SANKHYA

THE. INDIAN JOURNAL OF STATISTICS

Editors : P. C. MAHALANOBIS, C. R. RAO

SERIES A, Von, 33 Decesser 1071 Part 4

UNIFIED THEORY OF LINEAR ESTIMATION®
By . RADHAKRISHNA RAO
Indian Statistical Institute

SUMMARY : We consuder n genorad Uouss-MarkofT model (¥,
IAY) - @8, Theee may ho doliviency in R(X), the rank of X and 1

(B, 0?1}, whore E(¥) = XB.
¢ be omgular,

Tecis umbesl approachos ta the problem of fnding BLUK' (minimum vanancs lincar unbisst

ealunntons) bave bevi siggeated.  One o di

ent approach where the prablom of inference on the unknown
B s reducrd 1n e numerical evalustion of the wvorms of a pactstionod matrix, ‘The secund in an snalogue
«f Teaat squarcs, where the matris wwed in dolinng the quadrtic furm in (¥ = XB) to bo minimized is a
geinvers: of (¥ XUX') in all witu whether 1 i« nonsingulsr or not. whare U is arbitrary subject
to s condition.

Cumplete robsntness of BLUES under different slternatives for 1 has been cxaminod.

A rtudy of BLE' {iinitoum meas squar: cati without iniz unbissodnoss 1 initusted
anid o caso has boon inmo for further vxsmination.

The unificd appronch is made powaible 1hrmugh reeent sdvunces i the ealeulus of genemlized inverse
of mmtriees (see the ceeont hoak by Rno and Miten, 1971a).

1. INTrRODUGTION

It ix indeed a great honour for a statistician ta b enlled upon  presido over
& conference of oconometricinux. I have nccopted this position only with the hopo
of learning from you about the statistical nspents of cconometric probloms and oxa-
mining the wdequacy of l.])o existing nlulluhuul mothods o meot your noeds.  Most
of the develop in I moth gy have been groutly influenced Ly probloms
in biology and technology. hut not o the xame oxtont hy pmblenu in oconvmica
although statistica had its origin in the pilation wnd i of
data. It is wlso o historicul fact thut jowrnals like Biometrika, Bmmelnu and Techno-
melrics Tusve been started nnd yun by stabisticiam while £ irica has ined
vutside the orhit of statisticians. But some of the rocent contributions in Econo-
melrica have convinced mo that there is nn oqually rich fiold for cconomists nnd statisti-
cians to do collaborative roseuvch.

I want to take this opportunity of disonssing with you somo of the recent
5 ts in the oatimution of pnramotors in the Ganas-Markofl meodol leading
to 8 unified theory, which may be of intorest in econometric work,

*Prosidential address propured for tho Annua) Conforenco of the Economotria Soaloty, 1071,
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1.1, The Gauss-Markoff model
Notation. In this paper we use bold fuco letters to ropresent matrices and
veotor, like, X. ¥, ¥.B, etc. The vector spuce gonerated by the columos of u matrix X
is roprosented by A(X). Tho vector space orthogonal to _s(4) ix denoted by J(A*)
whero A* is n matrix of maximun rank with its colimns orthogonal to the columns
of X.

lefinita)

If V is a n.n.d. (non negsbive matrix, the oxp

llpl == (p'Vp)
whero p is a veotor. is called the V-norm of p.  Similarly the w\luoﬁ which minimises
(¥ - X @) M(Y - Xg).
or more generally which satisfier the normal equution with no restriction on M.
X'MXB = X'MY
where Y and @ are vectors, is culled n M-lenst xquares solution of ¥ = XB.

‘Tho symbols £, V'. C and D will be used for expectation, variance, covuriance
and dispersion {variance and covarimice) of random variables. Np(m. Z) denotes n
p-variate normal distribution of & p-vector variable with mean m and disperaion
matrix £, y? stands for a chi-square variable on £ dogrees of freedon. ¥ ~ ¥, means
thal the random variable ¥ has a p-variate normal distribution.

(X : V) denotes a partitioned matrix and R(X), the rank of mutrix X. A
natrix with alt zero ontries ix denoted by 0.

BLUE {best linear unbiused estimator) stands for n linoar unbinsed eatimator with
minimum variance, LUE for a linvar unbiased cstimator and BLE for a linear estimator
with minimum meun square orror.

Canss-Markoff model. The Gauss-Murkoff model may be representexl by the
triplet (Y, XB., o*V) whero ¥ iy n-vootor of observations, X is nX m design matrix such
that

E(Y) = XB. DY) = o*V. e (L)

In (11.1), B is an unknown m-vector paramcter, 02 is an anknown scalo purameter and
V is n non-negativo definite (n.n.d.) nmtrix, which may be known, partly known or un-
known.  In oconometric applications, X is culled the mateix of oxplanatory variables
and ¥, the vector of the dopendent vurinble.  ‘I'he problent is vne of eatimating B by
linear functions of ¥. and o by w quiulratio function of ¥. without making any assump-
tion about the actual distribution of ¥. In vur discussion we assume that V is com-
pletely known.!

" 8omn dovelopments are taking placo in the simultanoous extimation af B, % aud V. Seo tho

rocont papens by Rao (1070, 1971s, 1971b, 1072) on Minquo thoory and J.N. K. Rav and K. Subrahnaniam
{1071) on simultanovus cstimation.
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UNIFIED THEORY OF LINEAR ESTIMATION

Gauss introducod the method of laast aquares in 1821, and showed that it pro-
vides the BLUE (beat linear unbinsed cstimator) of P inder the assumption (see
Ganss, 1855; Plackett, 1948),

R(X) = m and ¥ = I or disgona). - (103)
Later, Markoff (1912) snd Dnavid and Neyman (1938) made a systematic presentation
of tho theory undor the same assumptions (1.1.2), while Aitken (1934) extended the
method to the cnse
RX)=m and |P] %0 e (103)
where V is not necessnrily diagonal.

Bose (1943) wns the firat to connider the situation

RX)y=r<m V=1 e (1.0.4)
whore only certain and not all linear funotions of B are unbinsedly estimable, The
deficienoy in the rank of X ia described as mudticollinearity in economotric work. Reo
(1945a) showed that the mothod of lenst squares is applicahle oven when R(X) < m
and V is nonsingular.

One may also consider given linear restrictions (also called consfraints) on
the B parameter such as BB = ¢ in which case the Gauas-Markoff model can be
written as

(Y, XB|RB = ¢, atV). ... (115)
The goneral theory in such a case has boen fully worked out (see Rao, 1945b) when
RX :R)S m, |V #0.
The most general situation is the set up { ¥, X@, o0tV) where
R(X) < m and V possibly singular. w. (1.0.8)

The model (1.1.5) with conatraints on B is, indeed, a specinl case of (1.1.6) since we
can define
y

roo
Ve= ( ) o (1
[}

and writs (1.1.5) a8 (Y,, X8, o*V,) recognising that the dispersion matrix of the cons-
tant vector ¢ is null. In (1.1.7) and elswhere 0 stands for null matrices.

