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ABSTRACT : Defect interference is a situation where an item
stamped as a defective of one category may have defects of other
categories also. This is particularly noticed in the inspected data of
rail inspection where an inspector stops inspecting items for
ascertaining defects of other categories as soon as one defect
category is first noticed. In this paper we provide an optimal
sampling procedure for the estimation of defect categories in case
of Interference when defects occur independently.

1. INTRODUCTION

In [3] Mukherjee demonstrated the defect interference problem
in rail inspection were an inspector stops inspecting defects of
other categories as soon as one defect category is first noticed. He
provided the statistical process control procedure of incidence of
defect categories in case of defect interference when an inspector
inspects two defect categories in the order A, B in a random
sample of n items. He assumed the defect categories A and B to
be probabilistically independent and provided the estimators for
defect categories A and B from the inspected data of such items.
In [1] Chandra and Sinha found the optimal sampling strategies for
defect detection in case of defect interference when two defect
categories are not probabilistically independent. They found the
estimates of parameter of interest in an optimal manner with and
without taking into consideration the budgetary constraint.
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We propose here an optimum sampling plan for two defect
categories A and B where they occur independently by assuming
their respective true proportions of defectives as n, and =, in a
particular reference population. In order to estimate =, and =,
based on a random sample we will follow the following sampling
inspection scheme :

First draw a sample of size n and after inspecting for category A
first, suppose n, of them are rejected due to A and of the remaining
(n-n,) items n, are rejected due to B. Next draw a second sample,
independent of the first one, of size m after inspecting for category
B first, suppose m, of them are rejected due to B and of the
remaining (m-m,) items m, are rejected due to A. Our purpose is
to find the optimal sampling plan for the estimation of n, and n.
After finding the maximum likelihood estimators (m.l.e.s) of x,
and n;, we find the optimal'values of n and m by minimising any
one of the following three viz.

i) tr(D)
it)  generalised variance or |D|
iit)  v(p, U )

subject to m+n = N, where D is the dispersion matrix

[GM GAB}
Opp

of (=,, ny). Aditionally, we also propose to include the cost aspect
of the plan by maximising the effeciency per unit, cost which is

equivalent to minimising VC, where V is the average variance and
€ is the average cost.

2. RESULTS

The m.les of r, and =, are :

=33

a=(n, +m))/(n+ m-m,) and

M= (m, +n)/(m + n - n,).
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It is easy to show that the T. and ®s are unbiased with the
dispersion matrix given below :

n,(1-7,)
n+m(l-n,)

- na(1-7,)
n+tm(l-n,)

0

Theorem 1 : Minimization of tr(D) subject to n + m = N and
m,n>0 provides the optimal values of m as

My  N-1

NN if (I-x,) < (1-m,)’
1=30=m,) |

T my+dm, if (1-,)' < (1-x,) < (1-n)"?
] I

N if (1-7)"" < (1-7)

where 5 = /(1-7,)/(1-7,).

wn,(l-m,) N ny(l-my)

Proof : tr(D) = n+m(l-xn,) m+n(l-m,)

Since n+m = M, tr(D) can be written as

RAQA + RBQB

N-mn, NQ, +mn, = { say, where

Q,=(1-=x,)and Q, =(I -r,).

df N-mn o
0 _..._______B__.: i QA/QB=i8,Say

Setting —d;: we have NQ, +mn,

tr(D) =

i.e., if m, and m, be two roots then

N-mmn, -5 and N-m,ng —_5
NQA + mInA NQA + msz
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=>m, = N(I - $Q,)/(r, + &x,) and m, = N(1 + 3Q,) / (x, - &m,).
Note that i) ~(NQ,/x,) < m, < (N/x,), and
ii) either m, > (N/n;) or m, < -(NQ,/=x,).
To find the minimum, let us note that
d*f

>0 and dm?

m=mj

d’f

dm? < 0

m=m2y

The function tr(D) is discontinuous at two points, N/zx; and
-(NQ,/=,), and is continuous for all m such that -(NQ,/zn,) <m <
(N/n,) with a unigue minimum at m,. But for feasibility of the
solution we must have 0 < m < N,

So the following three cases are worth noting -
case (i) : if 0 < (1 -8Q,) < (n, + &n,)
ie. 8Q,°<1 and Q, < &
ie.3Q,<Q, < Qy/3, thenm_=m andn, =N-m_,
where m; = N(1 - 8Q,) / (=, + 8m,).
case (ii) : if (1 -8Q,)<0,ie 1/Q, <35, then obviously m,

= 1and n = N-1.

