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This paper suggests simple Bartlett-type modifications for a wide class of test
statistics that includes in particular the efficient score and the likelihood ratio
statistics.  © 1991 Academic Press, Inc.

1. INTRODUCTION

Ever since the early work due to Bartlett [5, 6], corrections leading to a
better approximation of the null distribution of the likelihood ratio (LR)
statistic by the chi-square distribution received considerable attention in
the literature (see, e.g., Lawley [18], Barndorff-Nielsen and Cox [2, 3],
Cox [16], Cordeiro and Paula [15], Bickel and Ghosh [9] and the
references therein). Recently, C. R. Rao, in a private communication, and
also Cox [16] posed the problem of developing similar corrections for
other popularly used statistics like Rao’s efficient score statistic (Rao [25,
p-417]). It is attempted here to settle this problem to some extent.

In order to motivate the ideas, we begin with the one-parameter case and
develop simple Bartlett-type modifications for a large family of statistics
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which includes, in particular, the LR, Rao’s and Wald’s statistics. It is
noted that the usual Bartlett’s correction for the LR statistic follows as a
special case of our results. This is done in Section 2. In Section 3, we extend
the ideas to the multiparameter case and consider the modifications for
Rao’s statistic. It is noted that the suggested modifications do not alter the
powers of the corresponding tests, at least up to the second order, in the
sense of Chandra and Joshi [12] and Mukerjee {24]. Some possible exten-
sions have been briefly indicated in the concluding remarks. It may be men-
tioned that the technique of proof employed is essentially of a standard
type known from the field of Edgeworth expansions and Cornish—Fisher
expansions. The technique is applied to the signed square root of test
statistics of the chi-squared type. This kind of approach has been applied
to the log-likelihood ratio statistic by McCullagh [20, Sect. 7.4.5] and by
Barndorff-Nielsen [1]—see also Chandra and Ghosh [11], Chandra and
Joshi [12], and Bickel and Ghosh [9].

2. THE ONE-PARAMETER CASE

For a sequence {X,}, n>1, of iid., possibly vector-valued, random
varigbles with a common density f(x, §) 0 ®, an open subset of %',
copmder the problem of testing H,: 0 =0, against the alternative 6 # 6,.
Without loss of generality, by a reparametrization if necessary, let . = 1,
where . is the per observation information at 8,. Consider a family & of
test statistics 4, such that for every A, €%, a set 4, with Py (A,)=
1+ 0(n~") can be obtained with the property that on 4,

An=(W,)2+o(n 1), (2.1)

where

W,,=H1+n—1/2(le1H2+02H?)

+n‘1(y1H1H§+y2HfH2+y3H?+y4HfH3),
. (22)
H;=n"12 { Y (d log f(X;, 90)/d0i)—nl,},

Jj=1

li=Eq {d'log f(X, 0,)/d0",

i=1,2,3, gnd V1> U2, Y1, Y2, V3, V4 are real numbers which do not involve n.
As noted in Chandra and Mukerjee [13], the family & is very rich and
includes, in particular, the LR, Rao’s and Wald’s test statistics—to be
denoted here by 4,,, A,,, A4, respectively—for suitable choices of v,, v,
Y1» Y2, Y3, ¥a. The forms of the expressions (2.1) and (2.2) for the LR
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statistic 4,, were given by different authors (Lawley [18], McCullagh and
Cox [21, Sect. 2.2 7).

In the one-parameter case, Bartlett’s correction for the LR statistic is
essentially based on the observation that

Eg(A)=14a/n+o(n")
and that

Po,[A1n/(1 +a/n) <x] =f:g1(z) dz+o(n '), Vx>0, (23)

where a is a constant free from n and g,(-) is the density of the chi-square
distribution with « degrees of freedom. The structure of the Bartlett correc-
tion, as in (2.3), is easily explained by McCullagh and Cox [21]—see
expression (11) in their paper. A detailed expression for the constant a has
been given at the end of this section.