(¥ i) X, = (X R).

‘There has heen no satisfactory appronch for the general case (1.1.6). The
methods deseribed by Mitra and Rao (1968), Theil (1971), Zyskind and Martin (1069)
are all a little involved and no attempts were made to provide o unified treatment
valid for all situntions. Rao and Mitra (1871b) suggested one unified method of least
squares which holda gnod whether V is singular or not. I wonld like to desaribe to
you two approaches to the problem providing a unifled theory of linear estimation
without any assumptiona on X or V and also on linear hypotheses which may be
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required to be teated on the basis of (1.1.8). This hoa been pousible due to recent
developments in the theory and application of inversion of singular and rectangular
matrices which hae been developed in a number of papers{Rao, 1055, 1082, 1967),
and fully described in a recent book by Rao and Mitra (1871a). (Reo ko Ran and
Mitra, 19871¢).

1.2. Some lemmas on g-inverse

In this seotion we give a brief i luotion to g-inverse of iess and prove
somo new lemmas nseful in disoussions on estimation from linear models,

Deafinition 1: Let Aboanmxn matrix. A g-inverso of A is an 2 X m matrix,
denoted by A-, satisfying tho condition

AdA - A RRNTEAY

An immedinto applioation of 4~ is in solving a consistont linear oquation
Az - ¢. whoso solution ean he expressed ns r - A~q. Indeced tho entire clnas of
solntiona to Az = g can ho written as

x = A-q-H(I—-A-A)z (12
where J is the identity matrix and = is an arbitrary veetor.

Definition 2: A matrix, denoted by Am( ¥y is said to bo a minimum V-norm

inverra of A if & = ALy, 4 is & solution of & i |uation Az = q with the
the smallest ¥-norm (being defined as \/z'Fx) wheve ¥ ia an n.n.d. matrix. Z in called

the minimun ¥.porm solution of Ax = q.
Defination 3: Lot Az — q be nnot ily i QUAL] Thon u

matrix, donoted by Aiw) is said to ho a W-least squares inverse of A if # = Aywyq
minimires the quadratic form

(Az—q) Wdz—q) . (0.23)

where W is an n.n.d. matrix. & is called a W-loast squares solution of Az = q.

Definition 4: A matrix denoted by Ajy ia said to be a minimum V-norm
W-least, squares invorse of A if ® = Ay, q in & W-least squares solution of Az = ¢
with & minimaum V-norm.

Tho existence of A-, A~

1

vy Agw, wnd Ay, explicit oxpressions for them and
03 are di d in Rao and Mitra (1971a). Some of thees
inversea are no'. unique in which case the olasses are represented by {4-), {AZ )} ...
oto. When we write an equation such as A~ = B-, it means that corresponding to
a given ohoice of A~ there is a choice of B- equal to A-.

The following results are used in the development of a unified theory of linear
estimation.
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UNIFIED THEQORY OF LINEAR ESTIMATION
Theorem 1.1 : Letths maivices V, V+A'UA and T~ de n.nd. Then

) Aoy, = AL vy acpay Uarbitrary, e (L24)
() (A%, ellAg ]} . (1.2.5)
where T = V+ A*UA such that A(A*) C AT).
(iii) (A%yny == (gl o |1 V] £0, o (12.6)
where A° rep the conj transpose of A.

Tho results are onsily establishod using tho characterizations of these invorssa
given in Rno and Mitra (1971a). Theorom 1.1 is important since it demonatrates that
tho problem of finding a minimum norm solution of a linear equation is algebraically
oquivalont to the problom of finding a least squares solution of a similar linear equa-
tion. (This is the reason why the least aquares solution provides minimum variance
cstimators in tho Gauss-Markoff modol).

Let ¥V be an n.n.d. (non nogative definite) matrix of order # and X be another
matrix of order nxm. Further lot

1 4 X\- ¢, C,
TR X
X 0 ¢, -c,
e uny choice of g-inverse where X’ donotes the transpose of X.

Theorem 1.2: Let V, €y, €y, Cy. C, and X be as defined in (1.2.7). Then
the following hold :

VooX\- ¢ G
(i) ( § ) = ( . , ) o (1.2.8)
X 0 ¢, —C,
is another choice of g-inverse.
(i) XC,X =X, XC; X=X, e (L29)
ie., Cy and C; are g-inverses of X.
(i) X'C,X =0. VC,X=0 XCV=0 . (1.2.00)
(iv) VCX' = XC¥ = XC X' = XCX' = VC, X' = XCV. ... (1.211)
(v) VC,VC,V=VC,V. Tr VC, = R(V:X)—R(X). . (1.202)
(i) (Z' )‘Ca a g-inverse of (V : X). o (1.213)
3

Note that C; and C, are in fact minimum V-norm g-inverses of X’.
The results are oasily cstablished by considering the equation

(e (e ) -2 %)
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2. I8 THBRE A NEW PROBLEM TO BE SOLVED }

Let ua define
(¥, Xg,0%1), RX)=m (21

Lo., when the rank of X is full as the Stendard Gauss-Markoff model or sam model
in short. We show that all the other onses (1.1.3)«(1.1.8) can ho reduced to sau to
which the method of least squares propoundod by Gauss (1821) is applieable. Thus,
in & sense, there is no now problem to be solved.

(i) Suppose the medel is
(V. XB, o), RX)=r<m . (29)
with some defioiency in the rank of X (i.e., multicollinearity of X). Consider the
singular value decompostion of X
X = PAQ', .. (23)
where A is a rXr diagonal matrix of singular values of X and PP =Q'Q=1.
Introducing A new r-veotor parameter y —= AQ’S the model (2.2) reduces to
(Y, Py. o) o (24)
which is the sest model. Indeed. tho roduction of (2.2) to (2.4) through (2.3)
leads to interesting results. The Gauss least squares estimator of y is y = P'Y
ond the estimate of any estimable linear parametric function p’@ is then p’QA"‘.y
= p'OA-'P’Y. The varianco of the cstimator is F(p'QA-'y) = op'QA-3Q’p and
an unbinsed estimator of o is (n—r)“(l”Y—-.yQy For a diroct least squares approach
for (2.2) see Rao (1985).
(ii) Let us consider the model
(Y, XB|Rg =c, o*]), RX' :R')=m. ... (25)
Using the constrainta R = ¢ we may oliminate some of the parameters and obtain

a reduced model
¥, X,8,, o*l) .. (2.8)

which is in soM. In practice the reduction need not be actually done sinco

min(Y— X,8,)(¥Y—X,8,) = min (Y—XB)(Y—XB) (27
B Rg=c

and an estimable parametric function p,@, can be written as p’S. Thben p’ﬁ = p;é;.
where @ and @, are tho values of @ and B, minimising the right and left hand sides of
(2.7). If R(X’: R’) < m, then (2.0) is of the type (2.2).

