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1. Introduction

PRAKASA RA0 (1979) obtained bounds on |0, —0,| for discrete time stationary
MARKOV processes where 0, is a maximum likelihood estimator (MLE) and 8,
is a BAYES estimator of the parameter 0 corresponding to some smooth loss
function and some prior, extending the earlier work of StrAsser (1977) in the
case of independent and identically distributed observations. It was also proved
in PrakAsa RAo (1980) that Q(T) (0 —0;) — 0 a.s. (Py,), as T— o0, where 0, is
the true value of the parameter and Q(T) is a suitable continuous function
monotonically increasing to infinity as T— oo, for a class of diffusion processes
satisfying a linear stochastic differential equation. In particular it was shown
that the asymptotic behaviour of the Bayes estimator 0, and the maximum
likelihood estimator 0, is the same, as T approaches infinity. In this paper,
bounds on ](7T—§T| are obtained generalizing the earlier work of PRAKASA RAO
(1979) for discrete time stationary MARKOV processes and extending results in
Prakasa Rao (1980) for diffusion processes satisfying the linear stochastic
differential equation

dX,=0a(X,)dt+b(X,)dW,, 0<t=T, (1.1
Xo=x¢eR,

where {W,, t =0} is the standard WIENER process. Interalia, we obtain 2 BERRY-
ESSEEN type bound for the BAYEs estimator 0, under some regularity conditions.
MISHRA and PrAkAsA Rao (1985) derived a BERRY-ESSEEN type bound for the
maximum likelihood estimator of the parameter § for processes defined by (1.1).
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2. Assumptions and preliminaries

Let (2, 3, P) be a probability space. Consider the one-dimensional stochastic
differential equation (1.1} defined on (2, J, P) where {W,, t >0} is the standard
WIENER process.

Assume that there exists a unique solution X ={X,, 0<s<T} to the
stochastic differential equation (1.1) for every 0 € @ open in R. Denote by P
the measure generated by the process {X,,0<s<T} on the space (Cr, By) of
continuous functions on [0, T'] with the associated sigma-algebra B; of BOREL
subsets of C; generated under the supremum norm. Let E; be expectation with
respect to the measure P} and Py, the measure induced by the standard WIENER
process on (Cr, Br). Let 0, denote the true value of the paramelei.

Throughout the paper we shall use C;, C, etc. for positive constants. We
assume that the following assumptions hold.

(4,) Suppose that P and P{, are absolutely continuous with respect to each
other for all 0, € . It is known that the RADON-NIKODYM derivative of Pg, with
respect to Pj_ is given by

(XDy=exp| (0, —0 )j dW—— ©,—0 )ZjT’“Z(X’ dt] @1
dPT 0 p 0 ) 1 0 ! b? X)) -

where XI'={X,, 0<s<T}. This can be seen from LiPTSER and SHIRYAYEV (1977,
p. 248). Here b(X,)dW,=dX,—0,a(X,)dt and the stochastic integral is with
respect to the probability measure Py, .

(A,) Suppose that 4 is a prior probability measure on (@, B) where B is the
sigma-algebra of BorkL subsets of @. Suppose A has a density p(-) with respect
to the LEBESGUE measure on R. Suppose the density p(-) is continuous, strictly
positive on @ and there exists C, >0 such that

1p(0,)—p(0,)|£Cy10, — 0, (22)

for all 0, and 0, € ©.
In addition to (4,) and (4,) assume that
(45) the density function p(-) satisfies the inequality

A

{ lul pwydu<oo

A
and
2

T X,
(A4) 0< El) j (1(;
0

dt for all
bAX, <oo forall T>0, 0e®.



M ystara, M. N.; PrAKAsA Rao, B. L. S.: Diffusion Processes

615
IDefine
X,)
2= 07Ty [ AW,
and
-2 T a*(X,)
Br=20 (T)gbz(Xs)dS’

where Q(T) is as given by (4s) given below. Here too b(X)dW,=dX,—
— Oga(X,) dt.

