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Summary: This paper derives D-optimal measures for fourth-order rotatable designs,
The objective function is seen to be separable and this is helpful in the derivation.
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1. Introduetion

In a recent paper, DraPER and HERZBERG (1985) considered fourth-order rota-
table designs, derived many interesting results on them and indicated possible
applications in the fields of meteorology and computer experiments. It was also
indicated by DraPER and HErzBERG (1985) that although such designs may
have a limited current practical applicability, they may well be useful in future
applications. Further results on fourth-order rotatable designs, including those
on the nonsingularity of the moment matrix, were obtained by PATEL and ARAp-
ROSKE (1985), ARAPKOSKE and PATEL (1986) and MUKERJEE (1987).

The present paper investigates D-optimal measures for fourth-order rotatable
designs. KrerER (1960) showed that the D-optimal design measures for poly-
tomial regression models in spherical regions are rotatable. While the D-optimal
otatable design measures of first-order are obvious, the derivation of those of
the second-order is nontrivial and was solved algebraically in KIEFER (1960).
The optimal design measures of third-order were obtained by GaLIL and KIEFER
(1979).

2. Notation and preliminaries

suPposxe that k quantitative factors 2y, ..., 2¢ take values in the k-ball X ={x=
=(@, ..., ap): M) #2= R?} and the expected value of the observation y(z) at the
Point z is
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a fourth degree polynomial. The observations are assumed to be uncorrelated
and homoscedastic, the common variance being, without loss of generality,
taken to be unity. A design £ is a probability measure on X and M(§)=
= f f(x) f'(x) &(dx) is the information matrix of §.

The conditions for rotatability (Box and Hunter, 1957) for a fourth-order
design are:

fajeda) =2y, [alE(dx)=3[2lalE(dx)=34s (i%j),
JEH x)=5fx4x,§(dx)— 15 fafadrlt(da) =154 (i%j+u),
[afE(dx) =7 [uliE(dn) =385 [ajafriE(de) = 1054s (i) +u) ,
f x,xjé (dx) Qf xzxﬁx?‘xﬁ&(dx)_gls (i+j+u=0),
and all other moments up to order eight are zero.
In the rest of the paper, it is attempted to find the design parameters 4s, 44,

Ag, Ag such that det M(&) is maximized subject to the above conditions for rotat-
ability.

3. D-optimal designs

From PaTEL and ARAPROSKE (1985), it may be seen that
det M(E) - CZ%’(k)ﬂ.%z(k)LllecL%“k), (3.1)
where ¢(>0) is free from Az, A4, 16, Ag and

ni=(5)+ 5k =02+ (2). =k b-1)+(5).

galk) = (k—1) (i k+1)
Li=2s {(k+2) la—kAZ} + & (k+2) (k + 6)~1 Ag {Asde— (k+2) (b+4)71 23}
—(k+2) (E+6)126 {(k+4) A6— klsda} ,
Ly=(k+4) ade—~ (k+2) A2, Ls=(k+6) Asds— (k+4) 3; .

As noted in section 2, the experimental region is the k-ball with centre a
origin and having a radius R. Hereafter, we assume, without loss of generality
that R=1. From Kierrr (1960, Theorem 3.2.1), we know that under the D-
optimality criterion, the optimal design measure would assign the entire mass at
the origin and at two distinet spherical shells of positive radii.

Let r1, r2 (0<r3<r;=1) be the radii of the two shells, and w1, ws be the masses
distributed uniformly over them respectively. Then wo =1 —wy; —w; is the mass at

the origin. For obtaining the D-optimal design, the decision variables are now
w1, we, r1 and ra. Since

v doi=(wrrT +war){k (B +2) ... (k+2i—2)} (i=1,2,3,4),
it follows from (3.1), after some simplification, that
det M(&)=c*wo {wrwarlry (r;—r3)2yu® (pipd)ha®
X (w015 + worS) ® (w1r1 + wzrz)"“'“’ ,
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where ¢* (=0) is free from the decision variables and
htk) =k (k+3)/2, bholk)=k (k+1)/2.
halk)y=(k—1) k (k+1) (k+6)/24,
halk)y=Fk (k—1) (k4+4)/6 .