That the above simple technique will not be applicable to the tests in the
family &, in general, follows if one simply considers Rao’s statistic and
notes that E,(4,,) =1, so that no appropriate divisor as in the left-hand
side of (2.3) is available. This difficulty can be overcome by considering the
square root version of the statistics as in (2.1) and (2.2). Denoting the W,
corresponding to Ay,, 4y, Ay, by Wy, W, W, respectively, note that
on 4,,

A /(1+ajn)= (W, — n=taH,)* +o(n™"). (2.4)

The relation (2.4) suggests that for any 4, € # one can consider a modified
version 4%, where

A¥ =W} (2.5a)
Wk=W,+n "*(bH}) +n"'(cH +sH}), (2.5b)

the constants b, c, s, free from n, being so determined that the relation
P (i @c):[ g(z)dz+o(n™'), V¥x=0, (2.6)
0

holds. We emphasize that the modifications of the form (2.5a), (2.5b) are
quite simple and that the random terms in the modifications involve only
the first derivative of the log-likelihood which, anyway, one has to compute
for almost any inference problem. The constant coefficients b, ¢, s may, of
Course, depend on expectations involving the higher order derivatives, but,
in a given context, these coefficients can be computed once and for all (see
Theorem 2.1 below). As will be shown now, these modifications are
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applicable to the entire family of test statistics under consideration. Let
h(i) = di logf(X, 00)/d9i (1 <i<4), Lijuw — EGO{(h(l))i (h(Z))j (h(S))u (h(4))w},
Ly, =Ly, Lj=Lyo, L;=Ly.

THEOREM 2.1. For every A,€ %, there exists a unique choice of the
constant coefficients b, c, s in (2.5b) such that (2.6) holds. This unique choice
is given by

b= —LiL,— (v, L, +v,),

c=3Ls—3)— L34+ v (Lyy +1— Ly L)+ (v —y)(Le— 1 = LY)),

s=—&{L,—3—-8L24+120,(Ly;+ 1 — L, Ly)+ 120%(Lo, — 1 — L}))
+24(y, L3+ y2 Ly +ys+y4Lyo) )}

Proof. Using the findings in Chandra and Samanta {14] (we use the
corrected version of a printing mistake there), the approximate cumulants
of W} as defined in (2.5b), under 6,, are given by

kin=n""p +o(n "), ka=1+n""py+o0(n""),
kn=n""2ps+o(n~"),  ky,=n 'ps+on'),
km=o(n=')  (r=5),
where the p/s, which are free from #n, are

p1=v,L{; + (v, + b), (2.7a)
P2=2{v(Lyy+ 1)+ (v3+b) Ly+y,(Lo, — 1 +2L2))

+3y:L1 4+ 3(y3+5)+3p4Lyg + ¢}

+ 03 ( Loy — 1+ L3+ 2(v,+ b)? + v, (v, + b) Ly, (27b)
p3=Ly+6v, L, +6(v,+b), (2.7c)
Pa=Ls—3+120,(Ly; + 14 L, Ly) +24(v, + b)

X Ly+120§(Lo, — 1 4+ 3L2%)) + 48(v, + b)?

+960,(v3+b) Ly, +24(y, L2 +y, Ly 4+ y3+5+y4Lyg,).  (27d)

I;}Ielzﬁz,rcthfe :g})r_i)l(i;r)late characteristic function of W}, under 6,, is given
$n(&) =exp(F*)[1+n""2(p, & + 1p, &%)
+n 3P+ p1) E 4 (4p1ps+ 3 pa) E
+ 73038 1+ o(n ™). (28)
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Recalling the symmetry of the normal distribution and making use of an
Edgeworth expansion (see Bhattacharya and Ghosh [8], Bhattacharya
[7]) for the distribution of W} under 8, it is clear that (2.6) will hold
provided b, ¢, s are so chosen that

p2+pi=0, §P1P3+33ps=0, p3=0. (2.9)
By (2.7a)~(2.7d), it can be seen that the unique solutions for b, ¢, s satis-
fying (2.9) are as in the statement of the theorem. |

In particular, for Rao’s efficient score statistic, v, =v, =y, =y,=
»;=y,=0, so that the solutions for b, ¢, s are simple and given by

Bo= 1L, cRe=YL,-3)—SL)  sReo=—L(L,—3-3L).

