) is the set o f all fuzzy subsets o f X .  A  
measure o f fuzziness should satisfy at least the fol
lowing five properties:
•  Sharpness PI: H (A ) =  0 iff [iA(x) = Q or 1 

V xeX ;
•  Maximality  P2: H (A ) is maximum iff Ha(x ) =  0.5 

V xeX ;
•  Resolution P3: H (A ) >  H (A *) where A* is a sharp

ened version of A;
•  Symmetry  P4: H (A ) = H(  1 -  A), where h \ - a = 

Ha \
•  Valuation P5: H (A U B )  +  H  (A f) B) = H  (A) +  

H{B).
Ebanks [4] along with P1-P5, suggested a sixth 
requirement called generalized additivity, which is 
somewhat difficult to interpret. We already mentioned 
that several authors have quantified fuzziness. Some 
of these measures satisfy P1-P5 while others do not. 
Instead discussing all of them, we just discuss two 
new families, additive class and multiplicative class, 
of measures o f fuzziness [20 ].

2.3.1. Multiplicative class
Let /  : [0,1] -» R+ be a concave-increasing func

tion on [0 , 1], i.e. f ' ( t )  > 0 Vt €  [0 , 1] and f " ( t )  < 0 
V t e [ 0, l].

Now define

0 (0  = / ( 0 / ( i - 0 ,
(2)

9(t) = 9 ( 0 -  min {g(t)}
o ^  t 1

and
n

H*(A) =  k Y J9(Hi\ k£R+. (3)
i = i

It can be easily seen that H* satisfies P 1-P 5. Thus 
H » is a measure o f fuzziness.

Example 1. Let f ( t )  =  te ]~! then H ,  =  //„q K =  
k I — A1/)}- The constant e has been absorbed



in the constant k. It is easy to show directly that 
properties P1-P5 are satisfied by H*qe- We call H„qe 
the quadratic entropy of the fuzzy set because of its 
similarity to Vajda’s probabilistic quadratic entropy 
for a discrete probabilistic framework,

n

HvQE( P ) = ' £ p i{ \ - p i). (4)
< = i

2.3.2. Additive class
For the additive class /  is less restricted than for 

the multiplicative case. We require only concavity, 
and we use addition (+ )  in (2) in place o f multiplica
tion. In other words, / :  [0,1] —► R + and concave, i.e., 
/ " ( / )  <  0 V? G [0,1], Thus, for the additive class the 
functions g and H+ are defined as

0(O =  / ( O  +  / O  - 0 ,

d(t) = 9 ( 0 -  Qmin^{g(t)} ,  

and for A 6  Pn(X )  we define

n

H+ = k Y , 9 ^ X  K G R +. (5)
i = i

It can be proved [20] that H+ satisfies P1-P5 and 
hence a measure o f fuzziness. Like the multiplicative 
class, there can be many expressions for the additive 
measure o f fuzziness. We just give one example using 
the same /  used in Example 1.

Example 2. Let f ( t )  =  ?e1-' thenH+= YL"= i 
+  (1 — Hi) =  the exponential fuzzy entropy of Pal 
and Pal [23] (subject to adjustment o f constant).

It is easy to see that the additive and multiplicative 
classes are consistent with Yager’s view o f fuzziness. 
In other words, they can be interpreted as measuring 
the lack of distinction between A and its complement. 
Properties o f these two measures are discussed in [20],

2.3.3. Total uncertainty (randomness + fuzziness)  
Like DS framework some attempts have been made

to quantify total uncertainty when a probabilistic sys
tem has fuzziness associcated with it. Like the attempts 
in DS framework, here also the total uncertainty can
not be viewed really as the TU in a system. These 
measures quantify TU in the sense they capture total

uncertainty when the system does not have nonspeci
ficity.