Clearly, for fixed wy, wp and rz, det M(&) is increasing in ;. Hence for D-opti-
mality, one must take r;=1. Then

det M(£) =c*wo {wrwst (1 — )2 hE (g st 1) EY (o 4eaB)e®)

where wo=1—w;—ws and t:rg (w1, we=0, wi+wa<1,0<t<1). Let a=uy+ we.
s=waf{wy + we). Then :

det M(£) =c*q(a) g2(s, £) , (3.2)
where

qi(@)=(1—a) a*® ,

qa(s, t)={s (1 —s) t (1 —£)2yM® gha®) (1 _ 54 spa)Bs®) (1 — 54 g3)hek) (3 3)

h(k)=2h1(k) + ha(k) + halk)=k (k+5) (k2+5k+10)/24 , (3.4)
and

O<a, s t<1 (3.5)

For obtaining the D-optimal design measure, it is enough to find a, s, t, subject
to (3.5), so that (3.2) is maximized. The objective function (3.2) is separable in
the sense that one can maximize ¢1(a) and ¢a(s, t) separately subject to (3.5). By
dementary considerations ¢1(e) is maximized when

a=h(k)/(1+h(k)) . (3.6)

A two-stage procedure can be adopted for the maximization of gs(s, t). For each
fixed ¢ (0 <t<1), it may be seen that 0 log ¢a(s, £)/8s tends to +oo as g tends to 0
and to — oo as s tends to 1 and that 92 log ga(s, t)/0s? is negative for every s (0 <g <
<1). Hence for each fixed ¢, the equation & log ga(s, t)/0s =0 has a unique solution,
sy so(t), in (0, 1) and this solution maximizes ga(s, t). Let g*(t) =ga(so(t), t) and
sippose ¢*(t) attains a maximum, over the range 0<t<1, at t={lo. Then it is
cear that the maximum of ¢u(s, t), subject to (3.5), is attained at (s(o), to). The
function ga(s, ¢) is, however, too involved to allow an analytic execution of the
wbove steps. Therefore, for 1 =k =5 and £=0.001, 0.002, ..., 0.999, so(t) and ¢*(f)
vere calculated. These numerical findings showed that for each k (1 =k=5),
1*(t) has a single extremum, which is a maximum. After obtaining fp and s(fo)
mmerically, it was easy to compute wy and w; for the D-optimal design measure
sing (3.6) and the fact that wy=a (1—¢), wz=as. The results have been presented
i Table 1.

The method was seen to be successful with even higher values of k. The details
Yire omitted here sinee fourth-order rotatable designs for large values of k involve
r» huge number of regression coefficients and are, consequently, of little practical
uti]ity_ :
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origin and having a radius R. Hereafter, we assume, without loss of generality
that R=1. From Kierer (1960, Theorem 3.2.1), we know that under the D-
optimality criterion, the optimal design measure would assign the entire mass at
the origin and at two distinct spherical shells of positive radii.

Let r1, r2 (0<rs<ry =1) be the radii of the two shells, and w;, ws be the masses
distributed uniformly over them respectively. Then wo =1 —wy —ws is the mass at
the origin. For obtaining the D-optimal design, the decision variables are now
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Aoi=(wir +werd) [{k (k+2) ... (k+2i—2)} (i=1, 2, 3, 4),
it follows from (3.1), after some simplification, that
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where ¢* (=0) is free from the decision variables and
hi(ky=k (k+38)/2, hok)=k (k+1)/2,
ha(By=(k—1) & (k+1) (k+6)/24,
ha(ky=k (k—1) (k+4)/6 .

Clearly, for fixed wy, we and rp, det M(£) is incréasing in r;. Hence for D-opti-
mality, one must take »,=1. Then

det M(&)=c*wo {wiwst (1 — 82110 h® () 4 opopaymo®) () | gpopa)hl®)
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where
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0<a,s t<1 (3.5)

For obtaining the D-optimal design measure, it is enough to find @, s, ¢, subject
to (3.5), so that (3.2) is maximized. The objective function (3.2) is separable in
the sense that one can maximize ¢1(a) and ¢(s, t) separately subject to (3.5). By
elementary considerations gi(a) is maximized when

a=h(k)/(1+h(k)) . (3.6)

A two-stage procedure can be adopted for the maximization of gs(s, ¢). For each
fixed ¢ (0<¢<1), it may be seen that & log ga(s, t)/&s tends to 4o as s tends to 0
and to —eo as s tends to 1 and that 22 log ¢a(s, t)/0s?is negative for every s (0<s<
<1). Hence for each fixed ¢, the equation 0 log ¢(s, t)/s=0 has a unique solution,
say so(t), in (0, 1) and this solution maximizes qa(s, t). Let g*(t) =qga(so(t), t) and
fuppose ¢*(¢) attains a maximum, over the range 0<t<1, at t=?¢p. Then it is
clear that the maximum of ¢afs, t), subject to (3.5), is attained at (s(to), to). The
function gq(s, t) is, however, too involved to allow an analytic execution of the
ghove steps. Therefore, for 1=k=5 and t{=0.001, 0.002, ..., 0.999, so(t) and ¢*(t)
were calculated. These numerical findings showed that for each k (1=k=5),
*(¢) has a single extremum, which is a maximum. After obtaining o and s(f)
lumerically, it was easy to compute w; and w; for the D-optimal design measure
using (3.6) and the fact that w1 =a (1—s), ws=as. The results have been presented
in Table 1.