(ilf) Let V¥ be a square root of the p.d. (positive definite) matrix V. Then
the model
(¥, X, 0*P), B(X)=m, |V] #0 e (28)

oonsidered by Aitken (1934) can be reduced by the tranaformation
VY =¥, V3 X = X, to (¥, X; B, o*I) .. (28)
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UNIFIED TEEORY OF LINEAR ESTIMATION

whioh is in 86M. An application of Gauss least equares method to (2.0) gives what
iu onlled Aitken's goneralizod least squares.estimator of p.

(iv) If in (2.8), B(X) =r < m, then tho reduced model (2.9) is of the type
(2.2) and the formulse derived for (2.2) bocome applicable.

(v) Pinally we consider the aax-model (Goneral Gauss-Markoff model),

(Y. XB.0'W), RiX)=r < moand RIV) =o L . o {(2.10)

Let F,, ..., P, ba eigen veotors corresponding to the non-zero eigen vulues A}, ..., at
of ¥ and MN,. .... Ny bou—s = » cigen voetors corresponding to the zero root, snd
define the matrices

F= (A7, : . i A7'F,). N = (Ny:...: N e (2200)
‘Then make tho transformation
¥, = FY.¥,=NY. X, - FX. X. = NX C o (202)
londing to the reduced model
(Y, XB|X,B: Y, 0D . (203)

which iv of the typo (2.5) with R(X] : X,) < m, anid benee “the formuluo dorived for
(2.3) oan be used.  (Observe that ¥, iv n constant vector, sinec IXY,) == o'N'VN —= 0,
xo that ¥, = X, is in the nature of constraints on g). The mothod described involven
anly the speotral decomposition of I und o straight forward application of the least
squares theory with constraints an the § parninoter—the appronch fisst suggestod hy
Mitrn and Rawe, (V06R).

3. UNIF1ZD THEORY—DIRECT APPROACH

\Ve have seen that ne new problem arisea when depnrtures from the standurd
linear model (803) are considered such as constraintk on paranetors, defisiency
in the rank of the detign matrix (multicollinoarity of the explanntory vnrinbles).
vorrelutions in the xerics of the dependent varinble, and collinenrity leading to u
singular dispersion matrix of the vector of dependent variables. It hua been the
prictice among certain authors to call the formulee and mothods uppropriate for
une tye of the above departures from the sus a3 ““gencralized leust squares™ and nore
than uno type of dopartures as “generalization uf genernlized leust squares™ although
all situations can cssuntislly be reduced to the original Gauss-Markoff model.

‘Tho discussion of rection 2 does not, howerver, preclude us from attempting
u unifiedd theory (n single method to cover all situations) of linewr estimation applicable
0 the goneral model, (¥, XB. 0*V) where the rank of X is possibly deficiont and
the wmutrix ¥ is possibly singuler. Whilo the discussion of aeetion 2 did not make
any direct reference to generalized inverse of u matrix and depended only on tho
ulassical speotral and singulsr value d jtion of matri the unified theory
developed in sootions 3 and 4 depends to some extent on the caloulus of gmunl.hul
inverses. Seotion 3 deals with a direot approsch to the problem by minimi
variunce of a lineur unbiased estimator while seotion 4 links it up with the Algabmncnll_)
vyuivalont lesst squares theory.
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It will be seon that in the unified method no attempt need be made in the
beginning to find out to which typo (among 1.1.1-).1.8) & given model belongs and
to reduce it by preliminary computations to tho saM. Such knowledge may be useful
in the final stages of putations and interpratation of results. The unified theory
nppears to be somewhat simpler as it lays down a common numerical procedure for all
situations and avoids the licated algebrai i g lly used in tho
disoussion of the aox model.

3.1. Consislency of the lincar model
Wa vonsider the cay modol
(¥, X8, 2V) v (3.L1)
without uny assumptions on X or V. As observed carlier the model (3.1.1) includes
Lhe case of uny given constraints on f.

When ¥ is singuinr, thore are some natural restriotious on the dependent
varinble ¥, which may lo tested 1o make sure that therc is no obvious inconsistency
1t the model. One such restriction is

L'X 0. L'V-0=LY v s (3.0.2)
whers L i a, vettor, or in other words Feo (1 : X). Thin condition is automatically
satisfied if V is nonsingular.

Further
L'V 0= L(¥—Xp)=0 . (3.1.3)
i.e., the vector ¥ and the parametor B must bo such that ¥—XB s L4 V), which is
again lly sutistiod if 1" is ingulur. Thus singularity of V implies somc
roatrictions on hoth ¥ and the unknown parametor @.

3.2 The basic theorem of linewy exlimution

Let us considor the nam model (3.1.1) und one choice of g-inverse us in

VooX\- C, [
( = ( e (320)
X o ¢, -¢

where V and X are au defined in the model (3.1.1).  Onee o g-inverro is computed by
uuitable procedure, we seem to have n Pandora box supplying ull the ingredients needad
for obtaining the BLUE's, their variances and covariances, an unbinsed estimate of o9,
and constructing test oriteria without any further computations exoept for a fow
matrix multiplications. Theorem 8.1 provides the bagio regults. Thus the problem
of inference from a Jinear model is reduced to the numerical problem of finding an
inversu (or g-inverse) of the symmetrio matrix given in (8.2.1).
378
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UNIFIED THEORY OF LINEAR ESTIMATION
Theorem 3.1 : Lal.C,, C,, C,, C, be as dafined in (3.2.1.). Then the following
(i) ([Use of C, or Cy). The BLUE of an estimable paromelric funciion p'B

1

is p'f. where
B=CY or =G . (3.2.2)
(ii) [Ueo of CJ. Tha dispersion malriz of P is a2C, in the sense thal
Vip'B) = o*p’ Cop
cov (p'B, q'B) = o*p’C q = ' C,p e (3.2.3)

whenever p' and o' ure estimable.
(iii} [Use of €} An unbiased catisiator of 0% is
@=f1YCY . (324)
where [ = R(V : X)—R(X).
Proof of (i) :  If L'Y is sn unbinsed ostimator of p’g, then X'L = p. Subject-
to this condition V(L'Y) -= ¢?L'VL or L' VL hes to be minimizod to obtain the sLUE
of p'8.

"Then

Lot L, ho an optinum choice and L Lo any othor vector such that X'L = X°L,.