(2.10)

In particular, if L, =0, as happens in many situations of practical interest
(see Example 2.1 below), then bR*® =0, cR* = KL,—3), s**° =
-%(Ls—3), so that by (2.5a) (2.5b),

;V;": {1+%n_l(L4_3)} 1211_%’171(1‘4_3)}’%"

(2.11)
= do,/{1—n""a(1 — 13,/3)} +o(n~"),
where @y = (L, — 3)/4, and this resembles the Bartlett correction for the LR
statistic. Tt is also interesting to derive the usual Bartlett correction for the
LR statistic A,, from Theorem 2.1. Since for A,,, v, =3 v2=:Loot> Y1 =15
V2=35Loo1, ¥3=35Looor + 5L3g1> Y5 =+ (see Chandra and Joshi [12]), the
solutions for b, ¢, s are given by

bR =R =0, M =1L, — HL3+ Ly — Ly Ly) — §(Loa— L),

using simple regularity conditions (see Chandra and Mukerjee [13]). Since
PR LR _ . the above agrees with (2.4) and hence with (2.3). Also, from
(24), (2.5b), the constant @ in (2.3) eqals —2c™%; ie,

a=%Loy— L} —Ly)+ 5L — 5Ly — Ly L)

Exampre 2.1. Let X, X,, .., be iid. 2x1 vector random variables
tach distributed as bivariate normal with zero means, unit variances, and
a unknown correlation coefficient @ (]8| < 1). Consider H,: 6 =0 against
Lhe alternative 8 # 0. It can be seen that here # =1, L;=0, L,=09, so that

y(211),

=1+ =023, =A/{1 =173 4)} +o(n™ ")
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3. THE MULTIPARAMETER CASE: RAO’S TEST

The ideas of Section 2 can be extended to the multiparameter case with
reference to a general class of tests along the line of (2.1), (2.2). However,
in this section we present results pertaining only to Rao’s test in order to
simplify notations and to save space. It may also be emphasized that in this
article we are primarily concerned with Rao’s test in consideration of the
recent studies on its optimality properties (Chandra and Joshi [12],
Mukerjee {22, 24]).

Consider the setup of Section 2 with the exception that § = (0, .., 0,)" is
now p(>2)-dimensional. We are interested in testing H,:0 =0, against
0 # 6,. Also, without loss of generality, if necessary by a reparametrization,
let the per observation information matrix at 6, be I, the p x p identity
matrix. Then Rao’s test statistic is given by A,,= H} H,, where H, is a px|1
vector with its ith element given by H,,=n"'"?37_, dlogf(X;, 0,)/00,,
1 <i<p. Generalizing the ideas of Section2, we consider a modified
version of 4,, as

A%.=(HT) (HY), (3.1a)

where
Hf=H +n "?B(H®H,)+n "{CH,+ S(H,® HL®H,)}, (3.1b)

the elements of the matrices B, C, S, which are of orders pXP*, pxp, pxp
respectively, being constants, free from s, to be so chosen that the relation

Py (A%, < x)= L g(z)dz+o(n™"),  Vx30, (32)

holds. Here ® stands for Kronecker product. Note that the random terms
in the modification in (3.1a), (3.1b), like those in (2.5a), (2.5b), involve
only the first partial derivatives of the log-likelihood.

The following notations will be helpful in the derivation. For

1<i,j,u,w<p, let
Gl = Eq,{ (0 log f(X, 6,)/00,)(0 log f (X, 6,)/36))

x (0log f(X, 6,)/06.,)},
Gliow = Eq,{(310g £ (X, 8,)/00,)( log (X, 6,)/06;)
x (0 log f(X, 0,)/00,)(0 log f(X, 6,)/28,,)}.
Note that G|}), G

i juw Are invariant under permutation of the subscripts.
Also, for 1 <i<p, let the elements in the ith rows of B and S be b, and

iju
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Suw arranged in lexicographic orders of j, u and j, u, w, respectively
(I<ju,w<p). Let c¢; be the (i, j)th element of C and 6, stand for
Kronecker delta (1 <i,j<p).

