Random theorems in topology

by

H. Sarbadhikari and S. M. Srivastava (Calcutta)

Abstract. Let E and X be Polish spaces and A and B be two disjoint analytic subsets of $E \times X$ with closed vertical sections. We prove the following results.

- (i) There is a Borel map $f: E \times X \to [0, 1]$ such that $f \equiv 0$ on $A, f \equiv 1$ on B and for each $e \in E$, the map $x \to f(e, x)$ is continuous.
- (ii) If Z is a retract of finite or countable product of intervals and if $f: A \to Z$ is a Borel map such that for every $e \in E$, the map $x \to f(e, x)$ is continuous then there is a Borel measurable extension $F: E \times X \to Z$ of f such that $x \to F(e, x)$ is continuous for each $e \in E$.
- (iii) If A is Borel then (ii) holds for all convex subsets Z of a second countable affine space of type m.
- 1. Notation. For notation and basic results in Descriptive Set Theory we follow Moschovakis [11]. Throughout X is a Polish space with a bounded metric d. For $x \in X$ and positive real number r, $S_r(x)$ (resp. $\overline{S}_r(x)$) denotes the open (resp. closed) ball of X with centre x and radius r. Let E be an arbitrary set and E a family of subsets of E. A multifunction $F: E \to X$ is a map with domain E and values non-empty, closed subsets of X. We say that the multifunction $F: E \to X$ is E-measurable if

$$F^{-1}(U) = \{e \in E \colon F(e) \cap U \neq \emptyset\}$$

belongs to \mathscr{E} for every open set U in X. The set

$$\{(e, x) \in E \times X \colon x \in F(e)\}$$

will be called the Graph of F and will be denoted by G(F). We consider a point map also as a multifunction.

Let Z be a topological space and $f: G(F) \rightarrow Z$ a point map. We call f a G-Carathéodory map if

- (i) for each $e \in E$, $x \rightarrow f(e, x)$ is continuous and
- (ii) for every \mathscr{E} -measurable selector $s: E \to X$ of E, the map $e \to f(e, s(e))$ is \mathscr{E} -measurable.

Let $\mathscr E$ be a σ -field and $G \subseteq E \times X$. Then a map $f: G \to Z$ will be called $\mathscr E$ -Cara-théodory or simply Carathéodory if for each $e \in E$, the map $x \to f(e, x)$ defined on the action G(e) of G is continuous and G is $\mathscr E \times \mathscr B_X | G$ -measurable, where $\mathscr B_X$ is the Borel G-field of G and $G \times \mathscr B_X$ is the product G-field.

Remark. If Z is a metrizable space and (E, \mathscr{E}) a measurable space, then for ever \mathscr{E} -measurable multifunction $F: E \to X$, each G-Carathéodory map $f: G(F) \to Z$ Carathéodory.

Proof. By [9], fix a sequence $\{s_i\}$ of \mathscr{E} -measurable selectors of F such that for ever $e \in E$, $\{s_i(e)\}$ is dense in F(e). Let C be a closed set in Z and for each positive integer n, le

$$C_n = \{z \in \mathbb{Z} : \operatorname{dist}(z', z) < 1/n \text{ for some } z' \in \mathbb{C}\}.$$

Then for every $(e, x) \in G(F)$,

$$f(e, x) \in C \iff \forall n \exists i \ (\operatorname{dist}(x, s_i(e)) < 1/n \ \text{and} \ f(e, s_i(e)) \in C_n).$$

The rest of our notation is standard. If E is a metrizable space then unless otherwise mentioned, \mathcal{E} will denote its Borel σ -field.

For concepts in General Topology we follow Dugundji [6].

2. Introduction. Motivated by results proved in [1, 4, 7] in [13] we proved, amonothers, the following two results.

THEOREM 1. Let (E, \mathscr{E}) be a measurable space, $F: E \to X$ an \mathscr{E} -measurable multifuntion and $f: G(F) \to \mathbb{R}$ a Carathéodory map. Then there is a Carathéodory map $g: E \times X \to \mathbb{R}$ which extends f and which satisfies

$$g(e, X) \subseteq \operatorname{co}(f(\{e\} \times F(e))), e \in E,$$

where co(A) denotes the convex hull of A.

THEOREM 2. Let E be a second countable metrizable space, Z a locally convetopological vector space, $F: E \rightarrow X$ a measurable multifunction and $f: G(F) \rightarrow A$ a G-Carathéodory map. Then also the conclusions of Theorem 1 hold.