L'VL=(L-L-+LYVIL—L,+L)
= (LZLYV(L—L)+LVL +2L,V(L—L,) > LVL,
if L,V(L—L,) =0 whenever X'(L—L,) =0, ie. FL, = —XK, for a suitable K,.
Then L, and K, satisfy the cquations
VL +XK, = 0.
X'L, =p ... (3.25)
Wo obscrve that the equations (3.2.5) admit a solution nnd any two solutions L,, and
L,, satisfy the condition V(L,,—L,)=0. Since (3.2.5) is consistent, a solution
is given by L, = Cyp, K, = —Cyp, or L, = C,p, K, = —C,p. Then the bLUE
of p'fis LY = p'C,Y = p'C,Y.
Proof of (ii): We use the fuot p = X'M for somo M. Then
Vp'CeY) = MM (XCVICX'M

= o"M'XC,(X'C.X')M using (1.2.1))

=M XCX'M using (1.2.0)

=a'p'Cp.

cov (p'CyY, ' CX) = o%p’'Cy = a%y'Cp.
Proof of (iii) : 8inco X’C,V = 0 and X"C,X = 0 {using (1.2.10)),
Y'CY = (Y—XB)C,(¥—Xp)
(Y —XBY C,(¥— XB)] = 0*IxC,(E{(¥ ~ XBXF—XB)))
= o*TrC,V = a{R(V : X)—R(X))

Similarly

using (1.2,12).
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Corollary 3.1.1: If oD is the dispersion matriz of LUE's of a et of estimabdle
paramelric funclions and oF that of their BLUE’s then D—~F {2 n.nd.

Lot p;B. .... pif be k estimable parametric funotiona and consider the estima-
tion of the singlo function p'B where p = m;p,+ ... +mype. If 4 is o LUE (linewr
unbiased estimator) and 7 is the sLUE of p,f, then Emy, is the LUk and 2T is o
BLUE of p’B. By definition

V(Zmd) o V(EmT) o o*m’Dm > a*m'Fm

for all " - {(m,, ..., ;) which implies D—F ix n.n.d.

Corollury 3.1.2 1 1f D and P ar. as defined in Corollury 3.1.1., then

M) TrD37TrF.

(i) |D| > |FI.

(i) Tr QD > Tr QF where Q is uny nnd. mairiz, and

(i) Agasl D) > Auaa(F)
where Amg(G) denoles the muzimum sigen walue of G.

‘I'he results of Corollary 3.1.2 ave simple consequences of D—F hoing nud.
‘Fhus the BLUE'S are optimal according to any of the criteria (i)-(iv) of Corollary
3.1.2. Result (i) implics thit if € is tho veclor of crrors in BLUE'® and g is tho
voctor of errory in LUE's thon E(e’Qe) < £(g'Qg) for any n.n.d. matrix Q.

Theorem 4.2 :  Let P’fi be the vector of BLUE's of n sel of k estimable
purametric functions P'B. R Y 'OV and [ be nx defined in Theorem 3.1, If
Y ~ N, (XB, o*V). then :

(i) P‘ﬁ and Y'C\Y are independently distributed, with

P'f~ N PR, 0*D), e (22.8)
and
Y'C\Y ~ ot} Lo {327
where D PCP.
(i) Let P'B - a0 bu the null hypothesis. The null hypothesis is i s
DDu . n o (3.2.8)

where w = I"ﬁ—w. If the hypothesis is consivlent then,
poDe B b o (3.29)
J
has a cemtral F disiribution on h and [ degrees of [reedom when ths hypothesis i true,
und a non-ceniral F distribution when the hypothesis is wrong.

Proof of {(i): The reeult (3.2.8) is easy to catablish. (3.2.7) follows ainoo
y'¢ Y - (Y-XpyC(¥—Xp), and by (1.2.12)

VCVC,V = VGV
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which is an NA8 condition for a x* distribution. (See Rao, 1965a, p. 443, and
also Rao and Mitra, 1671a). 'The degrees of freedom of the x s
Tr VC, = R(V : X) —R(X) = /, using (1.2.12).
Since PR is eatimable, P’ = QX for some Q. Then P'f = QXCY. The
onnditiop for indepondence of ¥'C,¥ and QXC,Y is
VC, VCX'Q' QXCV =0

VCVCX = VCXCV =0,

which in 4rie ainco

using (1.2.11) and (1,2.10).
Proof of (ii) : The hypothesis P’ = 10 is if for any vootor m.

V[m’(P‘ﬁ—w)] = 0= m'(P‘ﬂ-—m) =0
io.m’ Dm0 == m’u = 0 or ue D), for which n NAS condition ix DD u = u,
for nny g-invere D of D.
Sinca Dlu) = #*D and DD-D = D

whDu

-~ x h= RD).
using the result (viii) on p. 443 of Rno (19658). R s distributed as X} independently
of u.  Henee the roault (3.2.0) follows.

In Theorem 3.2, the numorator of the F atatistic for teating the linear hypo-
thesis P’B — 1 was obtained in the form w'D-u which involved the catimation of
deviations in individual hypoth putation of their dispersion matrix and
itz inverse.

Theorem 1.3, provides an alternative method of computing the numerator,
us in the theory of leaat squares.

Theorem 3.3: Let
(V X)" ( E.)
o P/ \pg

he one choice of the g-inverse of the malriz mvolved. Then

y
WD u:=YE ( ) -Y'CY. .. (3.200)
»

For conxislency of the hypothesis PB = w the lest is

CHEO)

Note. Tf the objeot is only to estimate linoar T trio functions and teet
hypatheses we do not noed the matrix C, as defined in (3.2.1). The matrices needed
wre C, Cy and E,, E;. Then C,, C, and E,, E, can bo obtained from g-inverses aa
indicated in (3.2.12).

A e
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4. UNIVIBD THEORY—LEAST SQUARES APPROACH

In seotion J, the problem of BLUE is formulated as the minimization of a
quadratic form L’ VL (the varianco) snbject to the restriction X’L = p (unbiasodness).
This is equivalent to finding & mini V-norm solution of tho equation ¥'L = p,

V-norm being defined ax v/ L'VL. The solution is provided by a minimum P-norm
g-inverso of X’ (defined in section 1.2),

L= (X P
giving tho BLUFE of p' ns
PUX )0 Y . (3
for any choioe of g-inverse. Now we use the rolationsnip batween a minimnm
V-norm inverse and i least squares inverse catalligkhed in Theorem 1.1,

(Xier-) (X o (4.2)

where T ix an nongd g-inverso of T — V4 XUX' tor any chojse of the matrix U,
subjeot only to the condition AGX)(C A(T). (For instance if 40 X) C V) or
|¥] # 0, then U can he chosen to ho nnull matvix). Using (4.2) the BLUE of p'M,
given in (£.1). ean be wrillon ns

[ v R o {4.3)
where § minimizes
(Y—XpY T-(Y—XB) (4
e, ﬁ it the T Jeast squares solution of the equation ¥ = XB.

The algebraic relntionship in (4.2) holds the main key to the question, “why
leagt =quares theory for obtaining BLUE'® 2" Tt also shaws that the choico of the
matrix in defining the nrom (4.4) is a functon of ¥ and X in general.  Thus the princi-
ple ot lenst squares docs not scem to bo a primitive postulate but an algebraic artifact
to obtain minimum varinneo estimators.