A tedious algebra, the details of which are omitted here to save space,
shows that the approximate cumulants of H¥= (H¥%, .., H ¥.), say, under
8y, are

kln(H ) n—l/Z (1)_}_0(”*!)’
k2n(H1n Hl) 5z]+n71p(2)+0( 1)9
k3n(H=1ki’ Hl]’ u) = —I/ZPEJ?) + O(n‘l)
)=

—1,(4 —1 .o
k4n(H=lki’ Hlj’ le Hlu n pfju)w (n )’ lgl’j’ u,ng,

where for 1 <4, j, u, w<p,

p = Z biggs (3.3a)
g=1
P
Psz)_z Z (brquj(a;r)+qurGf;rJ +Z Z (bqublnl+b“l’bﬂl’)
g, r=1 g r=1

¥4
+ Y (Syag T Sigig + Siagr F Sjiga T Sjaia T Sjaqi) + €5+ Ciis (3.3b)

g=1
Pt =G+ By byt bjoy + b+ b+ bi), (3.3¢)
Pf,?w = ijzu)w - (5ij'5uw + 6iu5jw + 5iw5ju)

P
! 1 I
+ 2 Sunsit 32, 2 (Bugnbigiet bingbiig
g=1
1 4 (1)
+ binqizbisiw + blllzq 13qt4 5 Z Z uqzz lllzq) Gq1314’ (33d)

where 37’ denotes sum over the 24 possible permutations (iy, i, i3, iy) of
(ij, u, w). All higher order cumulants of H¥ are of order o(n™").

Hence, as in the one-parameter case, if one considers a multivariate
Edgeworth expansion for H¥, under 6,, and uses the symmetry of the mul-
tivariate normal distribution, then it can be seen that (3.2) holds provided
the elements of B, C, S are so chosen that, analogously to (2.9), the fol-
lowing hold:

(3) ,(3) (4) (1) ,(3) —
pmijqr_o’ 24pyuu sz pjuw 0’

pP +pp =0,  VI<ijuwgqr<p
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From (3.3a)-(3.3d), it can be seen that the above hold provided

lG(l)

szu iju *

Sie = — 233G o — (90 + 04,0 + 01,0,

p
_% z (G(I)G(l) G(I)G(l) G(I)G(I))}

ijq wq iug qu iwg ~ juq
g=1

(=t E o+,

g=1

) 1 L (1) (1)
_Z Z { Gqu GE]r2+ ququrr
g, r=1

+ GG, 1<ij,u,w<p,

igr ™ jgr
which extend (2.10) to the multiparameter case.

Remark 1. The results in Chandra and Samanta [14] imply that the
modifications suggested in (2.5a), (2.5b) in the one-parameter case do not
alter the power, up to the third order, in the sense of Chandra and
Joshi [12]. In the multiparameter case, it follows from Mukerjee [24] that
the modifications suggested in (3.1a), (3.1b) always keep “average” power,
up to the second order, unaltered; in fact, average power remains unaltered
up to the third order if ijlu’ =0 for each i, j, u (this ensures B=0 in (3.1b)),
a condition which holds in many situations—for example, in testing for the
vector of location parameters in a multivariate Cauchy distribution.

Remark 2. For the modified versions of the tests as considered in this
paper, the remainder terms in (2.6), (3.2) are actually of order O(n )
see, e.g, Chandra and Ghosh [11] and Chandra [10]. A similar
phenomenon in connexion with the Bartlett correction for the LR statistic
has been observed by Barndorff-Nielsen and Hall [4].

Remark 3. 1In this paper, we have considered simple null hypotheses. In
the presence of nuisance parameter(s) the position is as follows: Let 0 b
the parameter of interest and m be the nuisance parameter. If 6 be one-
dimensional then combining the methods in this paper with those it
Mukerjee [23] it should be possible to derive appropriate modifications for
Rao’s statistic. The problem, however, becomes much more complex for
multidimensional #—-in particular, if 6 and m are both multidimensional
then in general one cannot employ parametric orthogonality (Cox and

Reid [17]) and tensor methods (McCullagh [19,207) should be useful
These aspects deserve further attention.
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