Let X  = {x \, . . . ,x„ }  be the universe o f  discourse 
and A  be a fuzzy set defined on X ,  P  be the probability  
distribution such that p (x t) =  p t, i — 1 —  ,« ,  A 
=  1, i.e., each element o f  X  has a probability o f  occur
rence. With a view to measuring the total uncertainty 
(PU and FU) associated with such a system  several 
expressions have been suggested [3, 31]. L e t (X ,P ) 
be a discrete probability framework and A  e  P „ ( X \  
HA(xj) = Hi, i = l , . . . , n .  Zadeh [36] defined th e  en
tropy o f  a fuzzy set with respect to the d iscre te  proba
bility framework P  as the weighted Shannon entropy:

n

H Z( A , P )  =  -  ^  Hi pi log pi.
i = i

This entropy is a measure o f  uncertainty associated  
with a fuzzy event, and was the first com posite  mea
sure o f probabilistic and fuzzy uncertainties. N o te  that 
Zadeh did not call it to be a measure o f T C . W e  in
cluded here as it attempts to account for b o th  proba
bility and fuzziness.

HZ( A ,P )  ^  H t( P ), and this is counter-in tu itive as 
uncertainty should not be reduced with a d d itio n  of 
fuzziness. Moreover, if  A is defuzzified, d e p en d in g  on 
the defuzzified output, Hz will change. For ex a m p le , if 
Hi -»  0 (with pi  ^  0), HZ( A , P )  —> 0; again i f  ^  _> 1 
V i , H z( A , P ) ^ H , ( P ) .

Suppose we have a probabilistic fram ew ork (X , P ), 
and there is some difficulty in interpreting x t, th e  out
come o f a trial, as 0 or 1. The average a m o u n t of 
ambiguity involved in the interpretation o f  s u c h  an 
outcome as suggested by Deluca and Term ini [3 ] is

H dt(A , P )
n

= ~Y1 !og Mi +  ( 1 '  Vi) lo g ( 1 —  M / » .  (6 )
i = 1

Deluca and Termini then defined the to ta l  average  
uncertainty in the system as the sum o f S h a n n o n ’s 
probabilistic entropy H t(P)  and H m (A ,P ),

H m ( A , P )  =  Hi(P)-\-  H m ( A , P ) .  ^

H g\(A ,P )  is interpreted as the total average u n c e r
tainty involved in making a prevision about th e  ele
ments o f X  which appear as a result o f the ex p erim en t 
and in making a (0 or 1) decision about th e ir va lu es



Note that (6) is essentially a measure o f fuzziness. 
Suppose if  the experiment is repeated N  times and x, 
occurs rij times, N  =  i «;> then the fuzziness in the 
resultant set with N  elements is

N

Hm  = -  K 5 > / l o g *  +  (1 -  Hi)log(l -  Hi)}
/■= 1 
/ = n

= -  K  m {fi(x<) log nix ,)
1 =  1

+  (1 -  H(Xi)) log(l -  H(*i))}
i  = n

= ~  K ' {ll(x>) log v(*i)
!= I

+  (1 -  H(Xi))log(l -  H(Xi))}
i = n

= -  K ' Y  pi{H(xi)[ogH(xi)
i =  1

+  (1 -  H(xt)) Iog(l -  H(*i))}

= H m ( A ,P )  in (6).

Xie and Bedrosian [31] defined the total uncertainty 
associated with a system in a slightly different frame
work. Consider a crisp set A  with only two kinds of 
elements, 0 and 1, having probabilities P  =  {po,  p \}, 
where p x =  1 — p 0. Suppose the sharpness o f  A is 
impaired, so that 0 takes some value in the interval 
[0, 0.5] and 1 takes some value in [0.5, 1], Then A be
comes a fuzzy set. Xie and Bedrosian defined the total 
uncertainty associated with this system as the sum of 
Shannon’s probabilistic entropy Hi(P)  and H m (A),  
where the fuzzy entropy o f A  defined by H m ( A ) =  

~ £ " =  i (Hi log Hi +  (1 -  Hi) log( 1 -  Hi)- Thus>

H & ( A , P )  =  H j ( P)  +  H m (A).  (8)

