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This paper makes an asymptotic comparison, up to the third order, between the
Jocally most mean power unbiased (LMMPU) and Rao’s tests in the multi-
parameter case. The two tests are seen to have identical power up to second order.
It is also seen that Rao’s test, which is much simpler than the LMMPU test, is
almost as good as the latter, in terms of third-order local average power, for small
bul reasonable test size, provided the statistical curvature of the model is not too
large.

1. INTRODUCTION

The problem of higher order asymptotic comparison of tests has received
considerable attention over the last two decades; see Chandra and
Joshi [4], Amari [1], Mukerjee [10] for references and Ghosh [6] for an
excellent review. Recently, Mukerjee [11, 12] established, in a multi-
parameter setup, the optimality of Rao’s test, in terms of maximization of
third-order average power under contiguous alternatives, within a very
large class of tests that includes in particular the likelihood ratio and
Wald’s tests. This result was established by considering locally unbiased
(up to o(n™')) versions of the tests. It may, therefore, be of interest to
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10 MUKERIJEE AND SEN GUPTA

study the performance of Rao’s test vis-a-vis the locally most mean power
unbiased (LMMPU) test proposed by Sengupta and Vermeire [15] as a
natural generalization of the locally most powerful unbiased (LMPU) test
to a multiparameter setting. This has been attempted in the present work.

Earlier, in the one-parameter case, Mukerjee and Chandra [13]
compared the LMPU and Rao’s tests considering “square-root” versions
of both the tests. Although the LMMPU test arises as a natural
generalization of the LMPU test, the former, unlike the latter, does not
admit a “square root” version in the general multiparameter case and, as
such, the techniques in Mukerjee and Chandra [13] are not applicable in
the present context. Essentially for similar reasons, the LMMPU test does
not belong to the class considered in Mukerjee [12]. Therefore, for the
comparison attempted here, new techniques, combining in a sense those in
Mukerjee [11, 12] and Peers [14] (see also Hayakawa [8]) have to be
used. Although our techniques differ from those in Mukerjee and Chandra
[13], our final results, indeed, extend theirs to a multiparameter setup. It
may be remarked that our approach also differs from the differential
geometric one due to Amari [1] and Kumon and Amari [9] since we
assume neither curved exponentiality of the model nor sphericity of the
power function.

2. NOTATION AND PRELIMINARIES

With reference to a sequence {X}, j>1, of iid. possibly vector-valued
random variables with a common density f(x, 6), where 8 = (0, ..., 0,) eR’,
or an open subset thereof, we consider the problem of testing H,: 0 =6,
against 6 # 0,. We shall be considering contiguous alternatives of the form
0(n)=0,+n"'25, where n is the sample size and 6= (3, ... d,) is free
from n. All formal expansions will be over a set .o/, (see Chandra and
Ghosh [3]) with Py, (£)=1+0(n""), uniformly over compact subsets
of 8. The per-observation information matrix at 6, say .#, will be supposed
to be positive definite. Then without loss of generality (if necessary, by a
reparametrization—see Mukerjee [11]) it may be assumed that .# = J, the
p x p identity matrix. The notational system of this paper, similar to that in
Mukersjee [11, 127, is presented below for ease in reference.

For 1<i, u<p, let

Hy=n""2% 0logf(X;, 0,)/00,,
j=1

Vi=n"12% 0logf(X;, 6(n))/6,,

j=1
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Hy,=n"12 Z (& log f(X,, 0,)/¢0, 80, — 11

iu Jo
Ji=1

Vaw=n""2Y (8% log f(X,, 0(n))/e0, 00, —

Jj=1

where  /\)) = E, {07 log f(X, 0,)/00, 00, L= Ey, {2 log f(X;, B(n))/
86,¢0,}. As the per- observatlon information matrix at 0, is assumed to
equal 1, by standard regularity conditions /!’ = — 1 if i=u and =0 if i # u.
Let H; be a px 1 vector with ith element H, (1 <i<p).