(A 5) Assume that there exists a sequence of positive numbers Q(T) possibly

depending on 0, and tending to infinity as T— oo such that fr—1as T— oo
in P{-probability.

Observe that

T

I <
log 7| =0 —00) QT)otr— *(07~00)2 BrQ*(T)
dPGo &= 91‘

and, using the above relations, it is easy to see that the M.L.E. §T satisfies the
relation oy = (0 —0,) By Q(T). For simplicity we write

dpf dp?

O

apl for dP: evaluated at 0=10,.

(As) Suppose that 0, %> 0, under P probability as T — oo.

Let us denote the posterior density of (0 given XJ as p*(0|Xg). Then we
obtain

dPg dP
PHOIXD = gpr (XT)p(O)/f Sor (XD p(0)do

8a

and write
t=Q(T)(0—0y).
Then the posterior density of Q(T) (0—0,) is given by

P (e1X5)=Q U T) p* (0, +107H(THXS).
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Let
" dPy +1Q " Y(T) dP{ +1Q " (T)/dP{,
t - ’r - @ ___ T R )
’ dP; dP; AP}
and
Cr=§ {(T)p0p+tQ Y T)dr.
Then
Pt X3)=Ci {4 (t) p(0r+tQ 1(T))
and

1
log {+(t)= —3 Brt? (cf. PRAKASA Ra0O (1979)).

Let O, be the Baves estimator of the parameter 0 occuring in the stochastic

differential equation (1.1) corresponding to prior density p(-). It is easy to see
that

]9 sCr(s)p <(7T+ST> ds
IR Y N S A (2.

1 Loy ((% +Q—(IT)> di

(cf. Basawa and PrRAkAsA Rao (1980, p. 242)). This follows from the relation for
the generalized BavEsian estimator given in equation (126) in the reference cited.
The generalized Bavisian estimator reduces to usual BAYEs estimator in our
discussion, for quadratic loss function, since p(-) is a density.

3. Main results
We now state the main results.
Theorem 3.1. Let the assumptions (A,) to (A,) hold. Let Z(T)} oo and r,(T) )0

such that Z(T)/Q(T))0 as T— oo. Ler us denote
=ry(T) and Q*(T)e *M2 = (T). Define

Zip — (1) Qe =

do = [L/zﬂ Cir(T)+ 2[7((71-) + C,ry(T)] er%(T)
T= 2T AP RN T
Pl /27 (1= R(T)
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where R(T) = R ((T)+ Ry(T) with

/21 p(03) (€T — 1) + 2Cy 1y (T) 1D

/27 p(0y)

Rzi!‘):{g(T)e’%‘T’—i—zpﬁg ) / T)}/p(() ))/2m,

for some 0 < A<<1. Then, for T large,

R,ii)=

and

Po {10 = 0r>dpry(T)} S 6 PY{|Br—11>2r1(T) r3(T)} + 2P5 {Ifr~ 11> 1}.

Remarks 3.0. If a(:)=bh(-) and Q(T)=T"? then B;=1 and Theorem 3.1
implies that for T large

Pi, (10— 0, >dyry(T)) =
Hence |0, —0p| < dpry(T) with Pg.-probability one for T large. Note that

9
dT%‘/ ~and r,(T)— 0 as T — c0.
7T

Theorem 3.2. Let the assumptions (A,) to (Ag) hold. Furthermore suppose dp is
as defined in Theorem 3.1. Let r¢(T) be a positive sequence decreasing to zero such
that rs(T)=(Q(T) r4(T)) "' |0 as T —> oo. Then there exists a constant C3>0
such that, for T large,

PHTO{|(7T_00|>dT"2(T)+r5(T)}
<6PL {|Br—11>2r3(T) r}(T)} + 2PF, {|Br — 11> 15(T)}
+2P5 {|Br— 11> 1} + C5( (re(T))"2.

We shall use the following lemmas for the proofs of theorems. Proofs of the
lemmas are given in the appendix.