Eq. (8) simply adds together terms that measure each 
kind of uncertainty separately, and as explained ear
lier, it is exactly the same as in (7). Since fuzziness is 
conceptualy different from probabilistic uncertainty, 
such algebraic summation of elementary measures as 
in (7) and (8) is hard to justify. Referring back to 
the experiment o f Deluca and Termini, in absence of 
fuzziness, the system for (7) reduces to a two state 
system. Should the total uncertainty reduce to the 
probabilistic uncertainty of a two state system or of 
an «-state system (because the original system is an n- 
state system). Some justification can be given to favor

either view. Moreover, (7) and (8) reduce to Shan
non’s entropy (either o f  an n-state system or o f 
a 2-state system) irrespective o f  the defuzzification 
process.

3. Some other aspects of uncertainty

3.1. Exponential probabilistic entropy

For Shannon’s framework as p, —> 0, A I (p i )  —> 
—oo and A l ( p t = 0) is not defined; but as p t —> 1, 
A I (p i )  —> 0 and A /(p , =  1) =  0. We prefer to have a 
gain function which is finite for p t G [0,1], Moreover, 
intuitively, ignorance associated with (or unlikeliness 
of) an event should better be a function o f (1 — pi)  
rather than 1 //>,-. Examples can also be shown to sug
gest that some exponential function of (1 — p t) might 
be a good choice for the gain function A I  [23, 24] at 
least for some problems. Thus, based on a set o f  de
sirable properties [23] the exponential gain function is 
defined as, A /(  p t) =  e( 1 ~ Pl>.

And the expected gain in information associated 
with the system, i.e., the entropy of the system is de
fined as

n

He( P ) = Y , P i ^ ~ P,)- (9)
;= i

Definition (9) bears many interesting properties like 
those o f Shannon’s entropy but it is not additive. We 
next present some o f them:
Pe 1: He(P)  attains its unique maximum value at 

p t =  1/n, V /=  1 
Pe 2: He( p )  attains its minimum value when p k =  1 

for some k  and p, =  0, i ^  k.
Pe 3: Like Hi(P),  equalization o f probability in

creases entropy. Thus, if P I  =  { p \ ,  p i ,  p i , . . . ,  
p n} a n d P 2 = { p i - S , p 2 + S ,p 3, . . . , p „ }  such 
that p\  >  p 2, 5 >  0 and p\  — S > p 2 +  <5, then 
H e( P \ )  ^  He(P2).

He(P)  has interesting properties for compound ex
periments, see also [26], Let there be two experiments 
A and B  with n and m states, respectively. The exper
iment A  is defined by the states A =  {a \ ,a 2 , .. -,a„} 
with probabilities P  — {p \ ,  p 2 , - ■ ■, Pn} and the other 
experiment is defined by B = {b \ , b2, . . . ,  bm} with 
probabilities Q — {q\,q 2 , - - - ,q m}- The compound



experiment is then defined as A x B =  {(a/,,b/\ k  =
/ =  1 Fory4 x B  we have

Pe 4: H„(A/B) ^  H„(A).
Pe 5: H J B /A )  <  Hm(B).
Pe 6: H„m(A x S ) H „ (A )+ H m(B/A).
Pe 7: x S ) <  //„04) +  / /m(5).
Here H„(AjB) is the entropy of A conditioned by B 
and Hnm{A x B)  is the entropy of the compound system 
(A x B ).

