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W e dem onstrate the existence o f a  social choice function in an environm ent 
where there are two outcom es and  two players each of w hom  can be of two types, 
which can only be im plem ented in B ayesian-N ash equilibrium  by a m echanism  
where both  players have an  infinite num ber of messages. This stands in dram atic  
con trast to the case o f N ash im plem entation in com plete inform ation, finite 
environm ents. Journal o f  Economic Literature C lassification N um bers: 025, 026.

1. I n t r o d u c t i o n

The theory of implementation is concerned with the decentralisation of 
decision making when agents have private information. The heart of the 
implementation problem is the construction of a mechanism or decision 
procedure which will induce agents to reveal their private information. This 
need to give agents the right incentives acts as a constraint both on the 
kind of decentralised procedures which can be used as well as on the class 
of social objectives which can be implemented.

Of course, the choice of mechanisms as well as the nature of implemen- 
table social goals will depend on the environment, in particular on the 
structure of information. In a classic paper, Maskin [6 ]  considered the 
case of complete formation, that is, a framework in which the state of the 
world is known to all agents. Various issues in the implementation problem 
with complete information have been analysed subsequently.1

One aspect of the literature which has come in for a lot of criticism is 
that many of the positive results are obtained with the help of mechanisms 
which possess undesirable features. For instance, Moore [7 ]  remarks that 
the general theorem on implementation in subgame perfect equilibrium

* W e are grateful to  R ab indran  A braham , M att Jackson, and  an anonym ous referee for 
their comments.

1 See M oore [7 ]  for a  recent survey of this literature.



involves .. the construction of an enormously elaborate mechanism, with 
several stages of simultaneous moves. Worse, the mechanism appeals to 
clevel but unpalatable devices which exploit the finite details of what con
stitutes— or rather does not constitute— an equilibrium.” Moore goes on to 
list some of these “unpalatable” devices, one of them being the use of 
mechanisms whose message sets are infinite even when the environment is 
finite.

In this paper, we restrict attention to environments with incomplete 
information, in particular to those in which agents possess exclusive infor
m ation.2 We show that in noneconomic environments3 with (exclusive) 
incomplete information, there are social choice correspondences which can 
only be implemented in Bayesian -Nash equilibrium by mechanisms with 
message sets which are not finite even in the simplest finite environment. 
Thus, our result shows that the very nature of Bayesian implementation 
involves the use of mechanisms with “unpalatable” devices.

This result also underlines the difference between implementation in 
N ash equilibrium and in Bayesian-Nash equilibrium. In the former case, 
unwanted equilibria can be destroyed by making individuals cycle endlessly 
over a finite set of strategies. This is accomplished by means of the 
“m odulo game” construction. Indeed, an upper bound on the size (that is 
the number of messages) of individual message sets can be obtained as a 
function o f the environment.4 Our result demonstrates that this idea cannot 
be used in the incomplete information context. Attempts to eliminate 
equilibria with a finite number of strategies may result in the creation of 
new unwanted equilibria. Consequently, the general principles underlying 
mechanism design in incomplete information environments are far more 
subtle than in the complete information setting. It is also important to 
realise that the usual “integer games” will not suffice either. Although such 
games have an infinite number of strategies, it is always possible to 
replicate them perfectly by using appropriate modulo games.5

2 An alternative fram ew ork is one where inform ation  is nonexclusive; th a t is, each agent’s 
inform ation  is redu n d an t if the o ther agents poo l their inform ation. See Postlew aite and 
Schm eidler [1 1 ]  an d  Palfrey and Srivastava [ 9 ]  for analyses of im plem entation in this 
setting.

3 W e are following the term inology of Jackson  [5 ] .  Jackson defined an  economic environ
m ent as one in w hich a t least tw o agents are never satiated.

4 See D anilov  [ 1 ] ,  D u tta  and Sen [ 2 ,3 ] ,  and  M oore and Repullo [ 8 ]  for som e recent 
applications of m odulo  type constructions in the  context of im plem entation in the perfect 
inform ation  setting.