Lemma 3.1. Let (Q, S, P) be a probability space and f:Q —> R g:Q— R be
J-measurable functions. Let d>0 and 0<r<1. Then

g(w)
[For the proof, see Lemma 2.1 of MisHRA and PRAKASA R0 (1987}]

P{ S )>d}§P{w:f(W)Zd(1*f)}+P{Wi|g(W)—ll>"}'
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In the following lemmas, let r(T)|0 as T— oo and ry(T) be as defined
earlier.

~ L1y 2
Lemma32. PL{ | p@p) (e 2" —e 2" )dil>)/2n pldy) 01}

[t|=2(T)

< Py {lBr—11>2r3(T) r3(T)}.

EEUR R R ,
Lemma 3.3. Py {| | e 2hr <p<0r+Q—(tT)>—p(0T)>dtl>2C1r2(T)e'1(T)}

li]22(T)

< Po By —11>2r3(T) r3(T)}.
Remark 3.1. From Lemma 3.2 and Lemma 3.3 we get,
oAl e (O g e, 4 pne e
=21 Q(T) ll=zT)
> (/27 p(0p) @1 = 1) +2C, 1, (T) 1)}
< 2P {|Br—11>2r3(T) r3(T)}.
Hence,

D . ~ _1, ~
P, {l | (e 2 P<0T+Q(tT)>—P(9r)e 27)dt|>p(0r) /27 Ry(T))

22Ty

<2Pg {IBr—11>2r{(T) r3(T)}, 3.0)

where

V21 p(07) (€77 — 1)+ 2C, ry(T) ¥

l/ﬁ P(gT)

R(T)=

Lemma 3.4. For T large,

PRI | e <0 Tt om ))d”Czrs(T)el‘“}

[t}>2Z(T)

< Po {IBr=11>2rH(T) r3(T)} + Py {IBr — 1> 1.

1.2
Remark 3.2. p(0;) | e 2" dt
[t)>z(T)
p([,l,)eﬂA/Z)zz(T) f e @Dy 0<i<l)
[t]>Z(T)

A

A

() 2
V[()lfl) Van S rim. (3.2
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Lemma 3.5. For T large,

Pt r Oy
UL'],]<§ZU)[C l)'p< +Q(T))

= P {1Br=11>2rH(T) r3(T)}.

Lemma 3.6. Pl {| [ p(0,)t{p(t)de|>2p(@;)e i)

ftlsZ(T)

< Py {1Br—11>2r3(T) r3(T)}.

Lemma 3.7. For T large,

Péo {Im >Izm tlz(t) p <9T + ﬁ) dt]> Cyry(T) e i™)

= P {1Br—11>2r(T) r3(T)} + Py (I~ 11> 1}.

We now discuss proofs of Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Observe that, for T large,

1 12 =N t . _1,
Pill | e ZBIP<0T+Q—(T‘))<“‘ { p@Ope 2 de|>

j1]>Z(T) [t} > Z(T)

> r,(T) erf(T) + ZPEQT) (12—_“1) r%(T)}

lt|>2Z(T)

~ ry(myerien  200n) (f_’}) (7))

1 2 .  dp
<P! e 2 p<ﬁ )dt+ p(G)e > de>
"°{.,,sz o ! T

1 pe . t 2
<PI{ | o' p(9T+——Q(T)>dz>r3(T)e T

le1>2(7)
< P {IBr—1>2rH(T) r3(T)} + Py {IBr — 11> 1}

Now, using the inequalities (3.1) and (3.3), we get that, for T large,

a0

© L lpg2 ~ _1p
P;){l_jwe 2hr (0 +Q(T))d['.5w p(0p)e 2 di|>

>p(0r) /27 (R(T) + R, (T))}
<3PL {|Br—1>2r3(T) r3(T)} + Po 1B — 11> 1}

p(0) 1de|>]/2n C,ry(T)

619

er%m}
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The above statement can be rewritten as,

1 ppe

< 3Pg {1Br—11>2r3(T) r3(T)} + Py {|fr— 1> 1}.