‘The method was seen to be successful with even higher values of k. The details
' 4re omitted here sinee fourth-order rotatable designs for large values of k involve

% huge number of regression coefficients and are, consequently, of little practical
utility, :

B
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Table 1

D-optimal choices of wy, we, ¢

k 1 2 3 4 5

w 0.400 0.589 0.701 0.773 0.822
wa 0.400 0.344 0.270 0.213 0.170
t 0.429 0.460 0.479 0.492 0.501

4, Concluding remarks

This paper considers D-optimal design measures for fourth-order polynomial
models in spherical regions. The final steps in our derivation were numerical. In
view of GariL and KIEFER (1979), this is to be expected since even for third-
order designs one has no option but to use numerical methods. The trends of
wy, we, £ and wi+w; as seen from Table 1 (see also (3.6)) indicate that as the
number of regression variables increases greater number of observations should
be taken further away from the centre. It is hoped that our optimality results

will be helpful in the applications of fourth-order designs as discussed in DRa-
PER and HERZBERG (1985).
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Nonparametric Density Estimates with Improved
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Summary. We consider the problem of choosing between two density estimates, a non-
parametric estimate with the the standard properties of nonparametric estimates (uni-
versal consistency, robustness, but not extremely good rate of convergence) and a special
estimate designed to perform well on a given set T of densities. The special estimate can
often be thought of as a parametric estimate. The selection we propose is based upon the
I; distance between both estimates. Among other things, we show how one should pro-
ceed to insure that the selected estimate matches the special estimate’s rate on T, and
that it matches the nonparametric estimate’s rate off T.
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Key words: Density estimation, kernel estimate, minimax, theory, consistency, non-
parametric estimation, normal density, asymptotic optimality, model selection.

1. Problem statement

There is a strong demand for density estimates that adapt to the situation at
hand: they should be of a simple parametric nature if the data fit a given para-
etric model, and yet they should be flexible enough to handle any density if
the parametric model or models fail. In the former case, they should be accurate.
In the latter case, the estimates should behave like solid nonparamtric estimates,
Le. they should be consistent and robust (but possibly less accurate).

The data are used to decide between two or more types of estimates. We are
faced with a particular model selection problem in which the models are extrem-
ely heterogeneous: in one case, a small “target” class of densities, T, is envisaged
(typically, this class can be described by virtue of a finite number of parameters
such as the class of all gamma densities with unknown shape and scale parameters),
and in the other case, a huge ocean of densities, typically the complement of T,
8 considered. The small target class, or classes, can be regarded as small islands
in this big ocean of densities.

In this note, we study a rather primitive method of selecting one of several
lensity estimates. It is based upon a nonparametric estimate g, which has the
—

Research of the author was supported by NSERC Grant A3456 and FCAR Grant EQ-
1679,
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desired consistency and robustness properties. Roughly speaking, when g, is
close (in the L; sense) to one of the estimates on one of the islands, we select
that island and its corresponding estimate. If ¢, is far away from all islands, the
nonparametric estimate is used. Put another way, a halo or sphere of influence
is put around all estimates, one for each target class. If g, falls outside all halos,
it is selected. Otherwise. one of the estimates on one of the islands is picked ac-
cording to some rule. The sizes of the halos can differ from target class to target
class,

The advantage of this scheme is that it is computationally simple (no numerical
optimization is required), and that its properties are easy to derivein very glob-
al settings. We will see below that nearly all the results are valid without restric-
tions on densities, due in part to our choice of metric. Other universal metrics,
such as the Hellinger metrics, could of course be used with equal ease.

The idea of picking a close better-looking estimate is certainly not new. COvVER
has advocated this as early as 1972, and Bargrox (1985) has refined COVER'’s
work. In the method of sieves (GRENANDER, 1981; GEMAN and HwaNg, 1982),
one picks a density from a growing class of densities so as to maximize the like-
lihood product. The difference here is that we already have certain estimates,
and that we are merely asked to choose between them. '

One is tempted to employ the maximum likelihood method for such a selec-
‘tion, possibly with cross-validation or based upon a sample splitting scheme.
See e.g. SCHUSTER and Yakowirz (1985) or OLKIN and SPIEGELMAN (1987).
Unfortunately, the likelihood products are very sensitive to areas of small or
zero density, and the sensitivity is enhanced by the fact that we are working
with products of density estimates, not just products of densities. As we will
see below, the L; distance introduces just the right amount of robustness to the
selection procedure.