5 The referee has d raw n our atten tion  to  the  need for cau tion  in the use of the term  “integer 
gam e.” H e poin ts o u t th a t the infinite m echanism  we em ploy in o u r exam ple can be described 
as an integer gam e of the following kind: B oth players announce integers and  the outcom e is 
a 2 if agent one has a  higher integer and  a i otherwise. By “integer gam e,” we refer to  games 
where the player w ith the higher integer d ictates the outcom e.



The most general result on Bayesian implementation is that of Jackson 
[5 ] , Jackson formulates a condition on social choice functions called 
monotonicity-no-veto. He shows that if there are three individuals, then the 
condition is sufficient for implementation. Moreover, implementation is 
achieved by means of a mechanism which is finite in finite environments. 
Our example is not covered by Jackson’s sufficiency theorem for two 
reasons. We have two individuals and the social choice function does not 
satisfy monotonicity-no-veto. However, we show that it is possible to 
extend our two person example to a three person example where two 
players require infinite message sets. Therefore, the lack of finiteness is a 
consequence of the failure of monotonicity-no-veto.

2. N otation  a n d  D efinitions

In this section, we describe the general framework of Bayesian 
implementation. For any collection of sets {B1}, i e I , B  and B ~ l will 
denote the Cartesian products n < e /-®‘ anc* n ,-e /\{,} Bj, respectively. The 
vector ( b \ b ~ ‘) e B  denotes the vector (b1, ..., b ‘~ l, b \  bi+1, b N). In 
general, lower case letters will denote elements of sets which are repre
sented by corresponding capital letters.

The set of individuals is a finite set 1 =  {1,..., N } .  Following the formula
tion of Harsanyi [4 ] , the set of types of individual i e  I  will be denoted by 
S'. Throughout the paper, we assume that S ‘ is finite. An element s e S  will 
be referred to as a state of  the world, or simply as a state. A complete 
description of individual preferences is associated with each state.

The set of feasible outcomes will be denoted by A. Elements of A  may 
be interpreted as allocations of commodities across individuals, candidates 
in an election, and so on. It is assumed that A  is fixed and independent of 
the state.

An allocation x  is a mapping x: S  -> A. For all x e S ,  x[.v] e A is the out
come specified by x. Let X  denote the set of all allocations. Note that when 
A is finite, the set of allocations will also be finite. We will refer to this case 
as the finite environment.

Every individual i s  I  has a prior probability distribution q‘ defined on the 
set S. We assume that {s e S | ^'(j) >  0} =  S  for all i e  I.

For all i e l ,  s ‘e  S' and s ~ ‘ e  S  ', q‘(s~‘ \ s ‘) is the conditional probability 
of .v ', given that s' has occurred.

Each individual i has a state-dependent utility function u‘: A x S  -* IR. 
Note that the utility function depends on the entire state .v and not just on  
individual f s  type s' in that state.



For all i e l  and s 'eS' ,  the binary relation R'(s‘) is defined on the 
elements of X  as follows:

for all x, y e X ,  xR'Cs1 )>»<-►£ (m'(x[s], 5) — »'(}’['?]> 5)) q‘{s~‘ \ s') >  0.

One feature of the binary relation R ‘{s') deserves special mention. Pick 
an arbitrary i e l  and s' e S'. Let x, y,  x, y e  X  be such that x [ s \  i ~ ' ]  =  
x [£ ', j _<] and j [ i ' ,  j ~ ‘] = y [ s \ s - ']  for all s ~ ’eS~'.  Then x R ‘(s ‘) y  if 
and only if x R ‘(s')y.  Thus, for the purpose of ranking any two allocations 
x  and y  under R'(s'), only the values of x  and y  in states whose ith 
component is s' matter. This fact follows immediately from the definition 
of #(§*).