In this paper we give generalizations of these two theorems when E is a Polish space. While proving Theorem 1 we needed some random analogues of the Urysohn Theorem. Here we study this in detail and also show that our random Urysohn theorems as sharp. At the end we prove a random analogue of Lusin's theorem and raise seven open problems.

3. Random Urysohn theorems.

THEOREM 3. If (E, \mathscr{E}) is a measurable space and $F_0, F_1: E \to X$ measurable multifultions with $G(F_0) \cap G(F_1) = \emptyset$ then there is a Carathéodory map $f: E \times X \to [0, 1]$ sut that $f \equiv 0$ on $G(F_0)$ and $f \equiv 1$ on $G(F_1)$.

Proof. By [9], we get sequences $\{f_n^0\}$ and $\{f_n^1\}$ of measurable maps from E in X such that for every $e \in E$, $\{f_n^e(e)\}$ is dense in $F_e(e)$ where $\varepsilon = 0$ or 1. Now we define

$$f(e, x) = \frac{\operatorname{dist}(x, F_0(e))}{\operatorname{dist}(x, F_0(e)) + \operatorname{dist}(x, F_1(e))}, \quad (e, x) \in E \times X$$

$$= \frac{\inf_{n} d(x, f_n^0(e))}{\inf_{n} d(x, f_n^0(e)) + \inf_{n} d(x, f_n^1(e))}.$$

The map f has the desired properties.

C,

We give an example to show that Theorem 3 cannot be extended to the case $\mathscr{E} = \mathscr{L}_{\sigma}$ where \mathscr{L} is a field.

EXAMPLE 1. Let $E = \omega^{\omega}$ and $\mathscr{E} = \Sigma_{2}^{0}$. Let A_{0} and A_{1} be two disjoint Σ_{2}^{0} -sets in the space of irrationals ω^{ω} such that there do not exist disjoint Π_{2}^{0} -sets C_{0} and C_{1} satisfying $A_{0} \subseteq C_{0}$ and $A_{1} \subseteq C_{1}$ [11, p. 205]. Define F_{0} , F_{1} : $\omega^{\omega} \to [0, 1]$ by

$$\begin{split} F_0(\alpha) &= [0, \, 3/4] & \text{if } \alpha \in A_0, \\ F_0(\alpha) &= \{0\} & \text{if } \alpha \in \omega^\omega \backslash A_0, \\ F_1(\alpha) &= [1/4, \, 1] & \text{if } \alpha \in A_1, \\ F_1(\alpha) &= \{1\} & \text{if } \alpha \in \omega^\omega \backslash A_1. \end{split}$$

Then F_0 and F_1 are two Σ_2^0 -measurable, compact-valued multifunctions with $G(F_0) \cap G(F_1) = \emptyset$. If possible suppose there is a map $f: \omega^{\omega} \times [0, 1] \to [0, 1]$ such that $f \equiv 0$ on $G(F_0)$ and $f \equiv 1$ on $G(F_1)$ and such that for every $x \in [0, 1]$, $e \to f(e, x)$ is Σ_2^0 -measurable. Now consider

$$C_0 = \{ \alpha \in \omega^{\omega} : f(\alpha, 1/2) = 0 \}, \quad C_1 = \{ \alpha \in \omega^{\omega} : f(\alpha, 1/2) = 1 \}.$$

These are disjoint Π_2^0 -sets such that $A_i \subseteq C_i$, i = 0, 1. This is a contradiction.

For semi-continuous multifunctions we have

LEMMA. Let E be a metrizable space, X a Polish space and F: $E \rightarrow X$ a closed valued upper or lower semi-continuous multifunction. Then for each $x \in X$ the map

$$e \rightarrow \operatorname{dist}(x, F(e))$$

is Σ_2^0 -measurable.

Proof. Fix $x \in X$, $e \in E$ and reals a < b. We have

$$\operatorname{dist}(x, F(e)) < b$$

(i)
$$\Leftrightarrow S_b(x) \cap F(e) \neq \emptyset$$

(ii)
$$\Leftrightarrow (\exists m) \ (\bar{S}_{b-1/m}(x) \cap F(e) \neq \emptyset),$$

$$\operatorname{dist}(x,F(e))>a$$

(iii)
$$\Leftrightarrow (\exists m) \ (S_{a+1/m}(x) \cap F(e) = \emptyset)$$

(iv)
$$\Leftrightarrow (\exists m) \ (\overline{S}_{n+1/m}(x) \cap F(e) = \emptyset).$$

quivalences (i) and (iii) prove the lemma when F is lower semi-continuous. For upper mi-continuous F we use (ii) and (iv).