Let us continue our short historical tour. For many parametric target classes,
there exist excellent tests for deciding whether the density of the data is in the
target class, see e.g. the recent book by D’Acostino and STEPHENS (1986). Upon
rejection of the parametric hypothesis, one would then use a nonparametric
estimate. While such an approach could be useful for certain small classes, it
is not so easy to apply with the kind of generality we are looking for. For example,
how would one proceed if the target class consisted of all log-concave densities
with mode at zero and modal value equal to one? Furthermore, the same esti-
mate g, is used both for decision making and estimating. The added homoge-
neity can only be helpful.

BERAN (1977, 1981) has studied the properties of estimates that are projec-
tions of nonparametric estimates onto target classes T'. (
onto T is any density in T that is closest to the given d
in T.) These estimates inherit the robustness of the nonparametric estimate,
when robustness is considered in the sense described in Brcker (1976) and YA-
TRACOS (1985). BERAN'S approach differs from ours in two respects: he is not

A projection of a density
ensity among all densities
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interested in the performance of the density estimate outside T (except possibly
in a small neighborhood of T when he studies robustness); and he is not con-
cerned with the selection problem between two given density estimates. Note
however that we could study the selection rule which decides between a non-
parametric estimate g, and its projection onto T. This often introduces nume--
rical problem for the practitioner. However, it might lead to a useful way of
selecting an estimate. The general theorems below are also valid for this case but
no worked example for these projection estimates is given here.

The basic technical tool needed to provide a simple analysis is related to the
variation of Jn_flgn —f| around its mean, E(J,)=E([|g,—f|) for all f. As shown
in DEVROYE (1988), 'n {Jn—E(J2)] is stochastically bounded from above by a
random variable which does not depend upon f, n or the smoothing factor, when
gn is the ordinary kernel estimate (ROSENBLATT, 1956 ; PARZEN, 1962; Cacour-
Lo8, 1966). Thus the oscillation of ¢, in the ocean of densities is controlled in a
uniform manner; g, is virtually anchored. It lives in an L, shell centered at f
with radius bounded by ¢ E(J,), roughly speaking. The shell’s thickness is about

1/Yn. The shell is so narrow that for intuitive purposes, we can think of f |9 —f]
as being equal to E ( f lgn—P)|. With the aid of this tool, and a few other results,
we will be able to show that in many cases, the expected L; distance between
the selected estimate f, and density f tends to zero at the rate of the target class
estimate if f is indeed in T, and at the rate of the nonparametric estimate other-
wise.

The present method is not intended to be used for deciding between two or
more nonparametric estimates without specification of a target class for one of
them. It is also not suitable for choosing the smoothing factor in an automatic
fashion. Nevertheless, we will be able to present a flavor of the usefulness, by
llustrating the technique on a couple of simple examples.

Finally, we note that the methods presented here are certainly not limited to
the L; space. To define balls and distances among densities, we could have used
other metrics, such as L, metrics, HELLINGER metrics, or a KULLBACK-LEIBLER
based metric. DEVROYE (1987) explains what the advantages are of the L ap-
proach. Perhaps the main reason in the present context is that for all sets (events)

4, , f fn— f f =5 f If —fal, which is an absolute number between zero and one

(ScHEFFE, 1947 ). This universal interpretation of the distance is extremely use-
ful in the definition of the radii of the halos; e.g. a radius larger than 2 is non-
tensical, and for “practical” sample sizes, radii smaller than 0.0005 may be
equally unrealistic. Actually, in the absence of all a priori information, one could
often set the radii about equal to the errors one is expected to accept; e.g. it is
known that for kernel estimates with positive kernel, errors of 0.01 to 0.03 are
tlose to best possible when n=10,000 (DEVROYE and GYSRFI, 1985).
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2. Definitions

Let X;, ..., X, be iid random vectors with common unknown density f in R%.
Let gn be a nonparametric estimate, consistent forall f (i.e. E ( f |gn—f1) ~0forall
f). For example, g, could be a kernel estimate

1 n
gn(x)=; 2 Ku(@—Xy),
=1
where & >0 is a function of the data for which

h -0, nh?-c in probability as n —oo

and K is a kernel, i.e. [K=1 (PARzEN, 1962; ROSENBLATT, 1956).

Let T be a target class, for which we have a good density estimate ¢, at hand.
We will assume throughout that ¢, ¢ T. The goodness of this estimate is of course
conditional on f being a member of T. The purpose is to choose between g, and

ta. To do this, we require an explicitly known number ¢,, and define the halo-
based estimate as follows:

PR L [1tn—gnl <gn
"7 lgn otherwise )

For selection between more than two classes, one can choose between several
estimates in case of overlapping halos. For example, this could be done by select-
ing the t, with the smallest halo. \

It should be noted that the evaluation of the L, distance between f, and ga
requires a numerical integration routine. We assume throughout that this distance
can be evaluated with infinite precision. It should be noted here that for specific
forms of t, and g, (e.g. when both are kernel estimates with polynomial kernels
of compact support) the integral can be rewritten as a finite easy-to-evaluate
sum with O(n) terms.