A social choice function (SC F ) F  is an element of X.
A mechanism G is an (jV +1) tuple ( M M N, g), where M ‘ is the 

message set for individual i e l  and g  is the outcome function g: M -> A.
Let G be a mechanism. The collection (I, S, {<?'},■ e / , \u‘ } iel , G) con

stitutes a game of incomplete information. We shall refer to this game as 
the game associated with G, or the G-game. A strategy for individual i, a', 
is a mapping a ‘\ S ‘ —> M ‘. The set 27' is the set of all strategies of i. For all 
<7 e 27, a{s) represents the vector (ct1̂ '1), ..., aN(sN)) and g(<r) the allocation 
which results when a  is played.

A Bayesian-Nash equilibrium of the G-game is a vector of strategies 
<7*627 such that ^(er*) R'{s’) g (a ‘, a ~ ') for all (j'e27', s‘e S \  i e l .  Let 
2 7 (G) denote the set of all Bayesian-Nash equilibria of the G-game.

D e f in i t io n  2.1. A SCF F  is implementable if there exists a mechanism 
G such that {g(<T%) | er* e27;)!(G )} = F .

Jackson [5 ]  contains a review of other definitions of implementation in 
the incomplete information context. The reader is also referred to Palfrey 
[ 10].

3. T he N ecessity of Infinite  M echanisms

We present an example to demonstrate the striking fact that implementa
tion even in finite environments may involve the use of infinite mechanisms. 
This has serious implications. The most general result on Bayesian 
implementation so far (Jackson [5 ] )  uses the Bayesian equivalent of the 
“modulo game” widely used in mechanisms for implementation in complete 
information settings. These mechanisms are finite when the environment is 
finite. In our example, the unique implementing mechanism is infinite even 
though the environment is finite. This suggests immediately that it would
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be impossible to use “integer” or “modulo game” constructions to obtain 
a necessary and sufficient condition.

The necessity of infinite mechanisms also stands in sharp contrast to 
canonical mechanisms in the complete information case. Here, it is well 
known that if a SCF is implementable, we need not look beyond the class 
of modulo games in our search for the mechanism that implements it. The 
example shows that this result does not carry over to the incomplete 
information case. We now proceed to the example.

Let 1 =  {1, 2}, S 1 =  {V, s2}, S 2 =  { t l, t2}, and A =  { a l , a 2}. An alloca
tion will be represented by a 4 tuple whose first, second, third, and fourth 
components refer to the outcomes in states s 1*1, s ' t2, s2t \  and s2t2, respec
tively. Thus, (au a2, a u a2) is the allocation which specifies a u a2, a , ,  and 
a2 in states .vV, s ' t2, s 2t L, and s2t2, respectively. There are 16 allocations 
altogether and they are numbered as follows:

(«!, au au ai ) =  x \  (a1; a 1, a 1, a2) =  x 2,

(au  a u a2, a2) =  x 3, (a1} a u  a2, a x) =  x 4,

(au a2, a u  a l ) =  x 5, (au a2, a u a 2) =  x 6,

(au a2, a2, a j  =  x 7, (a 1; a 2, a2, a2) =  x s,

(a2, au a u a1 ) =  x 9, (a2, au au a2) =  x 10,

(a2, a u a2, at) =  x 11, (a2, au a2, a2) =  x 12,

(a2, a2, au al ) =  x 13, (a2, a2, a u a2) =  x 14,

(a2, a2, a2, a1) =  x 15, (a2, a2, a2, a2) = x16,

The utility functions of the individuals are as follows:

u \ a u (sV)) = 2; «1(a2, ( i 1/1)) = l

u \ a u  (iV 2) )=  1; u1{a2, ( s l t2)) =  2

u1(a1, ( s 2t i ) ) =  1; u\ a 2, ( i2r‘ )) =  2

«1( a i , ( ^ 2)) =  2; u \ a 2, (s2t2)) =  2

u2(a1, ( s l t l )) =  2; u2(a2, ( s ¥ ) )  =  0

u2{al , { s 2t l )) =  l- u2{a2, { s 2t l )) =  l

u2{au  C sV ))=  1.5; u2{a2, {sl t2)) =  2

u2{au  (s2t2)) =  2; u2(a2, (s2t2)) =  0.