3.2. Hybrid entropy and higher-order entropy

3.2.1. Hybrid entropy 
Consider the experimental set up used by Xie and 

Bedrosian [31], A source is generating symbols 0 and 
1 with probabilities po and p \ ,  respectively. Due to 
some noise in the system the sharpening in the set is 
impaired resulting in a fuzzy set A. Suppose ju, de
notes the membership of x, to the fuzzy set A g P„(X) 
defined as “symbols close to 1” . Pal and Pal [25] de
fined the hybrid entropy of A as

H pp(A ,P) = -  po log£o -  P\ lo g £ |, (10)

where Eo and E\ are defined as

£o =  - / ‘/)e"' (11)
1=1

and

E\ =  (12)n '/ = l

Expressions (11) and (12) are the two terms of the 
fuzzy entropy o f Pal and Pal [23], A detailed discus
sion on the justification for (10) can be found in [25], 
Eq. (10) is suggested using Shannon’s framework. 
The hybrid entropy can also be defined based on ex
ponential gain function of Pal and Pal:

H hPbPe{A ,P )=  p o z ' - E(' + p  , e ' - £', (13)

with Eo and E\ as in (11) and (12).
Unlike (7) or (8) the hybrid entropies (10) and (13) 

reduce to the probabilistic (logarithmic or exponen
tial) entropy o f a 2-state system only with proper de
fuzzification. By proper defuzzification we mean the 
situation where the number of symbols (0 or 1) of each 
kind generated by the defuzzification process is the

same as the number o f symbols originally  generated 
by the source. However, the hybrid entropies (1 0 )  and 
(13) and the total entropy (8 ) o f  Xie and Bedrosian 
cannot model the situation with an /7-state system .

3.2.2. Higher-order entropy
Let A" be a set of players with say, n =  2 0  m em 

bers and A be the set of GOOD players defined  on 
X .  Suppose we form a team o f  size r — 11 sg n. On 
an average, to what extent this team is good! It raises 
two issues: degree to which a collection possesses the 
property of “goodness” and how to get a m easu re  of 
average ambiguity associated with such collections. 
Answer to the first depends on the problem a t hand. 
Given a property characterized by a fuzzy set A , how 
can we extend the same property to a co llection  of 
elements from X .  Let us denote the ith subset o f  X  
with r members as Sf. Let A" be a set o f  acrobats, 
and a subset Sf  o f X  are standing in such a m anner 
that if  one of the members falls the entire team  falls. 
In this case the extent Sf  is good may be defined  as 
minV( e S; {ha(x)i )}■ On the other hand, if  X  is a  group 
o f quiz experts, then degree to which the team  S f  is 
good may be better computed as maxV( € ,s { / ^ ( x i )} 
because in a quiz team, if one member succeeds, the 
team succeeds. If X  is a group o f football players 
or members of a Tug-of-war team, possibly some 
other aggregation operator (may be average) w ill be a 
better choice. Let (! be the aggregation operator. 
The operator (( can be interpreted to define a  fuzzy 
set A-team  (e.g., GOOD-team)  on the universe con
taining all possible subsets (o f  size /•) o f  X . Let 
/u(Sf) = C({fi4xi% x, e  S f } be the degree to w h ic h  Sf 
possesses the property A-team. Now to a n sw er the 
second question, i.e., to get a measure o f fuzziness 
of the fuzzy set A-team , we may use any one o f  the 
functional forms that can be used to quantify fuzzi
ness in A. For example, using the quadratic fuzzy 
entropy, the rth order fu z z y  entropy  [25] o f  A  c a n  be 
defined as tf*QE n (S f ) ( l  -  n(Sf)) .  Properties
of some such measures can be found in [25],

3.3. Conflict in D S  framework

Here our objective is to introduce a measure o f  un
certainty that properly accounts for conflict in a  body 
o f evidence. Most o f the measures of uncertainty like 
discord, confusion, dissonance, etc., do not quantify



the conflict aspect o f  uncertainty properly. Let us illus
trate the concept o f  conflict with reference to the die 
throwing experiment, described in the introduction. 
Suppose we have two bodies o f evidence ( J ^  ,m \ )  and 
{ ^ 2 , m i)  as follows:

mi: m i{ { \ ,2 ,3}) =  0.67, m ,({3 ,4 ,5}) =  0.33, 

and

m2: iw2({1 ,2 ,3}) =  0.67, m2({2 ,3 ,4}) =  0.33.