¢

case (iii) :  if (n, + &m,) < (1 - SQ,)

ie. Q, £3Q,, then m_ =N-land n_ = 1.

1! L

Therefore, the theorem follows from the above three obser;'ations.

<
Remark 1.1 : If r, 2 =, and N 2 3 then (n_ /n) S (1/2).

<

m

no t [V
Remark 1.2 : Let "I:]B‘(PaQ) and -Nl(q, P) denote the optimum

n m
ratios of ﬁ and —T\T respectively when =, = p and =, = q, then
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opl opt

(p qQ = (a4,p) .

Remark 1.3 : Let B = n,/x,, then for small values of n, and n, we

nopt 3- B ]
if — 3.
have N 2(1"'[3) 3 <B <

In Table 1 we display the values of n, /N for different values of
B so as to highlight the change in the values of n_/N for various
choices of B.

TABLE I : n /N for various B
B 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.80 0.90 1.00

n

opt

N

098 093 0.88 0.83 0.79 0.75 0.71 0.68 0.6! 0.55 0.50

Remark 1.4 : n /N need not be studied seperately for | < < 3

. n,
since

Theorem 2 : Minimisation of generalised variance [D| subject to
~m+n = N provides the optimum values of m as
mopt

N

H

12 (1 - ) if o < 1

i

(N-D /N if a < -1
where o = 1/n, — Vm,.

Proof : The problem is equivalent to maximising 1/|D{ subject to
n+m=N.

Max L = gy NMTINO, )
" || P, Q, 1, Q,

Taking derivative
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with respect to m and equating it to 0 yields Nz, - mn, nt; - NQ, =,
- mn,n, = 0. This implies that maximum of f, is attained when m
= N(1 - a)}2 = m,, say, since the second derivative of.f, with
respect to m taken at m, is negative. It is clear that -(NQ,/x,) <m,
< (N/m) where - (NQ,/x,) and (N/ry) are two discontinuity points
of |D|. However for the solution to be feasible we must have 0 <

m < N. So let us examine the following three cases—

Case (i) :1f0 <(m, - m, + m,7;) < 2n, 7y, i.e. |aj < | thenm =

m,.

Case (it) : If (n, - =y, + 7, 7y) < o then m, < 0. Since m > 0 always,
thereforem  =1and n_, =N -1 asthe function is decreasing on
the interval [m ,N].

Case (iii) : If 2n,n, < (m, - my, + m,7my), ie. o < -1, thenm, > N.
Since m < N always, therefore m,, = N-1 and n= 1 as the
function is increasing on the interval {0,m 1.

From the previous three cases the theorem easily follows.

Remark 2.1 : If o

Vv v

A

my and N 2 3 then (n,,/n) = (1/2).

nopt mopt

R-emark 22 N () = N (-a).

Lemma 1 : V(&AUB) =M, (1-7, 3)

where N = n + m.

Proof : As the defect categories A and B are assumed to be
independent,
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= f(n,, n,, my, m,), say.

Let X =(n,, ng,, my, m,). Then

DUTTA AND MUKHERIJEE -

E(X) = I:J' = (nx,, nxy(l-n,),mn,, mﬂ:A(l.-nB))/

Following Rao [4], we can write

V(f) = 1/1 where

of

1= (L, 1, 1) with 1 = 8X; )

and ¥ = (X - EX) (X - EX)'
It can be easily shown that

i, Q, - nw,Q,m,

nQAnB( 1 —Q,\ng)

<

mn,Q,

where Q, =1 -7, and Q, =1 - =,

l - manAuB]

Now I, = N_mn, N-nr,

l, =(t-=n,) /(N -nmn)

1 nm,mT, o
Lo = [1 - —Aae
3 - N-nm, N-mmn,

L, =0 -m) / (N - mmy).

Hence V(f) = I > ! =7€_,\L‘B(1‘7§\\,5) (N * N

69

0

-0

—-mxn,n,Q,

m=m,Qy(1-7,Q,)

nmn,n, )
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Hence, the result.
Theorem 3 : Minimisation of V(7, ;) subject to n+m=N pro-

vides the optimum value of n as nopl/N = 1/(1+8), \;/here
8 =y(1-7,)/(1- 7).