Observe that R(T)=0 and R(T) % 0 as T— oc by assumptions (4,) and (A4,).

Again, following the above procedure and using Lemma 3.5 to 3.7, we obtain,
that for T large,

Now,

PLU T tt)p < Q(T)>dt|>(1ﬁ5 C,ry(T)ern™

— 0

+2p(0p)e ™D+ Cy ra(T) e )

< 3P4, {IBr—11>2r3(T) r3(T)} + Py {IBr — 11> 1}. (3-5)

Pg;){mT“OTI >dpry(T))

=«

~ t
§ (Ml (T)p (0T+ﬁ> dt

:Pg:J - ” . >dyr,y(T)
L Lr() p (0r+ﬁ>dt
(by using equation (2.3))
(T 0
=P ! o C'(M > dy 1, (T) (1= R(T))
p(0o) /21

Tanwp<T+ri—)

+ P o —1|>R(T)

p0p))2m

(by Lemma 3.1)
=J; +J, (say).
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The first expression

Ji=Ph{n(T) | rcT(t)p@T de|>

Q(T)>
>dpry(T) p(07) /27 (1— R(T))}

—pT R 1) rH(T)
Poo{l_jwtcT(t)p(ef Q(T))dr|>Vz7€1r2<T) +

+2p(07) e+ C, 1y (T) e 1))
< 3Pg, {Br—11>2r{(T) r3(T)} + Pi {IBr— 11> 1},
by using the inequality (3.5).

Similar type of bound for the second expression J, has been mentioned in the
inequality (3.4). Using these two results, we obtain that, for T large,

Pa {107 — 071> dpry(T)} <6PL {IBr—11>2r(T) r3(T)}
+ 2P0 {|pr—1]>1}. (3.6)

This ccmpletes the proof of Theorem 3.1.

Pro :f of the Theorem 3.2. Taking into consideration the assumption (A4,), it
can be seen from Theorem 3.2 of MisHrA and PRAKASA R0 (1985) that,

P3, {107 = 001> rs(T)} < C3 /r6(T) + 25 {1Br — 1] > 15(T)}. (3.7)
Thus, from the inequalities (3.6) and (3.7), we prove the Theorem 3.2.
Remark 3.3. The bound is uniform over compact subsets K of @ provided p(-)

is bounded above and bounded away from zero for 6 e K. The expression
R,(T)+ R,(T) in Theorem 3.1 can be explicitly computed in terms of r,(T) to

re(T) and p(0). Observe that d > /2m as T— oo and hence bounded in T.
4. Example

We now illustrate the above result by considering the linear stochastic differential
equation

dX, =—-0X,di+dW,, >0, -
Xo=
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where 0 € [«, y], >0, y>0. Let us choose Z*(T)= T, r?(T)=T 5. MISHRA
and PRAKASA R0 (1985) have shown that for equation (4.1), Q*(T)=T/20, and
there exists a constant C, >0 such that, for &(T)=T"2/5,

Poo {IBr—11Ze(T)) < Ca(Te*(T)) ' =C, T 15,
Using these, we obtain from (3.6),

PI {0y —0pl>d, T VO < Cy 715 (4.2)
and from (3.7)

PT {103 — 00| >T 15} < Cg T~ 32% (4.3)
by choosing

— m 3/10
rs(T) =" r(T)=T" and Q*(T)= 20,

Suppose conditions (4,) and (A45) hold for the density p(-). It can be seen from
MisHrA and Prakasa Rao (1985) and FriGIN (1976), that other conditions hold
for the stochastic differential equation (4.1). Thus, using the results in Theorem
3.2, we obtain from (4.2) and (4.3) that for any constant C, >0 there corresponds
another constant C¢>0 such that,

Pg;{lgr—b‘ml >dp C; T V0L < Cg T 320,
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Appendix
Proof of Lemma 3.2.
_1 2 1., N _ R 5
PLl [ @2 —e 2" ppdi>1/27 p(0,) @0 -1}
lel=2(T)

1o 1, _ 3.
§P{’TO{ 5 e 2! le 12T U~1|dt>l/ﬁ(er‘(”—1)}

fszr
L 1114

=Pl [ e o di>)/ 2w (e 1))
2 2(1)

(since |1 —e *|<e—1 for all x)

oor
-1y 731
€

P 2y )>|/2m (i —
= Po B —=11>2r2(T) r3(T)}.
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Proof of Lemma 3.3.