We now have

THEOREM 4. Let E be a metrizable space and F_0 , F_1 : $E \to X$ be lower or upper mi-continuous multifunctions such that $F_0(e) \cap F_1(e) = \emptyset$ for every $e \in E$. Then there is map $f: E \times X \to [0, 1]$ such that

- (i) $f \equiv 0$ on F_0 , and $f \equiv 1$ on F_1 ,
- (ii) $x \rightarrow f(e, x)$ is continuous for every $e \in E$, and
- (iii) $e \rightarrow f(e, x)$ is Σ_2^0 -measurable, for each $x \in X$.

Before we proceed to prove our next theorem we present an example.

EXAMPLE 2. Let A be a Σ_1^1 but non-Borel subset of [0, 1]. Fix a metric ϱ on ω^{ω} at let α , β be two distinct points of ω^{ω} . Let U be a non-empty clopen subset of $S_{(1/2)\varrho(\alpha,\beta)}(t)$. Let B be a Borel subset of $[0, 1] \times U$ with closed sections such that A = proj(B). L

$$F = B \cup (\lceil 0, 1 \rceil \times \{\beta\}).$$

Then F is a Borel subset of $[0, 1] \times \omega^{\omega}$ with non-empty closed sections. If possil suppose the map $e \to \operatorname{dist}(\alpha, F(e))$ defined on [0, 1] is Borel. Then, as

$$e \in A \iff \operatorname{dist}(\alpha, F(e)) \leqslant \frac{1}{2}\varrho(\alpha, \beta),$$

A is Borel. Therefore, the map $e \rightarrow \text{dist}(\alpha, F(e))$ is not Borel.

The above example shows that the simple-minded arguments contained in 1 proofs of Theorems 3 and 4 do not work for our main random Urysohn theorementioned in the abstract. Instead we shall use the following three results.

THEOREM A (Saint-Raymond, [12]). Let E and X be two Polish spaces and A and E two Σ_1^1 -subsets of $E \times X$ such that for every $e \in E$, $\overline{A(e)} \cap B(e) = \emptyset$. Then there is a Bo set C in $E \times X$ such that for every $e \in E$, C(e) is closed and $A \subseteq C \subseteq (E \times X) \setminus B$.

THEOREM B (Dellacherie, [5]). If E and X are Polish spaces and $B \subseteq E \times X$ is a Be set with B(e) open for every $e \in E$ then

$$B = \bigcup_{n \in \omega} (B_n \times U_n)$$

where B_n is Borel in E and U_n open in X.

THEOREM C (Miller, [10]). Let E be a second countable metrizable space. Denote \mathcal{F} the topology on E. Then given any sequence $\{B_n\}$ of Borel sets in E there is a secucountable metrizable topology \mathcal{F}' on E such that

- (i) each of $B_n \in \mathcal{F}'$, and
- (ii) the σ -fields generated by $\mathcal F$ and $\mathcal F'$ are the same.

Actually this is a simpler case of Miller's theorem and a proof of it is also presen in ([13, Theorem 5]).

From now on E will be a Polish space.

THEOREM 5. Let F_0 and F_1 be two disjoint Σ_1^1 sets in $E \times X$ such that for each $e \in E$, sections $F_0(e)$ and $F_1(e)$ are closed. Then there is a Carathéodory map $f \colon E \times X \to [0, S]$ such that $f \equiv 0$ on F_0 and $f \equiv 1$ on F_1 .

Proof. By applying Theorem A twice, we get two disjoint Borel sets C_0 and C_1 $E \times X$ with $C_0(e)$ and $C_1(e)$ closed, $F_0 \subseteq C_0$ and $F_1 \subseteq C_1$. By Theorem B, we wr

$$(E \times X) \setminus C_i = \bigcup_{n \in \omega} (B_n^i \times U_n^i), \quad i = 0 \text{ or } 1$$

with B_n^i Borel in E and U_n^i open in X. Denote the topology on E by \mathcal{F} . By Theorem let \mathcal{F}' be a second countable metrizable topology on E such that

- (i) $B_n^i \in \mathcal{F}'$, $n \in \omega$, i = 0 or 1, and
- (ii) the σ -fields generated by \mathcal{F} and \mathcal{F}' are the same.