The choice of ¢, is crucial to the analysis. We realize that it is not sufficient to
give asymptotics for g,. Useful techniques require explicit formulas, valid for
all n. As a first general guiding principle, one should take qn slightly larger than

Ru(T)Ssup E (fIgn—1l) ,
JeT

where the term “slightly” refers to the variability in flgn—f) and [|t—f| uni-

formly over f€ T. Note that q» should tend to zero for our method to be efficient.
Since g, is greater than the minimax error for T,

inf sup E (flgn—f)),
gy FET

the method is only applicable when T is not too massive. This excludes many
classes, such as the class of all densities with support on [0, 1], bounded by 2,
or the class of all unimodal infinitely many times continuously differentiable
densities, or the class of all normal scale mixtures, or the class of all densities



DevROYE, L.: Nonparametric Density Estimates 361

within Zj (or HELLINGER) distance ¢ from a central density fo (see DEVROYE
(1983, 1987), BrrcE (1985, 1986, 1987)). Luckily, nearly all parametric classes
of interest to practising statisticians are included, as well as most L, totally bound-
ed classes (YATRACOS, 1985). Examples of such classes include the class of all
monotone densities on [0, 1] bounded by a given constant ¢, the class of all con-
cave densities with mode at the origin, or the class of all densities on [0, 1] with
s—1 absolutely continuous derivatives, for which f( satisfies the following Lip-
sehitz condition :

[fe)a) —f@(y)| =C lz—yl,

where «€(0, 1] and C=0. For other examples, see BRETAGNOLLE and HUBER
(1979).

3. The main theorems

Lemma 1. The basic inequalities. Let f, be the halo-based estimate with thre-
shold ¢y > Ry(T).
A. Then

sup (E (f1fa—1)—E (Jlta—1D]
=(1+ [lgn)) inf {sup P (| flgn—fI—E (flga—F)l =)

u,0:0=%,0=0,4+v=qy~Ry(T) fET

+sup P (flta—fl=0)}.

JeT
The same inequality is true without the suprema over T.

B. In addition, for f¢ T, 1r€1£ f]g—ﬂila(f, T),
g

E(fIfa—f)=E (flga—F)+ 1+ [[ta]) P (flgn—f|>Lalf, T)~qn) -
C. Finally, for all f, we have
E(S1fn=f)=E ([lgn—F)+qn -
Proof. Part A is obtained by the triangle inequality: fix any f¢T, and any
lonnegative u, » with u+v=qy— Eu(T). Then
E(f1fa—f)=E (flta—F)+ (1 + [1ga)) P (flgn—1tal Zqn)
=E ([Ita—f)+ 1+ [1ga) P ([lgn—fl = Ra(T) +u)
+(1+[1gal) P (flta—fl =v)
=E ([lta—f)+(L+ [Igal) P (flga—FI—E ([Ign—T1=%)
+(1+ flgal) P (fltn—f1=v) .
Part B can be shown as follows:
E(Sifa=fN=E ([lgn—1| Ljig,-t=an) T E ([lto—11 I} g, tnicay)

=E (flga—f1) + (1 + [ [tal) P (f1gn—1tu| <gn)
=E (flga—F)+ 1+ [1tal) P (flgn—f1>=La(f, T)~¢n) -
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Part C is trivially true, since ¢, is only picked when it is within distance gn of
fa; hence flf,,—gn]-:f—qn. ™

Observe that inequality B for f¢ T is not uniform, as nontrivial uniform bounds
over the complement of a small class T do not exist. Inequality A, in contrast,
is uniform over T'.

The proof of Lemma 1 also provides us with bounds on the probabilities of
error, i.e. the probability of deciding f¢ T when f¢ T and vice versa. While these
probabilities are important in a hypothesis testing situation (*“‘test whether f¢T”),
they are of secondary importance in density estimation problems (“try at all
costs to' make [ Ifa—f| as small as possible, given the information at hand”).

Each of the .inequalities in Lemma 1 has its particular use for us. Inequality
A can be used to show that the halo-based estimate inherits the minimax pro-
perties from g, in many cases. Inequality B describes the behavior of the halo-
based estimate when f¢ T, and provides us with sharp bounds for the probability
of (erroneously) picking t, over g,. Inequality C is rather naive but universally

applicable. It can be used to derive the consistency of f,. Each of 'ghese inequali-
ties is now illustrated, starting with inequality C.

Theorem 1. Consistency. If g, is consistent at f (i.e. E ([1gn—11) =0 as n —~o0), and
qn—~0, then fy is consistent at f.