Intuitively, the second body of evidence has less 
conflict and hence less uncertainty than the former. 
This is because, although, they both divide their as
signments between two subsets in the same fashion, in 
the latter case, the focal elements have a greater over
lap. We feel, the greater the overlap, the lesser should 
be the conflict. This facet o f uncertainty which depends 
on the amount of overlap between focal elements can 
be intuitively understood to be the uncertainty aris
ing from conflict. Note that conflict arises only when 
there is randomness, but it may not account for all 
of the uncertainty that may arise due to randomness.

We adopt a fresh approach to get a new measure of 
conflict. We view the dissimilarity between two propo
sitions as a metric distance between them. The greater 
the distance between two propositions, the greater is 
the conflict between them. On this basis we suggest a 
set o f desirable axioms for a measure o f conflict be
tween two propositions and derive a unique expression 
satisfying these axioms. The average o f  the conflict 
between propositions gives a measure o f total conflict 
in a body of evidence.

3.3.1. Desirable axioms fo r  a measure o f  conflict 
Let (.W ,M ) be any  BOE and A ,B  €z F.  Let 77 be a 

real-valued function whose value at (A ,B ) quantifies 
the conflict between propositions A and B. We think 
that the following axioms are essential for a measure 
of conflict.
1. Nonnegativity.

n (A ,B ) >  0, with equality iff A =B.
2. Symmetry: 

n (A ,B ) =  n (B ,A ) .
3. Triangle inequality:

n (A ,B )  n (A ,  c )  + n (B ,  c ) v c  e
4. Intermediate behavior:

If T1(A,B) >  77( C ,D )  then \ A ^ B \ / \ A \ J B \ <
IC n £ > |/ | C U£>| and

if I1(A,B) < I1(C,D) then \ A ^ B \ / \ A \ J B \  > 
\ C f \ D \ / \ C U D \  VC,De-F .

5. Normalization:
n ( A , B ) <  1 with n ( A ,B )=  1 i f f ^ O S  =  0.

6. Branching:
n ( A , B ) =  n ( A , A  U B) + n(B ,A  U B).

Axioms 1-3 constitute the requirements for a metric. 
Axiom 4 says, the greater the conflict, the lesser is 
the fraction o f the total part in agreement; similarly, 
the lesser the conflict the greater is the fraction o f the 
total part in agreement. The normalization axiom as
serts that when A and B  are disjoint then they are in 
maximum conflict regardless of their sizes. Moreover, 
for any two sets, the maximum conflict is to be attained 
only when they are disjoint. The axiom o f branch
ing is introduced as an alternative way o f computing 
TI(A,B). It means that the conflict between A and B 
is the sum o f the conflict between A and A L I B ,  and 
that between B  and A U B. This is intuitively reason
able as the conflict between A and A U B  arises due to 
the elements in B — A. Similarly, the conflict between 
B  and A  U B  arises because of the elements in A — B. 
In other words, Axiom 6 implies that conflict between 
A and B  arises due to the elements of A U B — A fl B\ 
i.e., due to the elements which are not common to both 
A and B.

It can be proved [6] that the unique real valued 
function satisfying axioms 1-6 is given by

n(A,B)=] -
\ A D B  | 
M U B I

VA,B. (14)

Thus, IJ(A ,B ) represents the conflict between propo
sitions A and B,

I I (A ,B )=  1 —
\ A f \ B \  \AAB\
\A\ JB\  \ A \ J B \ ’

(15)

where A A B  =  A U B  -  B  fl A, is the symmetric differ
ence o f A and B.

We now give the necessary definitions leading to 
the total measure of conflict in a BOE.

Definition 1. Define CON {A), representing the con
flict o f A with the rest of the propositions, as the 
average conflict of A with the rest. Thus,

C O N (A )=  ] T  m(B)Tl(A,B).
B £ S



Definition 2. Define the total conflict in the BOE 
{■F, m), TC[((F,m)\, as the average of the conflict as
sociated with each proposition. Thus,

TC[(&,m)] =  ^  m(A)CON(A)
A £&

=  E  S  m(B)IJ(A,B). (16)
a  e y  B e . ?