For 1<i,u,r,s,v<p, let

Iiiz)r E(‘)o[{a logf 90 /601}{82 lng(X/-, 90)/8014 00,}],

/ iur EUQ {63 logf /69 agu 69, s
l/ur E()o {G logf X/’ 9 )/89 }
x {2 1og f(X,. 65)/20,}10 log £ (X,, 6,)/0,T,

Vhers = Ey, [{&%log f(X;, 0,)/06, 0,1 {¢*log f(X;, 0,)/00,80,} 1,
7on=Eg [{0 log f(X,, 0,)/00> + 1}
x {¢log f(X, o)/c”*@.}f(?logf()(,., 04)/20,} 1,

(s) -, (3),,(1) yoo= (n (D) (1)
glurl yerL 8§82 wiu (Vl(x«’ R yﬁlll)

Gu=7, — 1.

S it

R=(w1, s w,,),

It is assumed that all the expectations defined above exist. The well-known
regularity condition yi,) 4yl + 7y v +06) =0 (1<iur<p) will

also be assumed to hold.
Observe that the dispersion matrix of ¢ log f(X;, 8,)/06,, * log f(X, 6

002, 1<i<p, at By, is
I R
2y= ,
’ <R’ 2)

where the pxp matrix 2 is given by X =((s,)). Hence the matrix
2*= Y _ R'R is non-negative definite and 1'2*1 >0, where 1 is a px 1
vector with all elements unity. For p=1, 1'2*1 reduces to the square of
Efron’s curvature at 8, [5] and in this sense 1'X*1 provides a generaliza-
tion of Efron’s curvature to a multiparameter setup. This generalization is,
however, different from the one considered in Mukerjee [12].

For 1>0 and positive integral v, let k, (), K, (-) and #(v, 2, -)
Tepresent respectively the pdf, the cdf, and the characteristic function of a
Possibly non-central chi-square variate with v degrees of freedom (d.f.) and
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non-centrality parameter 4; K, (-)=1—K, (), Ak‘__,-,(~):k‘+7 ()=
k() 4K () = K . 2:0)— K. () 4K, () = K\v+2/( ) — S0
An(v, 4 ) =nlv+2, 4 ) —n(v, 4, ). Let z* denote the upper a- pomt of a
central chi-square variate with pdf.

The average of any function y(é) of d=(J,,..,d,) along the sphere
3’0 =+ (=0) will be defined as

7(4) = 7(0) it =0, (2.1a)

<f [ o) d(>> <J jdo) it >0, (2.1b)

O3 =7

provided the integral in the numerator of (2.1b) exists {cf. [11]). It may be
clarified that while Mukerjee [ 11, 127 defines average power in the sense of
{2.1) the definition in Sengupta and Vermeire [15] who average over
regions of the form 0’6 < 4, is slightly different. However, one can easily
prove a suitably modified version of Lemma 1 in Sengupta and Vermeire
[15] to show that the exact optimality of their LMMPU test remains valid
even when average power is defined in the sense of (2.1) above. Because of
this reason and also because this work is primarily in continuation of
Mukerjee [11, 12], we continue to define average power along the line of
(2.1) in deriving our results. However, even if average power 1is defined as
in Sengupta and Vermeire [15], then essentially repeating the present
derivation it should not be hard to obtain similar results—such details are
omitted here to save space.

3. RESULTS

As in Mukerjee [11, 127, we consider a locally unbiased version of Rao’s
test given by the critical region,