Now C_0 and C_1 are disjoint closed sets in $E \times X$ when E is equipped with \mathscr{F}' and X has its own Polish topology, say \mathscr{F}'' . By Urysohn's theorem there is a $\mathscr{F}' \times \mathscr{F}''$ -continuous map $f \colon E \times X \to [0, 1]$ such that $f \equiv 0$ on C_0 and $f \equiv 1$ on C_1 . Since the σ -fields generated by \mathscr{F} and \mathscr{F}' are the same, this f has all the desired properties.

Our next example shows that Theorem 5 does not hold if F_0 , F_1 are Π_1^1 .

EXAMPLE 3. In Example 1 take A_0 and A_1 to be two disjoint Π_1^1 sets such that there do not exist disjoint Borel sets C_0 and C_1 with $A_0 \subseteq C_0$ and $A_1 \subseteq C_1$. Define F_0 and F_1 exactly the same way. The same arguments show that there does not exist a Carabéodory map $f: E \times X \to [0, 1]$ such that $f \equiv 0$ on F_0 and $f \equiv 1$ on F_1 .

Remark 1. It is worth noting that the following generalization of Theorem 5 also olds.

THEOREM 6. Let E and X be Polish spaces, F_0 , F_1 be two disjoint Σ_1^1 sets in $E \times X$ with that for all $e \in E$, $F_0(e)$ and $F_1(e)$ are Π_{ξ}^0 . Then there is a Borel map $E \times X \to [0, 1]$ such that

- (i) $f \equiv 0$ on F_0 , $f \equiv 1$ on F_1 and
- (ii) for every $e \in E$, $x \to f(e, x)$ is Σ_{ξ}^0 -measurable.

Proof. For $\xi=1$ this is Theorem 5. Let $1<\xi<\omega_1$. Embed X in a recursively presented Polish space H, say the Hilbert cube. We now invoke a result of R. Barua ([2]) (which, in fact, is a simple extension of a result of A. Louveau [8]) and get a Borel set B in $E\times X$ such that

- (i) $F_1 \subseteq B \subseteq E \times X \setminus F_0$, and
- (ii) B(e) is Δ_{ξ}^{0} for every $e \in E$.

We take $f = I_B$, the indicator function of B.

Remark 2. The argument above also works when $\xi = 1$ and X a zero-dimensional Polish space. In this case embed X in and as a closed subspace of ω^{ω} .

4. Random extension theorems. Using the ideas contained in the proof of Theorem 5 we prove

THEOREM 7. Let A be a Borel set in $E \times X$ such that the sections A(e) are closed for every $e \in E$. Suppose Z is a second countable convex subspace of an affine space of type m and $f: A \rightarrow Z$ a Carathéodory map. Then there is a Carathéodory map $g: E \times X \rightarrow Z$ which extends f.

Proof. Fix a countable base W_1, W_2, \dots of Z. Let $A_0 = A$ and

$$A_n = A \setminus f^{-1}(W_n), \quad n = 1, 2, ...$$

By the arguments contained in the proof of Theorem 5 we get a finer second countable metrizable topology \mathcal{F}' such that each of A_i is closed when E is equipped with \mathcal{F}' and the Borel σ -field of E remains the same. This makes A closed and f continuous when E has the new topology. By the extension theorem of Dugundji ([6], p. 188) there is a continuous extension $g: E \times X \to Z$ of f. This g is a Carathéodory map when E has the original topology.

THEOREM 8. Let A be a Σ_1^1 set in $E \times X$ and Z a retract of a finite or countable product of intervals in R. Let $f: A \rightarrow Z$ be a Borel measurable Carathéodory map. Then there is a Carathéodory map $g: E \times X \rightarrow Z$ which extends f.

Proof. Case 1. Z = [-1, 1].

We define a sequence of Carathéodory maps g_i : $E \times X \rightarrow [-1, 1], i = 0, 1, ...$ such that for every i

- (i) $|q_i(e, x)| \leq \frac{1}{3} \cdot (\frac{2}{3})^i$, for all (e, x), and
- (ii) $|f(e, x) g_0(e, x) \dots g_i(e, x)| \le (\frac{2}{3})^i$, for all $(e, x) \in A$.