. " . ]_ TCA ]_TCB
Proof :min  V(%, 5) <=> min N-n * n
m+n = N n+m=N
0<n, m<N 0 <n <N

Let f(n) = (1-x,)/(N-n) + (1-m,)/n.
N‘":iJ(l-nA)/(l—nB) _

clearly f"(n) > 0 for all n e (0, N).

For n to be feasible (N - n) /n > 0 and hence (N -n)/n =8 for
optimum n.

Therefore, an/N = 1/(1 + §).

+
&

Setting f'(n) = 0 we get

Remark 3.1 : If xr, $ &, and N > 3 then (n /N)= (1/2)

A > opt’

Remark 3.2 : Here also it can be shown that

nop( mo t

N (Tt‘,\.TCB) = N (RB . th\).

Note : LetT= n - n, ; clearly [T| < 1 and & ~1-7/2, assuming

m, . m, to be small. Hence n /N = 1/2(1 + 1/4) and m /N =
(1 + 1/4)/2

Con ( ) = opt ( t) . Therefore it sufficient to study n, N for
0<t <.

3. OPTIMUM COST BASED PLANS

If C, and C, denote the costs of inspecting one unit each of
defect categories A and B respectively, then the expected cost
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under the plan is C = Con(1+T-m)+m(l +T-Tx)]and T
=C,/C,. .

For finding the optimum values of n and m, we maximise the
efficiency measured as inverse of variance per unit cost. Therefore
it is equivalent to maximising V Csubject to a budgetary constraint
C", where V= tr(D).

Theorem 4 : Mimnimisation of V C subject to a budgetary

constraint of C", where V is tr(D). yields the optimum (m/n)  as
Cx-C,(1+I'-m,) .. n,(1-m,)

(m/m), = C (1+T-Tn,) i n,(1-7,)

1-¢(l-7,) " n,(-n,) <T< x,(1-7,)

3

h ¢'—(]'"RB) TCA(l—ﬂB) nB(]_nB)

~ Co(l+T—Tmy) or n,(-n,)
- C-C,(1+T =m,) ny(1-my) °

¢2=7IA(1_7:A) _(_:_B_
where 7‘3(1"7‘3) CA.

Proof : Let © = m/n. Then the problem is

Min N R
k M+ ———)+k, (P+ ——m)|_
6>0 ey 1+6(1-n3))+ o 9+(1—7tA))]“F(6)’ say:

Cx=¢

where k, = Cox, (1-%,)/(1-7;),
k, = C e (1-m,),
M = (1+I-x,) = P,

N=-n, 4
R=Tm, g
E =0 TaLs :
Therefore (o =Y => 6 =-(l-n) + — = if ¢=(1-m,).

“(]—na)i‘b
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1-¢(1-7,) _1-9(-m,)
= e' - ¢_(l_n3) a"dez ¢“(1_n5)

dF
If ¢ = (1-m) then Eﬁzo has only one root

= (-7 )+ ——AB
o, = [(1-7,)+ 2(1_ )
It can be easily shown that

E—l,:- , d—g— <0 4nd —d——l; <0.

6|, de’|,, do-

Note : (1) If ¢ < (1-ny) then -(1/(1-x,)) < (8, < 0, < -(1-%,) < 0 and
d’F

a’e—z <0

62

implying that the maximum is attained at 6, and
F
-(1-=,) is a discontinuity point, consequently we study '(E for
0 > - (1-xn,).
dF o . I
— - kR | T EPREY
do N []+9(1—n3)] [e+(l nA)]
Now -1/(1-n,) < - (I-m,) < @ => (I-m,) [0 +(1-7,)] < 1+6(1-7,).
dF o’ 1
—< k,R -
Therefore g5 < 2 L @+ (- m ) @+ (1-70F
dF _KR@+(-mp)) (0-(1-1p))
e de B+0-n01 (I-n,)

]

]

=> the function F is decreasing for all 8 > -(1 - =,). Therefore

e“ggf- with budget constraint C* is attained when n = 1 and

o
=[=—-(+T-n)]/(1+T-Tnp)
C, :
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. C,(1+T-I'n,)
ie. 0, = ¢’ _CB(l+r-nA) .. (3.1)

(2) f¢=(1-ng) then -(1/(1-n)) < 9, < - (1-xn,) < 0 and second
derivative of F with respect to 0 at 0, is negative. This implies that
the maximum is attained at 6, with - (1-7,) as a point of discon-
tinuity. Following similar steps as in (1) it can be easily shown that

dF
'&6<0.