PLL e_;BTﬂ(P<§r+é%;>—p(éﬂ>dt|>2C1r2(T)e'f‘T’}

[t| =2(T)

T 3802 A
épao{ 5 € Ip{ Op+

1|2 Z(T)

t ~ 2
N =p(@)dt>2C, r,(T)e" D
Q(T)) p(O:)l RALE }

1, 2 2
<PL{C,r(T) | ltle 277 di>2C,ry(T)er i)

[tl=Z(T)

(by assumption (4,))

T -ea-1pr-1 1)
_§P(,O{C[r2(T) f jt]e dt>2C,r,(T)e" }
<z
_1, - _1., N
=PL{C,ry(T)e 250 e 2" de>2C,ry(T)eri
Jt]| =Z(T)
) l 2 A 2
<PL2C,Me” PP S 20 () et
=PI {|pr—11>2r}(T) r3(T)}.
Proc¢. of Lemma 3.4. For T large,
Pr{ | el (6 TR )dt>r (T)eri™M}
() € p " T ATy !
45z Tho(T) }

~ t 2
<PI e-('2/2><1"ﬁr10p<0 +——“>dt>r (T)en ™}
SRLA T ’

+ Pg, {IBr — 11> 1}

<PI{ | e @@mDabr-Wo(T) p(0y +u)du>ry(T)ei D}
lul>Z(T)QT)

+ Py, {ir— 1> 1} (By assumption (Ag))

22D ,
<PL{r(Me” 27 s (Mt + PL{|Br—1]>1}

= Pg, {1Br—11>2r}(T) r3(T)} + P, {1fr— 1> 1}.
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Proof of Lemma 3.5. For T large,

PEI | rcr,«r)lp(éﬁé)—p@)|dr|>1/ﬂclrz(T)e'f‘”}
1< Z(T) Q(T)
<Pr{l | 200 Cira(T)dt]>)/2m Cyry(T)en ™)

1l £Z(T)

(By assumptions (4,) and (4))

1o .
T 5~ —[Br—1D rA (TN
<P;{ | 1t di>]/2n eri™}
ltj<Z(T)

ZX(T
<PT fe 1Br— 1|—(‘)' ° 2 7%12d[> 2 er%(Tﬂ,
= 90{ f € n ]

= Py, {|1Br—11>2r1(T) r3(T)}.
Proof of Lemma 3.6.

Po,{l | plp)t L (t)de|> 2p((77,)er%<'r>}

[t =£2Z(T)

~32A—|pr—1)) 2r
<Pr{ [ le? > 2enM)

lt|=Z(T)
22 (T) w© 1,5
T Bz —1] -t 2(T)
<P; {e | ltle 2 di>2enM)
- o

= Pg, 1B —11>2r{(T) r3(T)}.

Proof of Lemma 3.7. For T large,

Poll | t@p (éT

[1>2Z(T)

Q(T))‘“'C rs(T)er D}

<P { [ ltle@2a=lpr=tby (() +¥>d1>C3r4(T)e'%m}

|t] > Z(T) Q(T)
=Pol [ lul p(Op+u)du Q> (T)e #*(Ty2a=lbr=ih
{ul>Z(T)/Q(T)

> Cora(T)e ™) + PL{1B—1]>1)

zNT
Br—1] &

= P, Cara(T)e 2 >Cyry(T)e ™} 4 PL B —1]>1)

(By assumptions (4,) and (A4,))
= P(L UBr—11>2r{(T) "%(T)} + Pg;y“[ﬁ* 1>1}.
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