This new measure of conflict has several interesting 
properties [6], We discuss here some of them.
Pc. 1: Let (# ,m )  be a BOE, A,B  € with |5 |  > 2 .  

Let B =  B\ U B2, B\ D B2 =  0 and B\ ^  0, 
B2^%. Then, II  (A, B) < I l (A ,B i)  + TI(A,B2). 

Pc. 2: Let (jF, m) be a BOE, B E &r,B  = {bx, . . . , b p}, 
\B\ = p > 2 .  Then, II(A ,B) ^  1 / p ^ L ,  U 
( A , { b j } ) \ f Ae  y .

The next property describes the intermediate behav
ior o f the total conflict in a body of evidence.
Pc. 3: Let (!F, m)  be a BOE where 3F = {A \, . . .  ,A„, 

B } and |5 |  =  p  ^  2. Let be defined
by & ' =  {A U... ,A„}  U { { 6 i} , . . . , ( M }  and 
m '(Z ) =  m\ (Z)  4- m2(Z)  where

m ( z )  — /  m(z ) if z  = Ah i=
1 \  0 otherwise,

m7( Z ) J m(B)lp  if  z e { { M ,.. . ,{ 6 „ } } , 
[ 0 otherwise.

Then, is a BOE, and T C [(^ ,m )\  <

As a consequence o f Pc. 3, we get Pc. 4, which gives 
the range o f TC.
Pc. 4: TC[(F,m)]  attains its maximum value of 1 -  

\/\9C\ iff the evidence is Bayesian with weights 
uniformly distributed over all singleton subsets 
o f  the frame of discernment, 9£. That is for 
m({xj})  = ] / 1F  | Vx, € 9C. TC attains its min
imum value of zero iff | F  \ =  1.

Pc. 5: When the evidence is Bayesian TC reduces to 
Vajda's quadratic entropy ^  p t( 1 -  p, ).

Note that most o f the earlier measures like conflict, 
confusion, etc., reduce to Shannon’s logarithmic en
tropy for a Bayesian belief, while TC becomes equal to 
Vajda’s quadratic entropy under the same condition.

4. Conclusion and discussion

Primarily, there are three types o f uncertainty, 
namely, probabilistic uncertainty, nonspecificity and 
fuzziness that may be associated with a system. W e 
have reviewed some measures for each type of uncer
tainty. Note that these three are the major components 
of uncertainty, and by no means account for all aspects 
o f uncertainty. Various attempts to quantify total u n 
certainty (PU +  NS, PU +  FU ) have been presented. 
A critical analysis o f different conceptual aspects o f  
uncertainty reveals that each type of uncertainty m ay 
have different facets. For example, in the DS fram e
work, in addition to uncertainty that is associated w ith 
the selection of one o f several hypotheses, there is 
a facet that represents conflict between different hy 
potheses. When the universe o f a fuzzy set is defined 
in terms o f outcomes of a probabilistic experiment, 
interpretation of an outcome involves a different type 
o f uncertainty where probability and fuzziness m ay 
interact in a complex manner. We discussed som e 
models to quantify some such facets. Subjective eva l
uation of outcomes o f a probabilistic system -  experi
menter’s eagerness to realize some particular outcom e
-  has a strong relation to the subjective assessm ent 
of uncertainty associated with a system. Shannon’s 
weighted entropy is not an adequate model to cap 
ture this aspect o f uncertainty. Investigation needs to  
be done in this area. So far, as to the knowledge o f  
the author, no attempt has been made to estimate the 
total uncertainty in a system which involves all three 
major components o f uncertainty. This requires to 
find a set of desirable axioms for characterizing to ta l 
uncertainty. It will also require to find how different 
types of uncertainty interact with each other. T hese 
non-trivial tasks require further research.
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