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Random theorems in topology
by

H. Sarbadhikari and S. M. Srivastava (Calcutta)

Abstract. Let E and X be Polish spaces and A and B be two disjoint analytic subsets of E x X
with closed vertical sections. We prove the following results.

(i) There is a Borel map f: Ex X —[0, 1] such that f =0 on 4, f = 1 on B and for each
eckE, the map x—f (e, x) is continuous.

(i If Z is a retract of finite 6r countable product of intervals and if f: A4 — Z is a Borel map
such that for every ecE, the map x—f (e, x) is continuous then there is a Borel measurable
extension F: Ex X —Z of f such that x— F(e, x) is continuous for each eeE.

(iii) If A4 is Borel then (ii) holds for all convex subsets Z of a second countable affine space of
type m.

L. Notation. For notation and basic results in Descriptive Set Theory we follow
Moschovakis [11]. Throughout X is a Polish space with a bounded metric d. For xe X
and positive real number r, S, (x) (resp. S,(x)) denotes the open (resp. closed) ball of
X with centre x and radius r. Let E be an arbitrary set and & a family of subsets of E.
Amultifunction F: E— X is a map with domain E and values non-empty, closed subsets
of X. We say that the multifunction F: E— X is &-measurable if

F Y (U)={ecE: F(eynU # 3}

belongs to & for every open set U in X. The set

{e, x)e Ex X: xeF(e)}

will be called the Graph of F and will be denoted by G (F). We consider a point map also
& a multifunction. _

Let Z be a topological space and f: G(F)—Z a point map. We call f a G-Cara-
théodory map if

(i) for each ecE, x—f (e, x) is continuous and ’

(i) for every &-measurable selector s: E— X of E, the map e—f (e, s(e)) is £-measu-
Table.

Let & be a o-ficld and G < Ex X. Then a map f: G—Z will be called &-Cara-
théodory or simply Carathéodory if for each e€ E, the map x—f (e, x) deﬁned on the
tction G (e) of G is continuous and [ is & x #y|G-measurable, where %y is the Borel

o-field pf X and & x &, is the product o-field. “

’\—_
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Remark. If Z is a metrizable space ‘apd (E, &%) a measufabfé’-space, then for ever
&-measurable multifunction "E : E— X, cach G-Carathéodory™ map f: G(F)—»Z i
Carathéodory. ,

Proof. By [9], fix a sequence {s;} of §-measurable selectors of F such that for ever
ecE, {s;(e)} is dense in F(e). Let C be a closed set in Z and for each positive integer n, I

C,={zeZ: dist(z,z) < 1l/n for some ZeC}.
Then for every (e, x}e G (F),
fle,x)eC < Vn3i (dist(x, 5;(e)) < 1/n and fe, s;(¢))eC,).

The rest of our notation is standard. If E is a metrizable space then unless otherwis
mentioned, & will denote its Borel o-field.
For concepts in General Topology we follow Dugundji [6].

2. Introduction. Motivated by results proved in [1, 4, 7] in [13] we proved, amon
others, the following two results.

THEOREM 1. Let (E, &) be a measurable space, F: E— X an &-measurable multifun
tion and f. G(F)>R a Carathéodory map. Then there is a Carathéodory
g: Ex X >R which extends f and which satisfies

gle, X) < co(f({e}xF(e)), eeE,

where co(A) denotes the convex hull of A.

THEOREM 2. Let E be a second countable metrizable space, Z a locally conuv
topological vector space, F: E—~X a measurable multifunction and f. G(F)-
a G-Carathéodory map. Then also the conclusions of Theorem 1 hold.

In this paper we give generalizations of these two theorems when E is a Polish spat.
While proving Theorem 1 we needed some random analogues of the Urysohn Theore
Here we study this in detail and also show that our random Urysohn theorems

sharp. At the end we prove a random analogue of Lusin’s theorem and raise seve
open problems.

3. Random Urysohn theorems.

‘ THEOREM 3. If (E, &) is a measurable space and F,, F,: E — X measurable multifu
tions with G(Fo) "G (F,) = O then there is a Carathéodory map f: Ex X —[0, 1] s
that f=0 on G(Fo) and f =1 on G(F,).

Proof. By [9], we get sequences {£} and {f,!} of measurable maps from E is
X such that for every ec E, {f, (¢)} is dense in F.(e) where ¢ = 0 or 1. Now we defi

flex) = dist(x, Fy(e))
dist (x, Fq(e)+dist(x, F, (e))’

mf d(x, f2 ()
o mfd(x £ (e)+mfd(x Sy
The map f has the desired properties.