Theorem 1 implies that if the kernel estimate gn is used, with smoothing para-
meter & —~0, nh? —s as n —co, and gy, —0, f, is consistent for all f (DEvVROYE, 1983).
However, carelessly putting ¢, =1/¥n (for example) can have a detrimental effect
on the rate of convergence when f¢T. Hence the need for a deeper study regard-
ing the rate with which we should let q» tend to zero. In first instance, this can
be done via the concept of asymptotic optimality introduced below.

We say that f, is asymptotically optimal for a class G of densities f containing
T (i.e. TS @), when for all 4T, fcG,

E(SIfa—M~E (flgn—1}) ,
and for all feT,

E(Sifn=I~E (flta=1]) .

In many cases, we will not only establish the asymptotic optimality of f,, but

also provide inequalities about how close the expressions in the definition are
to each other.

. Theorem 2. Asymptotic o
all densities, when Jn 18 the
conditions is satisfied :

(i) the complement of T is an open set;
(ii) Ru(T)=qn—0;

ptimality. f, is asymptotically optimal for the class of
kernel estimate with deterministic b, and each of these
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(iii) torom osﬁﬂiéq e {2 exp (—nu/(32f2K))+P (f|ta—fl>=v)}
=o (E (f}tn—]‘[)) for all feT.

(iv) [|tn] s uniformly bounded in n.

The conditions of Theorem 2. We do not explicitly require that A —0 and
7h? . However, for (ii) to hold, it is necessary that these conditions are met,
at least for nearly all kernels K, the exceptions being kernels whose FOURIER
transform is one in an open neighborhood of the origin (DEVROYE, 1987). Con-
dition (ii} in effect tells us that T can’t be large, especially since we require A
to be deterministic. For data-based %, as we will see further on in some examples,
condition (ii) is much less restrictive, since & can adapt itself more easily to the
underlying densities. As it stands. (i) states that T can only contain densities
from a certain small neighborhood of a fixed density.

Conditions (i) and (iv) are usually trivially satisfied. For example, (iv) always
holds when t, is a bona fide density. The technical condition (iii) governs how
mmuch bigger we can take ¢, than R,(T). The difference can be split up into
2 +v at will. However, to better understand what is going on. we can assume that
2w =v=(qn— Rn(T))/2. Tt is known that for most small classes T, E f}tn—f| =c/Vn
(but this is by o means a universal rule!). In such cases, the u-part of the con-
dition holds when » tends to zero slower than 1/ ]‘!n. This condition in fact ensures
that the kernel estimate is relatively stable. The »-part of (iii) is satisfied if
P ( f [tp— f|>v):o(1/l“/;), a condition that is often easy to check. This condition
too insures that the “oscillations” of []t,—f| are negligible relative to the crucial
difference ¢, — R,(T). =

Proof of Theorem 2. We recall three properties of the kernel estimate with
deterministic h =h,. First,

gﬁﬂfm—le

(DEVROYE, 1986). Secondly, P([lg,—f|=>¢)=¢"" for all £¢>0 and all n large
enough (DEvrovE, 1983). Thirdly, again for all f and all A>0,

1
528n

nu?
P(1flgn—=T1=E ([ign—f)I=u) =20 /1%
(DEVROYE, 1988).
Consider first f¢ T. Since the complement of T is open, we have Li(f, T)>0.
This, together with part B of Lemma 1, and (iv), shows that E ( f fu—1f1)~

~E(flgn—11).
Consider next f¢ T. By inequality A of Lemma 1, and the fact that f |ga) = f K],
it suffices to show that

P flgn—FI—E([ign—F) [=w) +P(fita—fI=0)}
=0 (E (fita—11)

mn )
U,w: 0=U,0=0,u+v=qy—Ry(T)
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for all f¢T. The first term on the left-hand-side, for fixed w, does not exceed
2 exp (—nu2/(32 [?|K|)) foralln and u. m

Let us finally turn to the problem of preserving minimax optimality. Assume

that an estimate ¢, is minimax-optimal for a given target class T, i.e. there
exists a constant ' such that

sup E (fltn—f))=C inf sup E (f|fa—{]) .
JET fp FET

For f¢ T, t, is often inconsistent or poor. It usually is not as reliable as the uni-
versal estimate g,. If we apply our halo-based selection rule, then we would like
to inherit the minimax optimality, at the very least. With little work we are
able to take a minimax-optimal estimate ¢, (for T'), possibly non-consistent,, out-
gside T, and obtain another minimax-optimal estimate f,, which is guaranteed
to converge for all f. All that is needed is a simple nonparametric estimate with
good uniformly bounded mean error over T (not necessarily minimax-optimal
for T), and with uniformly bounded variation of the error about its mean.