Z\V=(H, +n" b, +n" b)Y (H, +n72h +nth,)
>4 nm b 40 by, (3.1)
where the scalars b, b,, and the clements of the px1 vectors b, b, are
constants, free from n, to be so determined that the test has size « + o(n™ 1)

and i; locally unbiased up to o(n~"). Next observe that the LMMPU test
[15] is given by a critical region of the form

p p
Z (Hli‘*'Bm)z“'“ni 12 Z H2ii>q,n (3.2)

i=1 i=1

where q,,, B1,, .., B, are chosen subject to the conditions of size and local
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unbiasedness. Following Mukerjee and Chandra [13] (see also Ghosh.
Sinha, and Joshi [7]), we take

g.=2"+n""a+n lay+o(n '),
_ 12 1 | . (3.3)
ﬁin_n a11'+n a2i+0(n )a lglgl)’

where a\;, a,; (0 <i< p) are constants, free from n, to be so chosen that the
test has size % +o(n ') and is locally unbiased up to o(n ~'); as seen later,
these constants exist uniquely from these specifications. By (3.3), the
critical region (3.2) can be expressed as

2

H2ii

1

I

14
Z\V= Z (Hy+n "a,+n lay)y +n"

i

2+n 2a 041 ay+on ) (3.4)

We assume that the joint distribution of (Hy, .., H\,, Hy, .o Hypp)'s
under 6(n), admits a valid multivariate Edgeworth expansion up to o(n ')
in the L -sense [2]. Then, following the last part of Section 4, one may
justify the calculations for the proof of our main result:

THROREM 1. Let byg, oo, by, by in (3.1) and a,;, a,, (0<i<p) in (3.4)
be chosen subject to the conditions of size and local unbiasedness up to
o(n"). Then the (local) power functions of Rao’s and LMMPU tests, under
contiguous alternatives 0(n)=0,+n" '25, are respectively given by

PU(S) = Po(3)4n 2P (8)4+n 'PL(8)+o(n"),
CU8) = Po(8)+n V2P (&) +n PR (3)+oln '),

where Py(5), P,(8), P5"(5), P (5) are free from n,

5>—ZZZ,’5336,6..6\ K, () +34°K,;(2%)

s =1

+ ZZltlzz)éu[{lh(p""z)il:z}

Lu=1

xAK, (*y+ 4°K, ,(z?)]

+3 ZZZ (y N +y1)8,8,0, 4K, ; (22),

fus=1
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and PL(3), P&(8) are such that for 220,
PX(a)— PV (A) =M, (27) + O(4%),
with 2=3'0, and W, (=) =3p~ 'k, o (22)(1'Z*1).

It may be observed from Theorem 1 that up to second order Rao’s and
LMMPU tests have (point-by-point) identical powers. This seems to be
non-trivial in a multiparameter setting and may be contrasted with the
findings in Mukerjee [11]. Also, ¥,(z?) as in Theorem 1, although non-
negative, is always small, provided -7 is large; that is, the test size is small.
especially when the “generalized statistical curvature” 1'2*1 is not too
large. Thus Rao’s test, which is much simpler than the LMMPU test, is
beaten by the latter only in terms of third-order (local) average power
and that, too, usually by a narrow margin for small but reasonable test size
(see the example below). For p=1, it can be seen that Theorem 1 is in
agreement with the results in Mukerjee and Chandra [13].

ExaMpLE. As in Mukerjee [11], consider the sequence X,;=
(X,1,... X,), j= 1, of i.id. random variables with a common p-variate pdf
over #” given by

14
f(x0)=T] [0, ' 2n) 2 exp{—16,2(x,~0,°}],

i=1
where 0= (0,,..,0,)>0. Suppose the interest lies in testing H,: 6 =40,
against §+#0,, where 6, is a px 1 vector with each element equal to \/3
Then the per observation information matrix at 6, equals / and it can be
seen that Z* =3/ so that 1'’2*1=2p/27 and Y, (z*) =35k, (z%). The
table below shows that y,(z?) is, indeed, small for «=0.05 and «=0.0l.