(e, )eExX
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We give an example to show that Theorem 3 cannot be extended to the case § = &,
here &% is a field.

EXAMPLE 1. Let E = 0" and & = X9. Let 4, and A, be two disjoint £9-sets in the
bpace of irrationals w® such that there do not exist dlSjOmt IY-sets C, and C, sausfymg
fio Co and 4, = C, [11, p. 205]. Define F,, F,: w® [0, 1] by

Fo(a) =[0,3/4] if acA,,

Fo(o) =10} if aew®\A4,,
Fi@)=[1/4,1] if acd,,
Fi(@=1{1} if eew™A,.

Then F o and F, are two ZX$-measurable, compact-valued multifunctions with
G(Fg) n G(F,) = @. If possible suppose there is a map f: »®x[0, 11— [0, 1] such that
f=0o0n G(Fy) and f =1 on G(F,) and such that for every xe[0, 1], e— f (e, x) is
I9-measurable. Now consider
Co={aew”: f(a,1/2)=0}, C,={acw”: f(o, 1/2)=1}.

These are disjoint IIS-sets such that 4, < C;, i =0, 1. This is a contradiction.

For semi-continuous multifunctions we have

LeMMA. Let E be a metrizable space, X a Polish space and F: E— X a closed valued
upper or lower semi-continuous multifunction. Then for each xe X the map

e~ dist(x, F(e))

s X9-measurable.

Proof Fix xe X, ecE and reals a < b. We have

| dist(x, F(e)) < b

(i) <S8, (x)NnFle) # D
(i) «@m) (5,- m(XINF(e) # D),
’ dist(x,F (¢)) > a
(ii) <> (@m) (Sys (DI NF (@) =
(iv) <>(@m) Syr1m(X)F (@) = 9).

:quivalences (i) and (iii) prove the lemma when F is lower semi-continuous. For upper
tmi-continuous F we use (ii) and (iv).

We now have

THeOREM 4. Let E be a metrizable space and F, F,: E»X be lower or upper
'mi-continuous multifunctions such that Fo(e)nF,(e) = O for every e€ E. Then there is
map [: ExX—=1[0, 1] such that

) f=0on Fy, and f=1o0nF,,

(ii) S (e, x) is continuous for every ecE, and

(iil) e—f(e, x) is X3-measurable, for each xeX.
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Before we proceed to prove our next theorem we present an example.

EXAMPLE 2. Let A be a 2] but non-Borel subset of [0, 1]. Fix a metric ¢ on 0” a1
let a, B be two distinct points of w®. Let U be a non-empty clopen subset of Sy/2)pe.p
Let B be a Borel subset of [0, 1]x U with closed sections such that A = proj(B). L

F = BU([0, 11 {B}).

Then F is a Borel subset of [0, 1]xw® with non-empty closed sections. If possit
suppose the map e-»dist (o, F(e)) defined on [0, 1] is Borel. Then, as

ecA < dist(x, F(e) < 3o(a, B),

A is Borel. Therefore, the map e—dist(z, F(e)) is not Borel.

The above example shows that the simple-minded arguments contained in |
proofs of Theorems 3 and 4 do not work for our main random Urysohn theor
mentioned in the abstract. Instead we shall use the following three results.

THEOREM A (Saint-Raymond, [12]). Let E and X be two Polish spaces and A and B
two Zi-subsets of E x X such that for every e€E, MnB(e) = 0. Then there is a B«
set C in Ex X such that for every ecE, C(e) is closed and A< C < (Ex X)\B.

TreoreM B (Dellacherie, [5]). If E and X are Polish spaces and B < E x X is a B
set with B(e) open for every ecE then

B={)(B,xU,)
where B, is Borel in E and U, open in X.

THEOREM C (Miller, [10]). Let E be a second countable metrizable space. Denote
J the topology on E. Then given any sequence {B,} of Borel sets in E there is a sect
countable metrizable topology 7' on E such that

(i) each of B,e 7, and

(i) the o-fields generated by I and T are the same.

Actually this is a simpler case of Miller’s theorem and a proof of it is also presen
in ({13, Theorem 57]).

From now on E will be a Polish space.

THEOREM 5. Let F, and F, be two disjoint X} sets in E x X such that for each ec E,
sections F(e) and F | (e) are closed. Then there is a Carathéodory map f: Ex X — [0,
such that f =0 on Fy and f =1 on F,.