A unified theory of linear estimation through tho method of loast squares
ia contained in Theorem 4.1 whera tho matrix U is taken as k? J, with an arbitrary
k 3 0. Bowever, the hasic result of the unified theory of least squares is contained
in Theorem 4.3,

Theorem 4.1 : Let (Y, XB, a%V) be a GGM model (i.e., where V may or may
nol be non singular and X may or may nol have deficiency in ronk). Further let
T = V+IEXX', k # 0 and T~ be any g-inverse of T. Then the following hold :

(i) The BLUE of p'p is p'{s where ﬁ minimizes (Y—XB) T-(Y—X8).

i) V(p'f) = o*p(X'T-X)- —4*Mp . (45)

con (p'B; /B) = o UX'T-X)- -kNg . (48)
(i) An wnblased eatimator of o ia
8 = [ (F—Xf) T-(Y—X§)
=[V'T-Y-§ X'T-Y), [/=RV:X)—RX). . (4T)
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The result (i) of Theorem 4.1 is eatablishod in (4.4) for an n.n.d. g-inverse of T.
However, we note that all the oxpressions involving T~ are invariant for any ohoios
of g-inverse and hence the result as etated in the Theorem i trus. The results ii) and
(iii) are easy to establish.

Note 1. It ia interesting to noto that all tbe reeulta quoted in Theorem 4.1
are independent of the aotual value of k 7 0 used in defining 7.

Note 2. If 41X)C (V) or V is nonsingular, then k can be chosen to be
zor0 in which case, T- = V-,

Vip'f) = op'(X'V-X)- p
cov (p'f, g'B) = oPX'V-X)- g
and the rest of the formulae are as in Theorom 4.1. Note that the expressions (4.5)
and (4.8) for variances and covariances when & # 0 contain an extra term and do not
conform to the usual formulae nssoointed with tho least squares theory.

Nole 3. Tho unbinsoed estimator of o* in (ifi) ia the samo sa that given in (iii)
of Theorem 3.1.

Note 4. Linear hypotheses can bo tested as mentioned in Theorem 3.2, eatima-
ting the deviations 4 = P’B— o and their disporsion matrix o*D using the formulas
(4.5) and (4.6) and sctting up the test criterion (consistoncy and F testa) aa in (ili)
of Theorsm 3.2.

Note 5. Tt is unfortnnate that the numerator in the F-atatistio, w'D- u for
testing tho hypothesis P’ = w, cannot be obtained aa

min (Y—XB) T-(Y—X@)— min (¥ —Xp)' T-(Y—XB) . (48)
Pp=w )

a8 in the usual lenst squares theory. However, it can be exhibited ns a differonce by
choosing a difforent matrix instead of T in the first expression of (4.8).

Note 6. Although ¥V may be singular, thore ia a possibility of V+i'XX’
being nonsingular in which case T- would ke the rogular inverse.

Theorem 4.1 shows that the putational procedure for obtaining BLUE's
is that of lesst squares (of Aitken's type and the same for all situations 1.1.2-1.1.8
described in section 1). The matrix to bo used is an inverse of (V+4XX’) (unlike
that of Aitken's procedure) where & s 0 in all sitnations. The formulss for vari-
ances and covariances are also tho same for all cases (but the expressions are slightly
different from those in the usual Joast squares theory). Thua we have a general formu-
lation of the least squares theory in Theorem 4.1. The most goneral formulation
is, however, given in Theorem 4.3.

In Theorem 4.1 it is shown that the BLUR’s oan be obtained from (V4 £ XX")~
—least aquares solution of ¥ = X@. The introduotion of an arbitrary constant k
is jteelf an indication that the choics of the matrix M in the expreasion (for the norm
of Y—Xf)

(Y —Xp)Y M(Y—XB) e (49)
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to be minimired is not unique. Let us thevefore characterize the olass of all possible
matrices M in defining the ion (4.9) whoss minimization leads to BLUB'S.

Inmd.u"oinh-oduoog:umgqncnlityinthsproblamwodsﬁnoﬁbben
M-least squarea solution of ¥ = XP if it satisflee what may be called the normal
equation

X'MXg=XMyY, . (£10)
where M is not ily sy trio. Th 4.2 and 4.3 provide a complete
oharacterization of M such that a solution ﬁof (4.10) provides the minimum V-vari.
ance eatimator (BLUE) of an estimablo parametric function p’B in the form p'g.

Theorem 4.2: Let (¥, XB, 0°V) be @ GGM model and @ be any solution of

(4.10) where M is such that (4.10) is consislent. If p'ﬁ ia the BLUE of p', whenever
P'B i estimable, then it is NAS that M ia of the form

M = (V+XUX')+K. e (&11)
and
RX’MX) = R(X"), e (412)
where U and K are arbitrary subject lo conditions
MV X) = HV+XUX) = SYV+XUX), e (413)
and K slalisfies the equalions
VEX = VK'X == 0, XKX = 0. e (824)
By ion the equation (4.10) is i in which case §=(X'MX)'

X'MY is a solution. Let p = X'L, in which caso p'B is estimable. Then

E(p'f) = p'p = L'X(X’MX)-(XMX) = L'X.
Since L can be arbitrary
X(X'MX)-XMX =X
which == R(X'MX) = R(X'). Thua (4.12) is proved.
Ifp'/dis the BLUE of p'B for all p of the form X'L, then it is Nas that
X'MY are the BLUE's of their expeotod values. Applying the lemma on p. 257 in Rao
(1065) an Nas condition for X'MY to be BLUE' is

XMVZ=0 oo (4.18)
where £ is a matrix of maximum rank such that X'Z = 0.

The equation (4.15) == VM'X = XQ for someé (. Then there exiasts a
matrix ¥ such that

(V+XUX'M'X = X. o (406)
The equation (4.18) together with (4.12) = (4.13). Now let
M= (V+XUX')+K o (417)
choosing any g-inverss of (V+XUX’). Substituting (4.17) for M in (4.18) we have
(P+XU'X)EX=0 ... (4.18)
=) X'KX = 0 aince #(X) = #(V+XU'X). o (419)
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Then (418) and (4.10)==) VE'X = 0. From (4.15) and (4.19) we find VKX = 0,
which proves (4.11) with (4.14).

Note 1. 1t is ssen that when U = k% and K = 0 we have the choice of M
88 in Theorem 4.1, which is indeed simple nnd does not involve any computaton. But
Theorem 4.2 charaotorizes tho complete olass of the M matrices which lead to the
BLUE's via least aquares estimators of B.

Nole 2. Let fbe a solution of (4.10) with any M as oharacterized in
Theorem 4.2. Then

V(p'B) = o%p'(X’'MX)-p—otp'Up. o (4.20)
cov(p'B, ¢'B) = o*p' (X' MX)-g—a*p Ug. e (421)
Note 3. o have soen in Thoorem 4.1 that an unbiased eslimator of a*

ia given by
& = Y- XRY(V+RXX (Y —XB). e 422)
Is the formula (4.22) applicable whon we use any matrix M satiafying the conditions of
Theorem 4.2 instead of (V+42XX’)- 1 The anawer is not in the affirmative in goooral.