S0 that Rao’s test is almost as good as the LMMPU test in terms of
third-order average local power.

p 1 2 3 4 5 6

v, (z2) 0.00055 0.00046 0.00041 0.00038 0.00036 0.00034
(2 =0.05)

¥, (%) 0.00010 0.00009 0.00009 0.00008 0.00008 0.00008
(2 =0.01)

4. PrROOF OF THEOREM 1

Let 7, be a px1 vector with ith element H, +n "2a, +n 'a,
(1<i<p). Then by (34), ZQP=T,T,+n '?¥r_ | Hy; and under
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contiguous alternatives 6(n)=0,+n"'25, the power function of the
LMMPU test is given by

PA()= Py (ZF>22+n"Va g+ n 'ayy)+o(n ). (4.1)

With ¢=(—1)'?¢, the approximate characteristic function of Z'*’, under
(n), is given by

E(?(nb {exp (62512))}

P
=E9(n){exp(€7—;;Tn)}+n71/2é Z EH(H){HZ.\'.Y exp(éT;z’Tn)}

s=1

P
+ % n71&:2 Z Z E(‘?(n) {HZSXHZuu exp(ér;Tn)} + O(HW 1)' (42)

s,u=1

Now, H,,=06,+ V;+0(1), Hy;=0'w;+ V,,+0(1) (1<i<p), so that
for s # u, under 8(n), up to the first order of approximation the distribution
of (H|, H,,,, Hy,) 1is (p+2)-variate normal with mean vector pu, =

(0, 6'w,,, 6'w,,)" and dispersion matrix
1 Wi Wy
- W
Zsu - Ws O s O su
’
"uu Ous O

Hence for s # u,

EO(n) {HZJA'HZuu exp (éTn,Tn)} = E()(n) {HZA'.\'HZIAM exp(éH{ Hl )} + 0(1 )
=E{Y,Y, . exp(lY'Y)}+o(l), (4.3)
where Y=(Y,,.., ¥,) and the distribution of (¥’, Y, ¥,,)" is (p+2)
variate normal with mean vector u,, and dispersion matrix Y, as stated

above. Evaluating the expectation in the right-hand side of (4.3) by
conditioning on Y, it can be seen after some simplification that for s #u,

EG(H\{HZSSHZuu exp(éT;;Tn)} = 71(17’ ;"7 é) U.vu+ ?’](p + 4? )“9 é)(wyrssé)(w;ué)
+dn(p, 4 E)wWiw,.)+o(l), (44)

where 4 =§'5. Similarly, an expression, up to o(1), for the left-hand side of
{4.4) can be obtained for s=u. Hence

'Y Epny (Hoss Hou exp(ETLT,)} = Blp, 1n ©) +0(1),  (45)

s,u=1

683/45/1.2
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where

r r 2
B([>~ )v~ ;f):n(p’ ;"’ é) <Z Z 6.\11> +7’(1)+4, )"w &:) ( Z “‘.’\.\ (S>

ssu=1 s=1

+ An(p, 4, cf)( i u'_\._\.>/ ( i w,\.,\.>. (4.6)

s=1

s =

Considering a multivariate Edgeworth expansion, up to o(n '?), for the

distribution of (H,, .., H,,, H,,,)’, under 6(n) (cf. Peers [14]), one obtains

in a similar fashion, but with much more algebra,

E/)(n) {HZ.\\ exp(éI;TH)} = ’7(1) + 2’ /:1 é)(\li\é) +n : ZC.\’([)’ /:'7 é) + 0("71 : )‘
4.7)

where

P I
C\(p’ /:w é):%”l(P""L /1’ é) Z Z "Iy,(\-i’r(suo‘r*_ % A'I([)7 }w é) Z }‘(\,51:)11

wur=1 u=1

+3 Z g i34%(p, A &)

i=1

+60;dn(p+4, 2, E)+In(p+8, 4 &)}

14
ey (ghl+3gi) {610, n(p+8,1,¢8)

iFu=1

+36,6, An(p+4. 4, &)}
FETY g 0252 +8, 4 8)
I#u=1
+ (37 +00) A(p+4, 2,8+ An(p, 4, &)}
+3 ziz (8o +8i){628,0,n(p+8, 4 &)

iFus#tr=1

+0.0, An(p+4, 4, &)}

P
+E X0 8 8,8,0,8,n(p+8, i &)

FFustr#oe=1

+waa) dn(p, 4, &) + (wi,6)(a,8) An(p +2, 4, &)

P
+3 008,08, {(ww,,) an(p, 4 &)

ur=1

+ W) Wi, 0) n(p+4, 4, &)+ ('8, — pu) nip, 4 &)}

+ Zzzéﬂér()lyml Mv.xé)ﬂ(p+2’ ]'a é)a 1<S<P’ (4'8)

ur r=1
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with a,=(a,, .., a,) (i=1,2)and p,=1 if u=r and =0 if u #r, using
in particular the fact that the g{}} are invariant under permutation of the
subscripts i, u, r.