Pr0(')f. By applying Theorem A twice, we get two disjoint Borel sets Cg and C,
Ex X with Cy(e) and C, (e) closed, F 0 S Co and F, = C,. By Theorem B, we wr

(ExXN\C,=|)BixUl), i=0orl

new

with B Borel in E and Ui

bt g open in X. Denote the topology on E by 4. By Theorem

be a second countable metrizable topology on E such that €
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() B.eJ",new, i=0 or 1, and

(i) the o-fields generated by 4 and 7 are the same,

Now C, and C, are disjoint closed sets in E x X when E is equipped with .7 and X has
its own Polish topology, say 7. By Urysohn’s theorem there is a 7 x 7 "-continuous
map f: Ex X —[0, 1] such that f=0 on C, and f =1 on C,. Since the o-fields
;generated by 9 and J are the same, this f has all the desired properties.

. Our next example shows that Theorem 5 does not hold if F,, F, are IT}.

ExampLE 3. In Example 1 take 4, and A, to be two disjoint /1} sets such that there
do not exist disjoint Borel sets C and C, with 4, < C, and 4,  C,. Define F, and F,
enactly the same way. The same arguments show that there does not exist a Cara-
kéodory map f: Ex X —[0, 1] such that f =0 on F, and f =1 on F,.

Remark 1. It is worth noting that the following generalization of Theorem 5 also
olds.

THEOREM 6. Let E and X be Polish spaces, F,, F, be two disjoint X} sets in Ex X
uch that for all ecE, Fy(e) and F,(e) are M. Then there is a Borel map
"ExX [0, 1] such that

) f=0o0n Fo, f=1o0n F, and

@) for every ecE, x—f (e, x) is X9-measurable.

Proof For & =1 this is Theorem 5. Let 1 < ¢ < w,. Embed X in a recursively
presented Polish space H, say the Hilbert cube. We now invoke a result of R. Barua
((2]) (which, in fact, is a simple extension of a result of A. Louveau [8]) and get a Borel
%t Bin Ex X such that '

() F, < B< ExX\F,, and

(ii) B(e) is 42 for every ecE.

We take f = I,,, the indicator function of B.

Remark 2. The argument above also works when ¢ = 1 and X a zero-dimensional

Polish space. In this case embed X in and as a closed subspace of w”.

4 Random extension theorems. Using the ideas contained in the proof of Theorem
3 we prove

THEOREM 7. Let A be a Borel set in E x X such that the sections A(e) are closed for
every ee E. Suppose Z is a second countable convex subspace of an affine space of type
mand f: A—Z a Carathéodory map. Then there is a Carathéodory map g: ExX ~Z
which extends f.

Proof. Fix a countable base W,, W,,... of Z. Let 4,=A4 and
A =A\f'W,), n=12,..

By the arguments contained in the proof of Theorem 35 we get a fme1: second‘ cm;r_l,table
metrizable topology ' such that each of A; is closed when E is equipped .w1th 7" and
the Borel o-field of E remains the same. This makes A closed and f continuous whe.n
E has the new topology. By the extension theorem of Dugundji ([6], p. 188) there l:;
a contin®ous extension g: E x X — Z of f. This g is a Carathéodory map when E has t
original topology.
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THEOREM 8. Let A be a XY 'set in E x X and Z a retract of a finite or countable produ
of intervals in R. Let f: A—Z be a Borel measurable Carathéodory map. Then therei
a Carathéodory map g: Ex X —Z which extends [

Proof Case 1. Z=[-1,1].

We define a sequence of Carathéodory maps ;2 Ex X »[—1,1},i= 0,1,... sw
that for every i-

(i) lgite, x)f <3- @), for all (e, x), and

(i) |f (e, X)—gole, X)— ... —gi(e, )| < (3), for all (e, x)e A.

To see that such a sequence can be defined we proceed inductively. Let

F={(e,x)eA: fe,x)< —3} and F?={e,x)ed: fle,x)> 1.