C,(1+T-Tx,)
Therefore 8 = C -C,(1+T-1,) ..(3.2)

d*F
() If (I-n,) < ¢ < 1/(1-m,) then go7 >0 and g, > 0.
9,
¢"(1_n3)
Thus 8,, = 6, = 1—¢(1-n,) ...(3,3)

(4) If (1-my) < 1/(1-x,) < ¢ then 6, < ©, < 0. Also note that 9, is
greater than both the discontinuity points and the second derivative
at ©, is positive. This implies that miximum is attained at 6, and

dF

40 does not change sign. Therefore F is at least nondecreasing for
6 = 6,. Hence m>i37 with a budgetary restriction C* is attained for
%)
m = | and
C‘
n=[E'B_-(l + T -In)]/(1+T-Tx,)

. C -C,(1+T-Tny)
Le., eopl = CB(1+F_nA) (334)

(5) Aditionally the restrictions on ¢ can be rewritten as :

~J
(95
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1. 0<¢=(l-m)=>[n(l-n,) In,(1-n)) 1 <
n,(1-=,) m(-m,)
., —2— < T <
2. (1-m) <¢<l-m,)=> TEB(]—RB) B(] B)
(-,

3. Hil-n)<¢=>T < n,(1-7,)
In view of the above notes (1) - (5), the theorem follows.

Theorem 5 : Minimisation of VC , where V is the generalised

variance or |D|, subject to a budgetary constraint C*, provides the
optimum ratio of m/n as :

Co(1+T =m,)
(M) = ¢ -Cy(1+T -Tny) T =<U-m)
T-(1-m,)

= 1-T(-n,) fU-x)<T<1/(l-m)

C.—CB(1+F—1tA)
C,(1+T —Tmy) it 1/(l-n,) =T

Proof:Letq=m/n,Q, =1 -n, and Q, = 1 - x, then the problem

nA(]”‘nA) x B(]_
n+m(l-n,) m+n(l-

is to minimize [ ] [C,(n(1 +T - )

+ m(l + T -TIn,)]” = F(O) subjectto § > 0 and C* = C

Let k, =C,n,Q,/Q, k, = Cym,Q,,
M=(+r -Tn,) =P, N= T, R= Ixn

dF (1+T-mn,) I'-Q

- = - e—— Y7 o —— XA
4o =0 =>9, (I+T -Tr,) and @, = - TQ, are the two

ALB®

solutions.

Now if I/T > Q, then (8, + Q,) > 0 and if I/T < Q, then 6, + Q,
< ().
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It is easy to see that

d&°F
o~ Y2

N 2R kR _KQN
where Y =k, [M + 1+9Qa] ®+Q,)° (©8+Q,) (1+6Q,)’
R . 2%kNQ, ~ k,NQ, k,R

and Z =k, [P +9+QA](1+9QB)3 (1+9QB)2 (9+QA)2

{t can be easily shown that

T ve, + 2z, = ZKaQelan
do 9, I(i+6,Q,)

This shows that the minimum of F is attained at 9 = 8,. Similarly
it can be verified that

d*F
de?

-2klk2rQBﬂ:12\uB
(6,+Q,)" (1+6,Q4)* <9

Thus maximum of F is attained at 6 = 0,. Therefore we observe the

following :

=Y'10,+2'|0, =

6

(1) IfT <(1-n,) then ©, <-(1- n,) <8, < 0. The second derivative
of F with respect to © at @, is positive. This implies that the
minimum of F is achieved at 6, and the function is atleast non-

decreasing for 6 > 0,. Hence 'e“>'3 F(©) subject to a budgetary

constraint of C* is attained when m = 1 and
n=[C¥C, - (14T -Tmny) ]/ (1 +T - m,)

' CB(I +r“7tA)
e, (m/), = & —Cy(1+4T-Tmy)

(3.5)

(2) If (l-x,) < T < 1/ (1-x,) then 8, > 0 and the corresponding
second derivative is positive. This implies that 6, is the solution so
that
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r-(l-n,)

(m/n)opl = l_r(]—nB) ...(3.6)

dF
(3) If I = 1/(1-ry) then there is only one solution 6, i.e. a‘e"= 0

for 8 = 9, = | {1/(1-n,)+(1-=,)}/2 and the second derivative of F
at 6, is negative implying 0, to be the maximum point.

(4) If 1/(l-ny) <T then 0, < -1/(l-n;) < O, < -(1-x,) < 0. The
second derivative of F at 0, is negative. This implies that F attains
its minimum at 0.