By (4.2), (4.5), and (4.7),

Ly {exp(EZ)7)}

P

=Ey., qexp ¢r, }+ ’171—A”l(l7a/L £) Z (wi,0)

s=1

r
‘{é S Cp O+ EB(p A ol ) (49)
s=1

For />0 and positive integral v, n = '&n(v, 4, &)= {exp(n 'E) =1} n(v, 4, &)+

oln "), dn (v, 4, &)= {exp(in 1) — 1} n(v, 4, &)+ o(n ). Note that
exp(n ') n(v, 4, &) and exp(in'¢? )17(\ /., &) are characteristic functions
respectively of U, ;+n~' and U, ,+n"'?r, where U, follows the
(possibly non-central) chi-square distribution with v d.f. and non-centrality
parameter 4, T follows the standard univariate normal distribution, and
U, , and t are independent. Since, with U, ; and t so defined,

VoA

PWU, ,+n '">z24+n "ag+n lay)—PU,;>z2+n a,+n lay)

=n 'k, () +o(n "), (4.102)
PWU, ,+n "r>z224n"a,+n"ay)—PU, >z +n Pa,+n lay)
=—3n 'k (27 +on ), (4.10b)

where k!, (z*) = {dk, ;(w)/dw}, _ ., it follows from (4.1), (4.6), (4.8), and
(4.9) that

P _
Plz'(é):Pom)(T,; Tn>52+’7‘”2a10+nilazo)+%nil/z Z (W.'\~.\-5)AK,L;,(32)

s=1

+n! i C¥(6)—3n 'B*()+o(n™"), (4.11)

where i=4'9,

14
C»:k(a):%karéi.i(‘ ZZ /iSu)r ()“0 +%Akp./".(:2) y.i-i)u

w,r=1 =1

P
+1Y g9 34%, (22) + 6024k, 4 (27)+ 01k, s (20}

i=1
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P
+1SY (gl +3gu {020,k s (27) +38:0, Ak, 0 (27)]

il
iFu=1

P
+3YY g {6700k, s (27)

i#Fu=1

+ (07 497) Ak, 4 :2)+A2kp«}.(:2)}

P
FIYYY (g +ga)

iFu#r=1

X{(S?O‘lo/kp+8/( )+5uorAkp+4/( 2)}

+é2222 g&z‘n"zél()éékp+8/( )

ifu#r#rv=1

+(WY.’\'.\al)Akp/( )+(w5\0)(a15)dkp+2;( 2)
- % ao(wi0) Akp,/'_(zk)

r
+ % Z Z 61461‘ { (wy;.\‘vvur) Akp.).(zz)

ur=1

+ (wy.,\'.\'é)(wiwé) kp +4,).(22) + (V(Y?Lr pur) kp,/l (22)}

14
+%Zzzéuéréﬁ‘frl(“’;sé)kp+2,/1(22)’ 1 <S<p’ (412)

wroep=1

B0 =k () (LT 0. ) 4K (o ) (% w;,ya>2

su=1 s=1

F k2 >—k;,.;.(z2)}(§ w)(Z ) (.13)

s=1

Now observe that a critical region of the form 7,7,>z>+n""2a, +
n~'ay, where T,=H,+n "2q,+n 'a,, gives a test belonging to
the class considered in Mukerjee [12] and, therefore, as in Section 2 of
Mukerjee [12] (rectifying a minor error in Equation (2.11f) of that paper).