The exact form of M for such & purposo i given in Theorem 4.3. which containa the
basic result of the unified theory of least aquares.

Theorem 4.3: Let (Y, XB,0%V) be a GOM model and ‘ﬂ be any solulion of

XMXp=XxXMY. If p'ﬁ is the BLUE of any estimable paramelric funclion p'B and
further if an unbiased estimalor of o* is
5t = fYY— XPyYM(Y—XP), (423
J=R(V:X)—R(X)
then it ia NAS that M is a g-inverse of V+XUX' where U is a mairiz such that
MV : X) = AV+XUX') as in Theorem 4.).
1f p'f is the BLUE of any catimablo parametric function p'B, we have already
seen in Theorem 4.2 that M is of the form
M= (V+XUX'y+K o (a.24)

whare (4.14) holds. If in addition we want an iascd esti of ot as given in
(3.23) then it can be shown that VKV = 0 giving the result

(V+ XUX)K(V+XUX') = 0.
Hence choosing M a3 in (4.24)
(V+XUX')M(V+XUX') = V+XUX’
which shows that M is a g-inverse of V+XUX’.
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Theorem 4.3 provides the baaio result for a unified theory of linear sstimation
via least squares. Given ¥ and X, we choose o matrix U such that

MV : X) = MV+XU0X).

Then the vsual least equares theory ia applied using any g-inverse of (V+ XUX') in
defining the normal equation
X(V+XUX')>Xp = X(V+XUX') Y.

The variances and covariancos of estimators are as in (4.20, 4.21) and an unbiased esti-
mator of o if aa in (4.23). Tt may be noted tnat we noed not choose a n.n.d. g-inverss
of (V+XUX') or even n symmetric g-inverse in sotting up the normal equationa
and estimating a*, ote., aa nll the expressions involved are invariant for any choice of
(V-+XUX'). Ifin (4.10), X'MX is symmetrical then U in (4.18) can be chosen
to be symmetrical. Then (4.26) is obtained by minimizing (Y—Xg)'(V+XUX')
(Y—Xp).

5. AN IMPORTANT LEMMA

In the previous sectivns we found the BLUE's of estimable parametric
functions corresponding to & given disporsion matrix V. In this section we raise
the queation of identification of ¥ given the class of BLUE’s of all estimable functions.
It appears that the correspondence is not one to one and there is no unique V given
the class of BLUE's.

To specify the class of BLUE'S it ia enough Lo know the estimators of the para-
metxic funotions XB. Let CY be tho BLUE's of X, where without loss of generality
R(C) < R(X).

Theorem 5.1 provides the proporties of C and it relationship with V. Wo
obtain more general results than those given earlior by the author (Rao, 1965b, 1067b),
and Mitra and Rao (1969) in similar investigations.

Theorem 5.1 : Let (Y, XB, a*V) be a GGM model and CY be the BLUE of X,
where R(C) < R(X). Then it is NAS that

(i) CX =X, so thal R(C) = R(X),
(i) C is idempolend,
(ili) CV =(CV) or CV is symmeiric, and
(iv) € = XD where IV is a minimum V-norm snverse of X'.

Results (i) and (ii) follow from the condition of unbiasedneas of C¥ for Xp
and the condition R(C) < R(X). Result (iii) follows by expreesing the condition
that the covariance between CY and any linear funotion L'¥, such that L'X = 0,
is zero. Result (iv) follows from (i) and (iif).

Reeult (iii) ahows that there is no unique ¥ corresponding to a given C and
any V satisfying the equation CV = (CVY gives C¥ as the prum of XB. Theorems
5:2-5-5 examine the question a littls further.
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Theorem 5.2: Consider a gencral model (¥, XB, 0*V,) which is consistent
in the sense of section 3.1. If the BLUE of every estimable parametric funclion under
(Y, XB, 0*V,) 42 also the BLUE under (Y, XB, 0*V) where V pressrves the consisiency
of Vo, then it ie NAS that
HV2Z) C VoZ) e {B1)
where Z = X
We say that V preserves tho consistency of ¥, if
LV,=0,LX=0=LV=0
which is a reasonable requirement for L'V, = 0, L'X = 0 == L'Y = 0 us V, iz chosen
to be consistent. Observe that an Nag condition that L'Y is the BLUE under
(Y, XB, 0W,) is L'V,Z = 0. Furthor nny L satisfying the equation L'V,Z =0
provides a sLue. Thus Le AL(V,2)'). If L'Y is nlso the LUk under (¥, X, a*V),
then L'VZ = 0. If this is true for oll Le #[(V,2)"], then
Z'V(V2)t = 0 == MVZ) C smVi2).
Theorom 5.3: Let X, Z,V, and V be defined as in Theorem 5.2 und led the
columns of X and V,Z span the whole n dimensional spacc. Then it is NAS that
V= XAX'+V,Z BZV, . (52)
where A and B are arbitrary symmelric matrices.
Let V = PF and write P = XC+VZD. Then
V=XCCX+VZIDD'ZV +XCDZV+V,ZDC' X'
Applying tho condition Z'V(V,Z)* = 0, we have
ZVZDC'X (V) = 06 VZDC'X =0
leading to the represontation (5.2) of V.
Corollary 5.3.1 :  The expression (5.2) cun nlso be wrillen us
V = XAX' 4V 2ZBZ'V + V,. e (33)
Corollary 6.3.2:  If Vy= 1, then V can be represented in the forms
V — XAX'+ZBZ',
V = XAX'+ZBZ +1. o (6.4)
Theorew 5.4 : If the condition (5.1) is satisfied thon it is NAS that
V = Vot VZU+ WX’ v (5.5)
where U und W are urbilrary subject lo the condition thal V, ZU+WX' is symmelric.
We can write V = V4T in which case Z'T(V,Z)* = 0. A general solution
for T = V,ZU+WX'. (Note that the oxprossion (5.5) is not in n satisfactory form
sinoe the symmetry of V is not utilized.)
Notse 1: If V= I, then (6.1) reduces to A(VZ) C A{(Z), which is the samo
a3 the oondition X'VZ = 0 derived in my earlier paper, Rao (1967).
Note 2: Tt may be seen that V eatisfying (5.1) presarves consistency with

rospect to V,, i.e.,
L'Vy,=0, 'X=0=LV=0
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But consistency of ¥V may not be true with respect to V,.For instance if V, = I,
thon we oan find a singular ¥ suoh that _& (VZ)C .« (2). For such a V, the
BLUE's with respect to I are also BLUN's with respect to V. A aingular V implies
that there oxists a nonnull veotor L such that V(L'Y|V) = 0. But V(L'Y|1) # 0.