By Theorem 5 we get a Carathéodory go: E x X —»[—1/3, 1/3] having the requit
properties. Having defined g,, g, ..., g; satisfying (i)(iii), we let

Fif ' = {(e, x)e A: f (e, Y)—gole, X)— ... —gile, ) < —3- ()},
Fit' = {(e, )€ A: f(e, )—gole, )= ... —gile, ) > 3-B)}.
By Theorem 5, we get a Carathéodory map ¢;41: EX X[~ 4 @7 such i
gir1=—%®% on Fi*! and is = 1.3 on Fitt,
We define

g(e, x) = limg,(e, x), (e, x)eExX.
Case 2. Z=(-1,1)
Using case 1, we get a Carathéoéjory map h: Ex X —[—1, 1] which extends S

B={(e, x)eExX: |h(e, x)| = 1}.

Then 4 and B are two disjoint Zi-sets with closed sections. By Theorem 5, W° ¢
a Carathéodory map

u: ExX-J0, 1]

such that u=1on 4 and =0 on B. Put g=u-h.

R.emaining cases. It is now clear that the result is true for all intervals. When z
a.ﬁmte or countable product of intervals we extend each of the coordinate functioﬁ
Finally, lf:t Z’ be a finite or countable product of intervals and Z a retract of z ¥
a 'retractlon riZ'=Z If f A>Z is a given Carathéodory map, first get 2 car
théodory map h: Ex X — Z' which extends f and then take ¢ = ro h. This complef¢
the proof. )

In Theorems 1 and 2 we get extensions satisfying
g(e, X) s co(f({e}xF(e)), eckE. ,

;ui I;;xt example shows that we cannot have this in Theorems 7 and 8§ ev. wh!
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Exampie 4. Let A, and A, be two Xi-sets in [0, 1] such that 4,0 A4, = [0, 1] but
there does not exist a Borel set B such that B < A4, and B° < 4,. Let I, be the space of
all irrationals contained in [0, 1/3] whereas I, is the space of all those irrationals which
are contained in [2/3, 1. Let C; be a Borel set in [0, 1] x I, whose sections are closed in
[; and such that Proj(C;) = 4,,i=0or 1. Let C = C,uC,. Let X be the set of all
irrationals in [0, 1]. Then we have a Borel set in [0, 1] x X whose sections are closed in
X. Define f: C—>R by

fl,x)=x, (e, x)eC.
[fpossible suppose there is a Carathéodory map g: [0, 1]x X — R which extends f and
which satisfies
gle, X)cco(f({e} xC(e)), eel0,1].
Let

B = {ec[0,1]: gle, 1/3/2) < 1/2}.
Then B i Borel, B © A, and B° < A,. Contradiction.

3. A random Lusin theorem.

TheoREM 9. Let f: Ex X —[0, 1] be a Borel map. Let p(e, B) be a transition function
nEx %y. Then for every ¢ > O there exists a Carathéodory map g: E x X —[0, 1] such
that for every ec E

ple, {xeX: gle, x) #f (e, x)}) <.

Proof Define a sequence {E,} of subsets of Ex X as follows:

— 2
2k2n ! < f(e, x) <~2’; for some

E, = {(e, x)eEx X:
k=1,2,..,2"" or f(e, x) = }.

e f< ¥ 2 e,
By [3]," glet Borel sets F, and U, in Ex X such that
WFecp cu, n=1,2,..;
) (e, F (\U, (e)) < &2" for n=1,2,... and ecE; and
lij) F,(e) and X\U,(e) are compact for each n and e.
e~ F .(¢) and e = X\U,(e) are measurable, closed-valued multifunctions for each
" Hence by Theorem 3, there exist Carathéodory maps g,: Ex X —[0, 1] such that

0 if (e, )eX\U,,
9 D=9 i . x)eF,.

Pll ©
P Y 12 g, (s ).
k:g



72 H. Sarbadhikari and S. M. Srivastava

6. Open problems.

ProBLEM 1. In Theorem 5 suppose we take F, F; to be Borel but E an arbitrar
second countable metrizable or even a IT}-set. Do the conclusions of Theorem 5 hold i
this case? '

PRrROBLEM 2. Does Theorem 7 hold for a Z}-set 4? We do not know the answer eve
when Z is a convex subset of R2.

PROBLEM 3. Can Theorem 8 be extended for I11-sets A? We do not know the answe
even when Z =R.

A question related to Problem 3 is the following:

PROBLEM 4. Let C, and C, be two disjoint II1-sets in E x X such that for every el
the sections C,(e) and C, (¢) are closed. Further assume that there is a Borel st
B containing C,, but disjoint from C,. Do there exist disjoint Borel sets B, and B, suc
that C, < B,, C, < B, and for every e E, the sections B, (¢) and B, (e) are closed in X
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