Py (T, T, >z +n""a g+ n" "ay)
= I?p,x(zz) +n"'2[Q(8, 2%) _axokp.,z(zz)
—(a}0) 4K, ;(z*)]

3
N [_Z ho)+ Y W_,-*<5>]+o<n N (4d)
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where

222/133 ~15u0 ABKp.},(Zz)-f—%Az pﬂ)_(zz))

Lhus=1
+3 ZZVW K, (z})+ 4K, ;(z%)
hu=1
¥
+EY Y Y 490 8,0,0,4K, (%), (4.15)
Lus=1

hy(8)=— {aZOkp, (z )+ a1ok1 (2 )
hy () =a,, {0Q(3, 22)/(‘722}, (4.16)
h3(5) alO(a 6)Akp/( )

W,-*(6)=j~~jw,-<ﬂb,a)lﬁlaﬁ(y,—éf)dy (1<j<4) (@17
s i=1
S={y=01s 0 y,) 1 ¥y>2"

(C 6 = Cal ZZZ}SS\) i€ u (,,\'+%53)’

fous=1

W,(c, 8)=14(c'a,)?, (4.18)

W3(C, 5) = C,a2!

((, 5 :% Ca ZZZC y1113+y1 )

fus=1

= (¢, c,), D=(8/0y,, .., 0/dy,) is a vector of partial differentiation
operators, ¢(-) is the standard univariate normal density, and /y(5) does
not involve a,;, a,; (0<i<p).

By (4.11), (4.14), the power function of the LMMPU test under
contiguous alternatives 0(n)=0,+n 26 is given by

PO(3)=Po(8)+n 2P G)+n PR (S) +onY),  (4.19)
where P (5), P?(5), PY(5) are free from n,

Po(d)=K, ;(z%), (4.20a)
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PRIS) = (0, 22) —ayok,  (2°)— (a;0) 4K, ;(2*)
P
+%< Z H".’V.\'(5> Akp‘/‘.(zz)’ (420b)
s=1
3 4 P
PY8)= ) hi(0)+ Y WXo)+ ) C*(8)— 4 B*(4). (4.20c)
j=0 j=1 s=1

In order to simplify (4.19) further, we proceed to determine ayg, a2, 4y, 4>
from the conditions of size and local unbiasedness up to o(n~'), namely.

P'2(0) =0, (PP (8)/88, 50 =0 (1<i<p), (4.21a)
POOI=0,  (aPP6)E0)s0=0(1<i<p)l (4210

Exactly as in Mukerjee [12], from (4.15), (4.20b), (4.21a), after some
simplification, the unique solutions for a,, and a,=(a,,, .., a,,)" are given
by

a,,=0, a,=—% Z {/51\1 (p+2) =23 (4.22)
s=1

Similarly, from (4.21b), a5, and a,=(a,y, .., d,) can be determined
uniquely. The detailed expression for a, will not, however, be required for
the present purpose. From (4.15), (4.20b), (4.22), one can check that

P2(8)=P,(5), (4.23)
where P, (9) is as in the statement of Theorem 1.

By (4.12), (4.13), (4.16), (4.20c), (4.22), for />0,

4 4
P2y =ho(2) = axk, ,(z2)+ 3, WH(i)+ 3. CHA)—1B*() (4.24)

j=1 5

where the averages are as defined in (2.1), and

C—".v*(;‘):%{)'pilkp+4,/( +Ak )} Z Iisulu

=1

+1{20p Ak, () + 47K, 1YY el
Lu=1

+(wia)) dk, (2 + Ap~ wiay) K, o5 (27)

+3ap7 Y {wiow,) Ak, (2 + 0k, 1 (2))

+0(2%),  1<s<p, (4.25)



COMPARISON IN THE MULTIPARAMETER CASE

B¥(3) = k., (=?) (z”z a>

soe=1

+ (kY o (2D =k ()

><< i wu>, < i w_\._\.>. (4.26)

s=1
=0 so that by (4.24)-(4.26),

By the first condition in (4.21b), P$?’(0)