Nots 3: If in Theorem 5.2 we d d that the reciprocal relation must also
be true, i.0., V, preserves the consistency of V therl .MVZ) = AV, 2).

Now wo investigate the condition under whioh we can find linear cstimators for
all cstimabl io functions which are the BLUZ'S with respect to two possible
nlternative mudnln (Y, XB. o*¥) and (¥, XB.0o*V,). We restato a theorom proved
in Rav {1968) which provides the desired answer.

Theorem 5.5:  Let (¥, XB,o%) and (F. XB.0*V,) be two different models.
1f for cvery extimuble ;mmmdnc Sunclion we cun specify a lincar jm«dwn of Y wllldl iz
the BLUE whichever moded i true, then ruch of the foll
NAS.

g ¢ is

(i) H0:0:XyC AVZ:VZ:X).
(i) AVZ:V,2) and M X) are virlually disjoint.

zv zvz
(iii) -/t( ) Cc# ( )
zv, zZvz

Note tho subtle difference botween the Theorems 5.1 and 5.5. In Theorem 5.1
wo demanded that consistency under V, should be preserved under V. Theorem 3.5
doex ot require this condition, but it says that whenever ¥V, and V satisfy any
ane of the threo conditions (i), {ii) and (iii), we can apecify lincar functions of ¥ which
uro BLUE's whether V or Vy is true.  The relationship between ¥ and V, is symmetrical
in Theorem 5.5.

If L'Y is tho BLUE of p'B whether V or V, is true then L must satisfy tho
cquations
VL — XM, V,L = XM,, X'L = p. . (5.8)
Tho cquations (5.8) are equivalont to
ZVL=0,ZV,L=0, XL =p.

Wo nood this to bo true for all p of the form Xgq, for which any one of the three condi-
tions (i), (ii) and (iii) of Theorem 5.5 is NAS.

XNote ) : 1f the columns of X and V,Z span the whole » dimensional space,
then V satiafying any ono of the conditions of Theorem 5.5 oan be expreesed as (3.2)
and (5.3).

Nola 2: Given a partioular pair ¥ and V, satisfying any one of the condi-
tions of Theorem 5.5, tho common BLUE of p'P is L'Y where L is any solution of
the equations

ZVL=0=ZV,L, XL=p.
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6. BEST LINNAR ESTIMATION (BLR)

Not much work is done on BLE compared to that on BLUE. Referonces to
earlier work on BLE can be found in papers by Hoerl and Kenoard (1970a, 1070b) who
introduced what are called ridge regression (biased) estimators. In this seotion wo
approach the problem of BLE in & direct manner.

To make matters simplo and to compare BLE’8 With BLUE's lot us consider
the model (¥, XB, o%¥) with R(X) = m (i.e., of full rank) and |V #£0. Lot L'Y
bo nn estimator of p'B. The mean square error of LY is
E(L'Y—p'f = c*L'VL+(X'L—p)pp'(XL—p) L (B)
which involves both the unknown parametera o and B, and as it stands is not & suit-
able eriterion for minimizing. Then wo have the following possibilities.

(i) Choose an apriori value of o~'@ say b, basedl on provions knowledgo,
and set up the criterion as ¢3S where

S =LVL+(X'L—pYW(X'L—p). ... (62)
with I¥ = bb".

(ii) If B is considered to have an apriori distribution with a dispersion matrix
o where W is known, then the oriterion is #S whore § is of the same form as in (6.2).

(iii) We observe that the expression (6.1) ia the sum of two parts. one ro-
presenting tho variance and the sccond bias. In such n case the choice of IV in the
criterion (8.2) represents the relntive weight we attach to bias compared to vanance,
Then W may be choson taking into account the relative importance ol hins and variance
in the estimator.

TE S, as in (6.2). is chosen as the criterion with an appropriate symmetric W,
then Theorem 8.1 gives the optimum choice of L.

Theorem 8.1 : The BLE of any function p'B is p‘ﬁ where

B = WX(VLXWX)Y. e (6.3)

The mimmutm value of S ia attained when L satisfics the equation

(V+-XWX')L = XWp
so that L = (V4+XWX')'XWp giving tho estimator
LY = pWX'(V+XWX')'Y = p'p. o (0.4)
The ostimator 'p may be called BLE of B.
The BLUE of @ is (using Theorem 4.3)
B=(X'TX)'X'TY, T = V+ XWX . (8.5)
whereas the BLE of f s
f= WX'TY =GB, G=WXTX. .. (8.8)
which eetablishes the relationship between @ and ﬁ The mean dispersion error of
ﬁ is
F = GDG +(G-Npp(G-1Y . (8.7)
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where D is the dispersion matrix of é The matrix D—GDG’ is n.n.d. 8o that there
is a possibility of D—F being n.n.d. for a certain rango of values of B. Thus, if
we have some knowledge about the domain in whioh B is expected to lie, wo may be
able to chooso WV suitably to ensuro that the BLE's have uniformly smaller mean dis-
porsion crvor than the sLue's. Further i igation in this direotion such as
comparison of the estimator (8.3) with tho ridge estimator of Hoerl and Kennard
(1070n, 1870b) will be useful.

We have nssumed that the ranks of X and V aro full. Wo can obtain BLE's
when these litions are not watisfied by following the methods of sections 3 and 4.
For inatance in tho formulac (6.3), an appropriate g-inverso may he nsed when the
regular inverse does not exist.

7. BEST LINEAR MINTMUM BIAS ESTIMATION (BLIMBE)

We consider the cax model (¥, XB, o*V). which as mentioned earlier inoludes
the caso of conatraints on the § paramoter,

When R(X) 7 m, not all linear parametric functions admit linear unbiased
estimators (LUE). Iu fict an xas condition that p’-has a LUE i3 that pes(X’).
Wo raise two questions.

(i) What is the minimum restriction to be put on B such that every para-
metvic function ndmits n LOE and hence the BLOE !

(ii) In what sense can we find a best lincar minimum bias estimator (BLIMBE)
of p'B if it docs not admit o LUE ?

The answer to the first question is contained in Theorem 7.1.

Theorem 7.0 : L&t R(X) - r < m. The minimum resiyiclion on B can be ex-
pressed 1n heo allernalive forms.

(i) RB=c¢, RR) = m—r and SR') (" AHX') = {0).

(i) B =d+TX'y, where T is any matrix such that RXTX') = R(X) and

y ix arbitrary.

The first restriction is obvions and the socond ean be deduced from the first.
Both the restrictions imply that the parameter @ is contained in a hyperplane of
dimension r.

To answer the second question we procced as follows. Tho bias in L'Y
a3 an eatimator of p' is B'( X’ L—p) which is zero if and only if pe A(X’). If not wo
will try to minimizo the hias by ohoosing L in such a way that | X'L—pi|, » suitably
defined norm of the doviation X'L—p, is a minimum (ses Chipman, 1964).