The prior probability distributions for the players are given by 

q 'O 1 | s l ) =  q \ t 2 | s 1) =  q 1( t1 \ s 2) =  q \ t 2 | s 2) =  0.5

and

q2(sl | t 1) =  q2(s2 | / 1) =  ? V  I t2) =  q \ s 2 \ t2) =  0.5.

It is easy to verify that with these data, the binary relations R x(s2),
R 2{tl \  and R 2{t2) are as follows:

R l{sl )

x 5~ x 6~ ' X 7 ~ X 00
x 13-^ x14~ x 15~ x 16- x 1~ x 2~ x 3~ x 4

x 9 ~ x 10~ X 11-.' X 12

.r V )

x 4~ x 7 ~ x 11- <x15~•x3~ x 8~ x 12--~ x 16

x 2~ x 6 ~ x 10~- x 14~ x 1 ~ x 5~ x 9 -~ x 13

R 2( t1

~ x 3~  X4 '~ x 5~̂ x6~ x 7

x 11-^x12-~ x 13 ~̂ x 14~ x

R \ t 2)

x 5 ~̂ x 7~^x13~̂ x 15

x * ~ x 4~*x9 ~- X 11

x 6 ~̂ x 8~^x14 -̂ x 16

x 2~- x 3~<x10~^x12.

- x

i v -1 6

In all the four binary relations, any two allocations on the same row are 
indifferent to each other. If one allocation is above the other, then the first 
is strictly preferred to the second.

Consider the SCF, F =  {x4}.6 Let G denote the mechanism described 
below:

6 Observe th a t x 7 is (w eakly) m axim al for players of all types bu t is no t F. Therefore, F does
no t satisfy Jackson’s m onotonicity-no-veto  condition.



ml m\ m2 ml m*

m\ «i «i

m\ a2

m\ a2 a2 <*i a 1

m \ a2 a 2 a2

m l5 a2 a2 a2 «2 a t

(Here, player 1 chooses rows, while player 2 chooses columns).

P r o p o s it io n  3.1. The mechanism G implements F. Moreover, it is the 
unique (up to a relabelling o f  rows and columns) mechanism which implements 
it.

Proof  We first establish that G implements F. Let ^ ( s 1) =  m[,  
a \ { s2) =  m 2 > <t*(;2) =  w 2- Clearly, g(critl) =  x 4. We first show
that <7* e L ^ G  ), where 2T*(G) is the set of equilibrium strategies in G. By 
deviating from <7*, player 1 can get any of the allocations x 1, x 9, x 11, x 13, 
and x 16. However, x 4 is weakly preferred to all these allocations according 
to both -R'fa1) and /?J(.v2). Similarly, deviation from <7* allows player 2 to 
get allocations x 1, x 2, and x 3. However, none of these are better than x 4 
under either R 2( t i ) or R2(t2). Therefore, e Z ^ G ) .

We now show that if a e  then g{<j) =  x4. Pick an arbitrary a e  Z. 
We first claim that it cannot be the case that g(a) =  x 1 or x 10. To see this, 
suppose that g((r) =  y  =  x 10. Assume without loss of generality that 
a 1(s1) =  m ir . Let a 2(tx) =  m 2k and u2{t2) =  m 2. It must be the case that k < l .  
Otherwise, one of the following must hold: (i) j l V f 1] =y[_s1t2~\ =  a lf 
(ii) =  y{.sl t2~\ =  a2, or (iii) y lV ? 1] =  a x and y [ i 1<2]  =  a2- In eac^
case we contradict the hypothesis that y  =  x 10. Suppose that a 2(s2) =  
and v ^ r .  Then ^ [s2?2] =  a x or j  =  x 16. Therfore, v >  r. But now  
j [ s 1f1] = a 2 implies that >>[.sV] =  a2- Therefore y  ^  x 10. Suppose that 
g(o)  =  x 1. Let & e Z  be such that ff1 =  a 1, &2( t 1) =  o 2( t l ) =  (r2{t2) and 
a 2( t2) =  <?2{ t1)- Then, g(a) =  x 10. However, this is impossible. Therefore, 
g(<r)#*7-