Theorem 3. Preserving minimaxity. Assume that ¢, = Rn(T) is such that
u,v:0§u,0§v],¥¢l-€v§qn-—Rn(T) {?E]g P(l f lgn—fl—E (f,g”_ﬂ) |>u)
+sup P (fltn—f1>v)} =0 (sup E (flta—11)
seT FeT

and that f Igal is uniformly bounded in n. If t, is minimax optimal for T, then so
18 fn:

sup E (f|fa—f))=(1+0(1)) sup E (fita—1]) -
JeT JET

Proof. The proof is immediate from part A of Lemma 1. ®

Note that the uniformity of the variation of the Ly error for g, is essential. I
minimax optimality is our only- concern, then we could take g, =< (which would
imply that fy,=t,). Unfortunately, for reasons of consistency (Theorem 1) and
asymptotic optimality (Theorem 2), it is necessary to take g, —~0. It is perhaps
helpful to verify when the conditions of Theorem 3 are satisfied. This is the case
if both gn and ¢, are kernel estimates with deterministic smoothing factors and

absolutely integrable kernels. To see this, use an inequality used in the proof of
Theorem 2 and the fact that

) 1
int € (flga—f=)/ e

(DEVROYE, 1986). The halo-based estimate can thus be used to make a given
estimate £, more useful (i.e., robust, universally consistent); and we won’t have
to give up any of the nice properties of t, on T. One might for example consider
a minimax-optimal monotone estimate ¢, of a monotone density on [0, 1] (which,

by definition, can’t possibly be consistent for non-monotone f). Such estimates
were obtained recently by Birc% (1987).
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4. Example 1: Superperformance for a single density

It is well-known that in ordinary estimation problems for location or scale, one
can modify existing estimates so that they become extremely good when the un-
known parameter takes one particular value. The modification usually involves
replacing the original estimate by the particular value if the difference between
them is smaller than some threshold (which in turn tends to zero with » at some
controlled rate). This can be done too in density estimation using the I; halo
discussed in this paper. Consider as our target class the class T consisting of one
density, f*. Then, since formally ¢,=f*, we have :

fn={f* if flf*“gnl <4n )
gn otherwise

Here g, is for example the kernel estimate with K and % picked for satisfactory
overall performance (assume that K is absolutely integrable and that 0 and
nht ~). Note that asymptotic optimality cannot be hoped for here since ¢, com-
nmits zero error on f*, and a fixed positive error elsewhere. However, we have the
following :

Theorem 4. If g, —~0, then f, is consistent for all f.
If f+f* and q, —0, then

E(fIifa—A=E (flga—f1)+Ole=")

for some constant ¢>0. Hence, E([|fn—f) ~E (flgn—11) for all f=f*.
Finally, of f=f*, and ¢, =E (ffgn—f*l) =Ru(T),
n(2y—Rpy (D)

E (f[fn*f*')é2(1+fj]{l) euw

Proof. The first statement is an immediate corollary of Theorem 1. The se-
cond statement follows from part B of Lemma 1, the exponential inequality of
DevrovE (1983) used in the proof of Theorem 2, and the fact that E ([lg.—f|) =
31/]/52872 for all f, b, K and » (DEVROYE, 1986). The third statement is imme-
diate from part A of Lemma 1, the fact that t,=f* and T={f*}, and an in-
equality of DEVROYE (1988). =

The compromises ahead of us are clear from Theorem 4. When f=f*, we would
like to make ¢, as large as possible, preferably infinite (see last part of the Theo-
tem). On the other hand, when f=+f* the second statement of the Theorem
shows that a small ¢, is called for. If E ( f |95 — f*]) is known (which seems plau-
sible, since we know f*), then taking ¢, equal to this value plus V32 f 2|K| logn/n
insures that when f=f*,

E(fifamf*)=

We can control the rate with which E( f ifa—F*|) tends to zero by adjusting qn-

242 [|K|

n
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Rates all the way down to (but not including) ¢-¢» are achievable, thus outper-
forming g, on this particular density in a dramatic fashion.

On the other hand. the threshold suggested above is small enough so as not to
upset the performance when f=+f*. Indeed, by part C of Lemma 1,

/32 f2|K|log n
E([lfn—/)SE ([lga—f+E (figa—frn+ ) ZE008D

n

This inequality is sometimes satisfactory for medium-sized n. Note the presence
of the term involving f* on the right-hand-side. In contrast, this term is missing
in the exponential inequality of Theorem 4. The only disadvantage of the latter
inequality is that the exponentially decreasing term is partially hidden from view
due to the ‘‘big oh” format.

For small target classes, the only thing that changes is the rate of converg-
ence of f, when f¢ T. For target classes with infinitely many densities, it is rarel'y
possible to achieve the exponential power rates of Theorem 4. However, it i
usually true that the probability of not picking the target class estimate when
f€T, or of not picking the nonparametric estimate when f¢ T, tends to zero at

an exponential power rate for some appropriate choice of g,. This will be illustrat-
ed on a modest example in the next section.