To see that such a sequence can be defined we proceed inductively. Let

$$F_0^0 = \{(e, x) \in A : f(e, x) \le -\frac{1}{3}\}$$
 and $F_1^0 = \{(e, x) \in A : f(e, x) \ge \frac{1}{3}\}$

By Theorem 5 we get a Carathéodory g_0 : $E \times X \rightarrow [-1/3, 1/3]$ having the require properties. Having defined g_0, g_1, \ldots, g_i satisfying (i)—(iii), we let

$$\begin{split} F_0^{i+1} &= \big\{ (e, \, x) \in A \colon f(e, \, x) - g_0(e, \, x) - \ldots - g_i(e, \, x) \leqslant -\frac{1}{3} \cdot (\frac{2}{3})^i \big\}, \\ F_1^{i+1} &= \big\{ (e, \, x) \in A \colon f(e, \, x) - g_0(e, \, x) - \ldots - g_i(e, \, x) \geqslant \frac{1}{3} \cdot (\frac{2}{3})^i \big\}. \end{split}$$

By Theorem 5, we get a Carathéodory map g_{i+1} : $E \times X \to [-\frac{1}{3} \cdot (\frac{2}{3})^i, \frac{1}{3} \cdot (\frac{2}{3})^i]$ such the $g_{i+1} = -\frac{1}{3} \cdot (\frac{2}{3})^i$ on F_0^{i+1} and is $= \frac{1}{3} \cdot (\frac{2}{3})^i$ on F_1^{i+1} .

We define

$$g(e, x) = \lim_{i \to \infty} g_i(e, x), \quad (e, x) \in E \times X.$$

Case 2. Z = (-1, 1)

Using case 1, we get a Carathéodory map h: $E \times X \rightarrow [-1, 1]$ which extends f.

$$B = \{(e, x) \in E \times X : |h(e, x)| = 1\}.$$

Then A and B are two disjoint Σ_1^1 -sets with closed sections. By Theorem 5, $w^{e^{-g^2}}$ a Carathéodory map

$$u: E \times X \rightarrow [0, 1]$$

such that $u \equiv 1$ on A and $\equiv 0$ on B. Put $g = u \cdot h$.

Remaining cases. It is now clear that the result is true for all intervals. When Z^{i} a finite or countable product of intervals we extend each of the coordinate function Finally, let Z' be a finite or countable product of intervals and Z a retract of Z'. If a retraction $r: Z' \to Z$. If $f: A \to Z$ is a given Carathéodory map, first get a C^{ar} théodory map $h: E \times X \to Z'$ which extends f and then take $g = r \circ h$. This complete the proof.

In Theorems 1 and 2 we get extensions satisfying

$$g(e, X) \subseteq \operatorname{co}(f(\{e\} \times F(e))), \quad e \in E.$$

our next example shows that we cannot have this in Theorems 7 and 8 ev. $\sqrt{2}$

9

EXAMPLE 4. Let A_0 and A_1 be two Σ_1^1 -sets in [0, 1] such that $A_0 \cup A_1 = [0, 1]$ but there does not exist a Borel set B such that $B \subseteq A_0$ and $B^c \subseteq A_1$. Let I_0 be the space of all irrationals contained in [0, 1/3] whereas I_1 is the space of all those irrationals which are contained in [2/3, 1]. Let C_i be a Borel set in $[0, 1] \times I_i$ whose sections are closed in I_i and such that $\operatorname{Proj}(C_i) = A_i$, i = 0 or 1. Let $C = C_0 \cup C_1$. Let X be the set of all irrationals in [0, 1]. Then we have a Borel set in $[0, 1] \times X$ whose sections are closed in X. Define $f: C \to R$ by

$$f(e, x) = x$$
, $(e, x) \in C$.

If possible suppose there is a Carathéodory map $g: [0, 1] \times X \to \mathbb{R}$ which extends f and which satisfies

$$g(e, X) \subseteq \operatorname{co}(f(\{e\} \times C(e))), \quad e \in [0, 1].$$

Let

$$B = \{e \in [0, 1]: g(e, 1/\sqrt{2}) \le 1/2\}.$$

Then B is Borel, $B \subseteq A_0$ and $B^c \subseteq A_1$. Contradiction.

5. A random Lusin theorem.

THEOREM 9. Let $f: E \times X \to [0, 1]$ be a Borel map. Let $\mu(e, B)$ be a transition function ${}^{on}E \times \mathcal{B}_X$. Then for every $\varepsilon > 0$ there exists a Carathéodory map $g: E \times X \to [0, 1]$ such that for every $e \in E$

$$\mu(e, \{x \in X: g(e, x) \neq f(e, x)\}) < \varepsilon.$$

 $P_{r_{00}}$ Define a sequence $\{E_n\}$ of subsets of $E \times X$ as follows:

$$E_n = \{ (e, x) \in E \times X : \frac{2k-1}{2^n} \le f(e, x) < \frac{2k}{2^n} \text{ for some }$$

$$k = 1, 2, ..., 2^{n-1}$$
 or $f(e, x) = 1$.