7

4 14
[}10(0 Z W/*(O)+%Akp0(zz) ZZ yi‘.su)u

su=1

+3 Apr( Zzzg,m

s.hu=1

+ Akp‘O(Zz) i (“".:'sal)_%k,:).()(zz) (sz O’.\'u)

s=1 su=1

=3k, 20(27) =k, o(27)} < i \1'_\1\). < i n'&\):'/kp_o(zz). (4.27)

s=1 y=1

Also, as in Section 3 of Mukerjee [12], by (4.17), (4.18),

Y IWr(A) = 1k, () k,0(2) ) WH*0)]

j=1

=)vp"kp+2.0(zz) { i (w,’mal)—a’lal} + 0(42). (4.28)

=1

From (4.22), (4.24)-(4.28), after some algebra, one obtains

PP Ry =ho(A)— {k,, ;(2*)/k,0(2%)} ho(0)
+ 2k, 4 2.0(2) {(4:2)" (1'Z*1)

14
4p)’l Z Z W';._\.W'“u _p7 lallal}+ 0(12)

=ho(2 ~{k (=*)/k .o 2}50(0)
(VZ*1) +p~ el (e, —e))} + O(A4),

+ ik, 0025 {(427)
(4.29)
- 7(3)

where ¢, is a px1 vector with ith element —3z*(p+2)

(I<i<p)and e, =3%7_ w,.
We now consider Rao’s test given by (3.1) which belongs to the class



22 MUKERJEE AND SEN GUPTA

considered in Mukerjee [127. Following [121], if b,¢, b2, b1, b5 in (3.1) are
chosen subject to the conditions of size and local unbiasedness up to
o{n "), then it can be seen that the power function of Rao’s test, under
contiguous alternatives 6(n) =0, +n~ "4, is given by

PUB)= Py(3) +n PPV(8)+n PY(d) +o(n ), (430a)
where P,(0), P\''(d), P (d) are free from n,
Po(8) =K, ;(z%), P{(8)=P,(5), (4.30b)

P,(d) is as in the statement of Theorem 1, and P4’ () is such that for
220,

P (2)=ho(2) = {k,.:(z3)k,0(2%)} ho(0)
+ ik, 00(27) P el (65— €1) + O(47). (4.30c)

Theorem | now follows from (4.19), (4.20a), (4.23), (4.29), (4.30a)—(4.30c).

The derivation of the local power function of the LMMPU test {see
(4.19), (4.20a)-(4.20c)), with the help of some results from Mukerjee [12]
was an important step in the above proof. Comparing with [12], it can be
seen that we are essentially approximating E,,, {exp(¢Z(?)} by

Eﬂ(n)[{] +n '/25(2a/1Hl+1’H2)+n"(2fa'2Hl+2§2(a'1Hl)2
+28(1'H, ) (a\ Hy) + Eaha, + 5E3(1'H,) ) exp(EH H L) L

as computed up to o(n~!) from the assumed multivariate Edgeworth
;xpansion of (H{, H;)" under 0(n), where H,=(Hay,, .., H,,,)’, and then
inverting this approximation using (4.10a), (4.10b) whenever necessary.
Altematively, one can consider the more laborious procedure of directly
integrating the multivariate Edgeworth expansion, under 6(n), of

(H{, Hy) over the critical region represented by (3.4) by first making the
transformation

p
L=H,(1<i<p), ¢&,0,=Y (Hy—w;H,)),

j=1

Cp+i:H2if“W;iH1 2<i<p),

then integrating {,, ,, .., {,, out, and finally integrating with respect to
Cis o €pr €,y using relations analogous to (4.10b). It can be shown that
the contribution of each term in the multivariate Edgeworth expansion
under the above procedure of direct integration agrees, up to o(n '), with
that under the procedure employed above in proving Theorem 1. Further-
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more, up to o(n '), the contribution of each term in the multivariate
Edgeworth expansion to Eg,, {exp(£Z!2)}, is of the form