Theorem 7.2: Let the norm of a veclor w be defined as |u| = (u'Mu)t where
Mis pd. Then a LIMBE of p'f is

PUX Ypg)l' ¥ = Xy Y- e (1)
The result of Theorem 7.2 follows from the definitions of least squares and
norm g-i and their equival relation a8 given in Theorem 1.1,
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Note that if M is not p.d. but only p.a.d. then a LumR of p'R is
PUX o V- e (12)
The LIMBE may not be unique in which case we aball choose one for which
the variance is a minimum. Such an estimator may be called BLIMBE.
Theorem 7.3 : Phe BLIMBE of p'P, i.c., o linear function L'Y such that
L'VL s a minimum in the class of L which minimizes the bias,
N1X'L—p|' = (X'L—p)Y M(X'L—p). is p'[(X")3,,]' ¥.
where (X')},p 14 the minvmum V-norm M-least aquares inverse of X'.
The result follows from the definition of a W-norm M-loast squarea inverse of
X'. Explicit exprossions for such inverses in various situations are given in Rao
and Mitra (1971a).
8. ('ONOLUDING REMARRS
1. It is shown that the problem of linear estimation and inforence from a
aoM model (Y, XB, o*V) where multicollinearity may oxist in the exptanatory vari-

able X and the dispersion matrix o*¥ may be singular {which includes the case of
on the B paramoter) reduces to the numerical computation of a g-inverss

of the symmetric matrix.
vV X
. . (80)
X o

Theorem 3.1 shows that the computation of a g-inverse of (8.1) is like opening a Pandora
boz, giving all that is necessary for drawing inferonces on .

If need be, different situations such as singularity of V, deficiency in the rank
of X otc., may bo considered in computing a g-inverse of (8.1). But one need not
think of distinguishing botweon the modols in the beginning by these situations as the
approach given in Seotion 3 is the samo for all cases. Efforts should be mado to obtain
a suitable algorithm for computig a g-inverse of (8.1) in an efficiont way. The com-
putational methode developed by Golub and Kahan (1965) and Golub and Reinsoh
(1969) for singular valuo docomposition of a matrix and related problems might
provide the answer.

An nlgebraic expression for the g-inverse of (8.1) in terms of g-inveraes of
{(V+XX’') and (X(V+XX’)-X] ia given in Theorom 3.8.4, in Rao and Mitra (1971a,
p. 68).

2. A general mothod of least squres is proposed which is simplo and valid
for all situati The expression to be minimized in all situali wvhether V sa
singular or nol, is

(Y—XBYM(¥—XB)

where M is any g-inverse of V+XUX', U boing any matrix such that .V :X)=
AMH(V+XUX'). A simple choice of U = k31, k 5t 0 in which case M = (V+k'XX')~.
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This generalizea Ajtken’s result when ¥ is singular. It is observed that the least
squares method is not based on a primitive postulate but it is an artifact for compu-
ting minirhum varianoe linear unbiased estimators.

8. An important lemma is proved to examine complete robustness of rLuE’s
with respeot to alternative dispersion matrioes of tho observation vector in the Gausa-
Markoff model.

4. A case has been made for dropping the criterion of unbiasedness and using
prior knowledge for uniformly improving the BLUZ’s. Such estimators are ocalled
BLE'S.

5. Minimum variance minimum bias estimators are proposed in cases where
unbiased estimators do not exist.

Appendix
THE ATOM BOMB AND GENERALIZED INVERSE

The author was first led to the dofinition of o pseudo-inverse (now called gene-
ralized invrese or g-inverso) of a singular matrix in 1954-1955 when he undortook to
carry out multivariate analysis of anthropometric data obtained on families of Hiro-
shima and Nagasaki to study the effects of radiation due to atom bomb explosions,
on a request from Dr. W. J. Schull of the Univorsity of Michigan. The computation
and use of a pseudo-inverse aro givon in o statistical report prepared by the author,
which is incorporated in Publication No. 461 of tho National Academy of Sciences,
TU.S.A., by Neel and Sohull (1056). It may be of intorest to the audience to know
the ciroumstances under which the pseudo-inverse had to be introduced.

Let us consider the standard Gauss-Markoff model (¥, X, of) with X of
full rank, and write the normal oquation as S = @. Since S is of full rank, C = §-!
exists giving f = CQ as the solution of SB = Q. Then Vip'P) = o*p’Cp. The matrix
C, called the € matrix of Fisher, thus plays an important role in computing the esti-
mate of any paramotric function p’@ as well as tho varianco of its estimate.

Wheon the rank of X is not full, n situation which was first formulated by
R. C. Bose, the author (Rao, 1945a) showed that the theory of least squares is atill
applicable, i.c., tho normal equation SB = @ is solvable and the BLUE of an ealimable
parametio function p' is p'@ whero @ is any solution of S8 = Q. To find P(p'f)
the following rule was suggested. Ifp’B can be expressed as k’Q, then V(p’f)=
o*k'p, which works well in many problems but not convenient as the computations of
k for each p is a little involved when the matrix X does not have a aimple structure.

The atom homb data had a bighly non orthogonal deaign matrix X in addition

to some defici in rank. Estimates of different had different precisions
and I did not know what contrasts were of interest to the investigators for which
I should provide estimates and also pute their dard errors (by the formula

proposed in my 1945 paper). This led me to leok for a matrix € in situations where
8 in singular, which can be used in the same way as the C matrix of Fisher in obtain-
ing & solution to the normal equation and also in computing in a simple way the
standard error of any desired st without any algebrai ipulati
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1 established the existenco of such a matrix € and also showed how to compate

it when § js singular, which I called a pseudo-invorse of 8, with the property that
(i) f=CQ is a volution of Sp=Q,

(ii) p'ﬁ is the BLUX of p'B, and

i) V(ph) = op'Cp.
whero p'f is any wstimable function. In my roport to the Michigan University I
gavo the C matrix oxplaining how it can be used to find the variance of any contrast
they wished to examino hy simple matrix multiplication. The abovo results were also
given in Rao (1933).

Later, I iliscoveroil Penrose’s 1955 paper published nbout tho samo time,
where g-invorso way defined using four conditions out of which only two wore satisfied
by my pseudo-inverso. Apparently my work shuwed that in the disounsion of least
squares theory onv needs n g-inverse only in the wosk senso defined in mection 1.2,
This was further demonstrated in another paper (Rao, 1862).

Part of the data collocted from Hiroshima and Nagnenki was sent to the
statistics dopartment of the Univorsity of North Carvlina, and I understand from
Dr. M. Kastenbaum that the data had stimulated new rescarch in the analysis of categori-
cal data. It was leo repurted that the Japaness geneticists used tho backyards of their
hattered homes to duct oxperi on plants for studying the offects of radiation
soon after the bomb wax dropped, and papers were published on the subject.

It is hard to bolievo that scientists have found in what has been described as
the greatest huran tragedy a sourco for providing material and stimulation fur research
in many directions.
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