Then $f = \sum_{n=1}^{\infty} (1/2^n) I_{E_n}$.

By [3], get Borel sets F_n and U_n in $E \times X$ such that

(i) $F_n \subseteq E_n \subseteq U_n$, n = 1, 2, ...;

(ii) $\mu(e, F_n(e) \setminus U_n(e)) < \varepsilon/2^n$ for n = 1, 2, ... and $e \in E$; and

(iii) $F_n(e)$ and $X \setminus U_n(e)$ are compact for each n and e.

 N_{0W} , $e \to F_n(e)$ and $e \to X \setminus U_n(e)$ are measurable, closed-valued multifunctions for each $e \to K$. Hence by Theorem 3, there exist Carathéodory maps $g_n : E \times X \to [0, 1]$ such that

$$g_n(e, x) = \begin{cases} 0 & \text{if } (e, x) \in X \backslash U_n, \\ 1 & \text{if } (e, x) \in F_n. \end{cases}$$

Put
$$\mathfrak{F} = \sum_{n=1}^{\infty} (1/2^n) g_n(e, x).$$

6. Open problems.

PROBLEM 1. In Theorem 5 suppose we take F_0 , F_1 to be Borel but E an arbitrar second countable metrizable or even a Π_1^1 -set. Do the conclusions of Theorem 5 hold it this case?

PROBLEM 2. Does Theorem 7 hold for a Σ_1^1 -set A? We do not know the answer even when Z is a convex subset of \mathbb{R}^2 .

PROBLEM 3. Can Theorem 8 be extended for Π_1^1 -sets A? We do not know the answe even when Z = R.

A question related to Problem 3 is the following:

PROBLEM 4. Let C_0 and C_1 be two disjoint Π_1^1 -sets in $E \times X$ such that for every $e \in I$ the sections $C_0(e)$ and $C_1(e)$ are closed. Further assume that there is a Borel set B containing C_0 but disjoint from C_1 . Do there exist disjoint Borel sets B_0 and B_1 suct that $C_0 \subseteq B_0$, $C_1 \subseteq B_1$ and for every $e \in E$, the sections $B_0(e)$ and $B_1(e)$ are closed in X

References

- [1] G. F. Andrus and L. Brown, Measurable extension theorems, J. Math. Anal. Appl. 9 (1983), 454-462.
- [2] R. Barua, Structure of hyperarithmetical sets of ambiguous Borel classes, preprint.
- [3] D. Black well and C. Ryll-Nardzewski, Non-existence of everywhere proper conditiona distributions, Ann. Statist. 34 (1963), 223-225.
- [4] F. S. de Blasi and J. Myjak, On the random Dugundji extension theorem, J. Math. Anal Appl. 128 (1987), 305-311.
- [5] C. Dellacherie, Ensembles Analytiques: Théorèmes de séparation et applications, Lecture Notes in Math. 465, Springer-Verlag, Berlin-Heildelberg.
- [6] J. Dugundji, Topology, Prentice Hall of India, New Delhi 1975.
- [7] O. Hanš, Measurability of extensions of continuous random transformations, Ann. Statist. 3(1959), 1152-1157.
- [8] A. Louveau, A separation theorem for Σ_1^1 sets, Trans. Amer. Math. Soc. 260 (1980) 363-378.
- [9] A. Maitra and B. V. Rao, Generalizations of Castaing's theorem on selectors, Colloq. Math 42 (1979), 295-300.
- [10] D. E. Miller, Borel selectors for separated quotients, Pacific J. Math. 91 (1980), 187-198.
- [11] Y. N. Moschovakis, Descriptive Set Theory, North-Holland Publishing Company, Amsterdam-New York-Oxford.
- [12] J. Saint-Raymond, Boréliens à coupe K_{σ} , Bull. Soc. Math. France 104 (1976), 389-400.
- [13] H. Sarbadhikari and S. M. Srivastava, Random Tietze and Dugundji extension theorems, J. Math. Anal. Appl., submitted.

STAT-MATH DIVISION INDIAN STATISTICAL INSTITUTE 203 B. T. Road Calcutta 700 035 India

Received 7 November 1988; in revised form 7 June 1989

€