d d d
Z F()jrl(j’ ;t’ f)+n71/’2 {Z rljﬂ(js ;"7 é)-"_é Z r?_jn(jﬁ ;~1 é)}
d d d
+n7! {Z Lyn(j, A &) +& Y, Tyn(f, 48 +& Y Isnlj, /LCT)},

j=1 J=1 Jj=1

where d is a positive integer, the I';’s are free from # and ¢ (but may
depend on 4), and some of the I';’s are possibly zeros; one can check that
if two expressions like the above are identical in ¢ (and &) then their
inversions, as done here, will also be identical up to o(n~'). These
considerations, under the assumption of existence of a valid Edgeworth
expansion under 8(n), up to o(n '), for (H;, Hs)' in the L;-sense, provide
a justification for the calculations in this section.

ACKNOWLEDGMENTS

The authors are grateful to Professor J. K. Ghosh, Indian Statistical Institute, for very
constructive suggestions. The work of the first author was supported by a grant from the
Centre for Management and Development Studies, Indian Institute of Management Calcutta.

REFERENCES

[1] AMaRL, S. (1985). Differential Geometric Methods in Statistics. Springer-Verlag,
New York.

[2] BHATTACHARYA, R. N., anD GHosH, J. K. (1978). On the validity of formal Edgeworth
expansions. Ann. Statist. 6 434-451.

[3] CHanDRa, T. K., AND GHosH, J. K. (1979). Valid asymptotic expansions for the
likelihood ratio statistic and other perturbed chi-square variables. Sankhya Ser. A 41
22-47.

[4] CuanDrA, T. K., AND JosH1, S. N. (1983). Comparison of the likelihood ratio, Rao’s
and Wald's tests and a conjecture of C. R. Rao. Sankhya Ser. A 45 226-246.

[5] Erron, B. (1975). Defining the curvature of a statistical problem (with applications to
second-order efficiency). Ann. Statist. 3 1189-1242.

[6] GHosh, J. K. (1991). Higher order asymptotics for the likelihood ratio, Rao’s and
Wald’s tests. Statist. Prob. Lett., to appear.

[7] GHosH, J. K., SiNHa, B. K., anp Joshi, S. N. (1980). A property of maximum
likelihood estimator. Sankhya Ser. B 42 143-152.

[8] Havakawa, T. (1975). The likelihood ratio criterion for a composite hypothesis under
a local alternative. Biometrika 62 451-460.

[9] Kumon, M., aND AMARI, S. (1985). Differential geometry of testing hypothesis—
A higher order asymptotic theory in multi-parameter curved exponential family,
preprint, Tokyo University.



24 MUKERJEE AND SEN GUPTA

[ 10] Mukerier, R. (1989). Third-order comparison of unbiased tests: A simple formula for
the power difference in the one-parameter case. Sankhya Ser. A 51 212-232.

{1H] Mukpriee, R, (1990a). Comparison of tests in the multiparameter case. I. Second-order
power. J. Mulrivariate Anal. 33 17-30.

[12]} Mukerite, R. (1990b). Comparison of tests in the multiparameter case. II. A third-order
optimality property of Rao’s test. J. Multivariate Anal. 33 31-48.

U13] Mukerke. R axp CHaNDRA. T. K. (1987). Comparison between the locally most
powerful unbiased and Rao’s tests. J. Multivariate Anal. 22 94-105.

[14] Prrrs, H. W. (1971). Likelihood ratio and associated test criteria. Biometrika 58
477487,

[15] SexGUPTA. A, AND VERMEIRE., L. (1986). Locally optimal tests for multiparameter
hypotheses. J. Amer. Statist. Assoc. 81 819-825.



	Page 1 
	Page 2 
	Page 3 
	Page 4 
	Page 5 
	Page 6 
	Page 7 
	Page 8 
	Page 9 
	Page 10 
	Page 11 
	Page 12 
	Page 13 
	Page 14 
	Page 15 
	Page 16 