Let g ( o ) = y .  Player 1, by playing a strategy a 1 such that <r1(s2) =  m 1r 
with r sufficiently large, can ensure that g{&1, c 2) =  z, where z\_sl t l ~\ =  

= y [^ 1?2], z [ s V ]  = z [ s 2/2] =  a2. Suppose that g(<r) =  x 1. 
By deviating, player 1 can get x 3. Since x 3/ >1(52) x 1, a  cannot be an  
equilibrium. By a similar argument, a  cannot be an equilibrium if



g ( a )  =  x 5, x 9, x 13, x 2, x 6, or x 14. In these cases, player 1 has a deviation 
w hich  will give him X  y X  9 X  ) X  j X  8, and x 16, respectively. In each case, 
th e  deviation is strictly preferred according to P l(s2). For all a e Z ,  
player 2, by playing a 2 such that d 2{ t v) =  m \  and <r2(t2) =  m)  with k  and / 
sufficiently large, can ensure that g ( a 1, d 2) =  x 1. This implies that if g(a)  e  
{ x 11, x 12, x 13, x 15, x 16}, then <r cannot be an equilibrium. Player 2 will 
deviate to get x 1 and will be strictly better off according to 7?2(/'). It 
a ls o  implies that if g(<r) =  x 3 or x 8, then a  cannot be an equilibrium. Once 
again  player 2 will deviate to get x 1 and will be strictly better off 
according to R 2(t2). This only leaves the case where g(a)  =  x 4. It is accept
ab le  for a  to be an equilibrium since F — {x 4}. This establishes that G 
implements F.

We now demonstrate that G is the unique (up to a permutation of rows 
an d  columns) mechanism which implements F. Let G =  ( M \  M 2, g)  be an 
arbitrary mechanism which implements F. Let E' denote the strategy space 
o f  player i in the G-game. There must exist such that g(ff*) =  x 4.
Assum e without loss of generality that a ^ ( s l ) =  m \ ,  a\ . (s2) =  m \ ,  <r\(t1) =  
m \ , and a \ { t 2) =  m\ .  The part of G we have constructed so far looks as 
follows:

m\  m \

m\  a 1

m \  a2 a x

Consider the strategy a e E ,  where 6 1{sl ) =  m \ , a l(s2) =  m \ ,  a 2( t l ) =  m\ ,  
and 6 2(t2) =  m\ .  Then, £(<?) =  x 5. Since x 5^ F, some player must have a 
profitable deviation from G. This player cannot be player 2, since x 5 is both 
J l 2( t l ) and R 2(t2) maximal. Therefore, player 1 must destroy a as a poten
tia l equilibrium. Moreover, since x 5 is ^ ( s 1) maximal, player 1 must have 
a  profitable deviation according to R l(s2). Suppose this deviation yields the 
allocation y, where y  =  x 4, x 7, x 11, or x 15. All these allocations share the 
common feature that in states s2t l and s2t2, they specify outcomes a2 and 
a i  respectively. This implies that player 1 must have a message, say m\,  
such that g{m\ ,  ml)  =  a2 and g(m \ , m\)  =  a N ow  consider a e E  such that 
5 l (sx) =  m \ ,  5 1(s2) =  m\ ,  a 2{ tl ) =  m \ ,  and &2(t2) =  m\ .  Then g(d)  =  x 1. 
Since x 7 is simultaneously i?1̂ 1), i?1̂ 2), R 2{t l ), and R 2(t2) maximal, & 
must be an equilibrium of G. However, x 1 $ F  and we have a contradiction. 
Therefore, the player 1 deviation which knocks out 6  must yield 
y e  {x3, x 8, x 12, x 16}. All these allocations specify a2 in states s2t l and s2t2\ 
hence, there must be a message for player 1, say m\,  such that g(m\ ,  rh\) =  
g ( m \ , m \ )  =  a2. N ow  G looks as follows:



_  2  -  2 m\ m 2

Wj fl2 a i 

m\ a2 a2

Consider the strategy o e Z ,  where <r1(s1) =  m 2, <j1(s2) =  m\,  a 2( t l ) =  m\,  
and o 2(t2) =  m\ .  Then g(o) =  x 8. Since x s $F,  some player must deviate 
from a. Since x 8 is both R ' ( s ]) and R 1(s2) maximal, it must be player 2 
who deviates. Let the allocation which player 2 gets by deviating be y. 
Since x 8 is R 2(t1) maximal, it must be the case that y P 2(t2) x g. There are 
two cases to consider. In the first, y e  {x 5, x 7, x 13, x 15}. In this case, there 
must exist a message for player 2, say m\,  such that g{m[,  m\) =  a2 and 
g{m\ ,  ml)  =  a l . But now, if player 1 plays a 1 and player 2 plays m \  when 
of type t 1 and m\  when of type t2, the outcome is x 7. We have argued 
earlier that such a strategy must be an equilibrium. We are led to a 
contradiction since x 7$F.  Therefore y e  { x 1, x 4, x 9, x 11}. This implies 
that there is a message for player 2, say m \,  such that g ( m \ , m \ )  = 
g ( m \ , m \ )  =  a l . Suppose that g{ ih \ , m\)  =  a2- Then the strategy where 
player 1 plays m[  and m \  when of types s 1 and s2, respectively, and player 
2 plays ml  and m , when of types t 1 and t2, respectively, gives rise to the 
allocation x 7. We know that this leads to a contradiction. Therefore, 
g( m J, m\)  =  a l . The part of G constructed so far is shown below.

m\ m\  m\  

m\ a v a x 

m x2 a2 aj

m\ a2 a2 a l

Now look at the strategy a e E, where < f =  m], a ' ( s 2) =  m\,  
=  m\,  and 6 2(t2) =  m\.  Then g(d) =  x 5. Duplicating earlier 

arguments, we deduce that there must exist a message for player 1, say m\,  
such that g { m \ , m \ )  =  g ( m \ , m l )  =  a2. Moreover, there must exist a 
message for player 2, say m\,  such that g(m\ ,  ml)  =  g{m\ ,  m 24) =  a l . Also, 
g {m \ , m\)  =  a , ; otherwise it would be possible to construct a strategy 
whose outcome is x 7. We claim that g( ml4, m\)  =  a2. \ i g { m \ ,  m\)  =  a u  then 
the strategy where player 1 plays m \  and m\  when of types .v1 and s2, 
respectively, and 2 plays ml  and m\  when of types and t2, respectively, 
yields the allocation x 7. After the messages m\  and m \  are added, G looks 
as follows:



m\ ml m\ m\

m[ a ! a i a t

- ?m\ a 2 a , a v
-  \ a 2 a2 a x
-  Am[ a2 a2 2 a y

Starting with the strategy 6 such that o'(s' ) =  m'3, d 1(s2) =  m\,  
d2(t1) =  m l ,  and <52( t2) =  m 2, we can repeat all the earlier arguments 
to infer that there must exist messages m\  and m 2s for players 1 and 2, 
respectively, such that g { m \ , m 2) =  a2 for 1 = 1 , 2 ,  3, 4, g (m lk, m \ )  =  a l for 
k =  1, 2, 3, 4, and g(m\ ,  m 2s) =  a l . In fact, it is clear that this argument can 
be repeated ad infinitum so that G must contain an infinite number of 
messages for both players. Inspection confirms that G =  G. This proves the 
proposition. |