(5) By combining the findings of (3) and (4) we obtain that for

d’F
1/Q, <T,6,<-Q, <0 and ggz| <%
91

dF
Since -Q, is a discontinuity point of F(8) we study '('16 for
6 > -(l-m,).
dF
— <0
Now )
d99>'QA

Thus the function is decreasing for 6 > -Q, when 1/Q, <T.
Therefore min F(8) for 6 > 0 subject to the budget restriction is
attained whenn =1 and m = {[C*/C_ - (1 + I"-=,)] / (1+T-T =)}

C'-C,(1+T -m,)
i.e., (m/n)w = CB(I +T - FRB) ...(3.7)

Hence the theorem follows.

We next consider the maximisation of efficiency per unit
cost when the variance concerned is V((ﬁAVB). The optimum plan

in this case can be stated through the following theorem.
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Theorem 6 : Minimisation of V((Taus) € subject to a budgetary

constraint C* provides the optimum ration (m/n) as

Cp+T-m) o _ m(-m)1-m,)

(m/n)y = C*—Cy(1+T +I'n,) Ty
l-o(l-=n,) if nA(l_nA)(l—nB)<l-< Ta
o-(1-my) Ty ng(l-n, X(1-m,)
C'-Cgx(1+4T-1,) " T,

C,(+T+T7ny) © ml-m(-73)

, na(l—-7g)
where ¢* = r(l_“A)nB'

Proof : Minimisation of V((ﬁAuB) .C subject to the budgetary

coastraint is equivalent to

) Taops (1-T, g)
Min | AwB nmf?,\:cs ]CB [n(1+r-x,) + m(1+7-T m,)]

n(l -7, )+m(l-ng)

>0 min+

subject to the budgetary constraint C*

Thus the problem is equivalent to eﬂgg k{(1+1Q,) + F ],

where k = x, . (1-m, ,)C,

8 = m/n

Q,\ = l-n:\

Qa = ]-nB

FQAKB _ Ta

F 0+Q,  1+6Q,"
.d_F _T[Ai [Q AuB ]
dg =90, =-[Q,+ q,—gland g, =- a7 q 5
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Now it is easy to see that

d’Fl  2IQ,m,m,
de’| ~ o(8,+0Q,)

91

=> F(@) is minimum at ©,, and

sz — 2rQAanAuB
de’ o(6, +Q,)*

92

<!=> F(g) is minimum at 6,.

We next consider the following cases —

(1) If 6 <Q, then ©, < 0, < -Q, < 0 and the second derivative
dF

at 0, is negative. This calls for examination of PT) for 6 > -Q,.

iF_ Q.1 c N 1
Now 8 - ATls (1+6Q,)’ ©+Q,)

] <o fore> -Q,.

This implies that F(8) is decreasing function of & for 6 >-Q,.
Therefore n=1 and m=[{C" —~ C, (14T - =n,)] / [C,(1+T-T =)},

C'-C,(1+G-
i.e.,, (m/n) = n( Ps)

..(3.8
®  Ca(1+G~Gpy) G5

dF
—_ pAuB
(2) If 6 =Q, then = ( has only oneroot ' = — + ==
B dé y Q. 2Q,
such that ' <-Q, < 0 and the second derivative of F at ©' is
negative. This indicates (m/n)opt to be the same as that of case (1).

d’F
(3) IfQ, <o <1/Q, then 6, < 0 < 9, and 402 > 0.

0y
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1-sQ,
Hence (m/n)m = s-Q, . ...(3.9)

(4) If 1/Q, < o then 6, < 9, < 0 and the second derivative of F
w.r.t. 6 at 9, is positive. Thus F(0) is atleast non decreasing for
© > 0. Hence we have m =1} and

n = [C" - Cy(1+T — m)] / [C,(1+T-T =),

‘ ~ CB(1+G“‘PA)
he., (m/n), = ¢ 2C,(1+G -Gp,)

(3.9)

The theorem tollows from the above four cases.

4. CONCLUDING REMARKS

It will be interesting to extend the above problem to the case
where defect categories are inspected randomly instead of in an
ordered way. For example, p, may be the probability of noticing
the defect category d, when n _is the actual number of defectives of
category d in a sample of size n. In this problem, of course, prior
knowledge of p should be available from past records of such
inspection schemes.

The detailed proofs of all the results may be referred in [2].
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