Why does Bayesian implementation require infinite mechanisms in finite 
environments? More specifically, why is it not sufficient to restrict attention 
to modulo games? Consider the example presented in this section and the 
mechanism G which implements F — { x 4}. We can think of G as a matrix 
whose entries are elements of A.  The only allocation which can be sup
ported by strategies in the G-game are those which form the vertices of a 
rectangle in the matrix. This is, of course, due to the definition of a player’s 
strategy in an incomplete information game— the message sent by a player 
depends only on his own type. Let X*( G)  be the set of allocations which 
can be supported by strategies in G. Observe that x 1 $X*{G) .  Now let G ’ 
be another mechanism which implements F  and let X *{G ') be defined in 
the same manner as X*{G).  Since x 1 is maximal for all individuals of all 
types, it must be the case that x 7 $ X*(G').  However, if G ’ incorporates the 
modulo game (specifically, we mean that G' is a mechanism of the type 
used in Jackson [5] ) ,  then it is impossible to ensure that x 1 $ X * {G ’). In 
general, modulo game constructions do offer the players the largest set of 
deviations from strategies which are not equilibria. However, in doing so, 
they may enlarge the set of allocations which can be supported by 
strategies. If any of these newly created allocations are maximal for players 
of all types (as in the case of x 1), then the mechanism may pick up non- 
optimal equilibria.

The preceding discussion suggests that the necessity of infinite 
mechanisms does not depend on a two person assumption.

We confirm this by means of a simple modification of the example. Sup
pose there is a third player, player 3, who is either of type r t or type r2. 
If she is of type r x, player 1 and 2 have the same utility functions as before,



while if she is of type r2, all outcomes have a utility of zero. Player 3 gets 
a constant utility (say zero) for all outcomes in all states. Formally, the 
utility functions ul, u2, and u3 are given as follows: For all i, j ,  k , l =  1, 2,

u \ aj, (skt'rm)) =  u'(aj, (skt‘)) if m =  1 

=  0 if m =  2;

For all j ,  k, l , m  =  1, 2,

u3(aj, (sktlrm)) =  0.

Assume further that player types are distributed independently and that for 
all players, each type is equally likely.

We now represented an allocation by a pair such as (x, y),  where x  and 
y  are the 4 tuples of outcomes in states where player 3 is o f types r x and 
r2, respectively. Let ^ ( s 1), R 1(s2), R 2^ 1), etc., denote the orderings 
induced on allocations. Observe that for players 1 and 2, differences in 
utilities associated with outcomes arise only when player 3 is of type r,. 
Thus, for all pairs of allocations (x, y ) and (w, z), (x, y )  ^ 1(j*)(w, z )  iff 
x R i (sk)w, k =  1 ,2  and (x, y)  R 2(tl)(w, z)  iff x R 2(t‘) w , l =  1,2. Of course, 
R 3{rl ) =  R 2(r2) is the trivial ordering which ranks all pairs of allocations as 
indifferent.

Let F =  { (x4, x 4)}. We claim that the mechanism G o f Proposition 1 is 
the unique mechanism which implements F. Thus, player 3’s message set 
contains only one element, while players 1 and 2 have an infinite number 
of messages. We omit a proof of this claim which hinges on the relationship 
between the R  and R  orderings and the arguments used in Proposition 3.1. 
Let us briefly consider the argument to establish the uniqueness of G. 
Starting from the revelation game, observe that players 1 and 2 have a 
deception which gives rise to the allocation (x 5, x 5). Since player 3 is 
always indifferent, either player 1 or 2 must have a deviation to upset this 
potential equilibrium. The structure of preferences is such that this can 
occur if and only if one of these players has a successful deviation against 
x 5 in the original G-game. In addition, these new messages cannot be 
permitted to allow supportable allocations of the type (x7, •). Similar 
arguments can be made to establish an exact correspondence between 
this construction and the mechanism G. This allows us to deduce the 
uniqueness of G.

In this three player example, it suffices to give player 3 a single message. 
However, in spite of her trivial preferences, player 3 is not a “dummy” 
player because the utility functions of the other players depend on her type. 
It is possible to construct examples with more than two players when all



p la y ers have infinite message sets? The logic of our examples leads us to 
b e liev e  that it is possible to do so. We do not attempt such constructions 
b ecau se  of the formidable computational difficulties involved.
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