B. A case study: The normal density

Assume in this section that T is the class of normal densities on the real line. Let
us take a few paragraphs to discuss and analyze normal density estimates. KoL-
MOGOROV, and later Basu (1964), have shown that for the normal family with
unknown mean u and variance o2, the following density is an unbiased estimate

at all z:
) s
2 1

P
tal) = (1— (x—,,z)z) .
e e PANE
Here 4 and 6 are the standard sample-based estimates of u and o. For other
examples and more theoretical background on unbiased estimation, see LUMEL-
SK1I and SAPOZHNIKOV (1969), WERTZ (1975), GUTTMANN and WERTZ (1976)

and SEREULT and QUESENBERRY (1971), and the references found there. Another
possible (but not unbiased) estimate is

_(m-ay

1 =
tn(x) = e 2

Vens ’

where 6 and j are as above. It can be shown that for both estimates, sup

— feT
E (f1ta—f1)=0 (1/Vn). The second estimate itself is a member of T, a feature that

greatly facilitates the ensuing analysis. Furthermore, it has not been established
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to date that the unbiased estimate dominates the second estimate in the expect-
ed L; sense. For this reason, we will consider as our parametric estimate the
second normal estimate.

In our examples we need a suitable density for the global selection process.
Prime candidates include the kernel estimate with data-based smoothing factor
and nonnegative kernel K, or the kernel estimate with data-based smoothing
factor and flattop kernel K (DEVROYE, 1987; a flattop kernel is a symmetric
fanction, integrating to one, whose FOURIER transform is constant in an open
neighborhood of the origin). There are many excellent schemes for choosing &
as a function of the data, but to limit the analysis somewhat we will merely be
concerned with an old-fashioned but common sense scale-invariant estimate,
discussed e.g. in DEHEUVELS (1977): here K is a symmetric unimodal density on

the real line, and 4 is defined by
1
h=cn °6

where 62 is the sample-based variance,

1 n
Gr= 3 (Xi— 2,
=1
and
1 n
= 3 X,
"1

The constant ¢ is adapted to the density f we are estimating. It depends upon the
shape of f only. A priori information about the shape of f should be used in the
choice of ¢. Interestingly, its value is rather insensitive with respect to f. The value
1.2019409 ... for the normal density can be employed without too much loss for
many bell-shaped curves. It should be stressed that by picking K nonnegative,
we are limiting ourselves when f is very smooth. On the other hand, for oscilla-
tory densities (such as densities with discontinuities), picking h~n"Y3 is sub-
optimal, as a larger value is called for. Also, it is generally recommended to avoid
yverages when computing scale factors such as é. Instead, one should use robust
juantile-based estimates. The technical reader will have no trouble adapting
‘he results that follow to his particular situation.

(heorem 5. The normal class.

A\. Let f be a density for which 6n ** -0 and 60 ~co in probability as n oo (it
suffices, for example, that f has finite second moment). If g, —~0, then fn is con-
ststent.

B. Let G be the class of all densities f for which E (16 —a]) =0(n"¥5) (this class in-
cludes T and all densities for which f Ixi‘w“)/s flz) dz<oo for some e=>0). If
gn— Ru(T)=c*Vlog n/n for some constant ¢*=>20 (it suffices for example to

require that ¢n=Cn%°+c* Vlog n/n where C, ¢ and K are as in Lemma 5),
and g, 0, then f, is asymptotically optimal on G.
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C. ta is minimaz-optimal for T. So is fn when g, — Ru(T)=c* ylog n/n for some
constant c¢* >20.

D. When qann(T)+(1g+]€) Vlog n/n for constants a, b, then, for f¢T,

b

E(flfs—fl)=E (fltn—fl)-§-3n_3_2+5nRm

provided that n =6, and that 8 (6 ]”5+ V%)/l n—5=Yb log nin=4 (Vg~ 2).

The proof of Theorem 5 is given in the appendix. Basically, Theorem 5 is
obtained by a straightforward application of the previous theorems, but is com-
plicated by the fact that g, is not a kernel estimate with deterministic & (for
which we have useful universal inequalities: see the proof of Theorem 2), but a
kernel estimate with data-dependent k. However, since the data-dependence
is more realistic than determinism, the study in its present form carries more
weight.

A typical choice for ¢, would be Cn~?® (where C is defined in Lemma 5 below)

plus the 14 log »n/n term defined in parts B or D of Theorem 5. One could also
take (C+¢&) n%° for some constant ¢>0. Note that the inequality of part D can
be used for moderate and even small values of n. It seems unwise to take ¢s
larger than these suggestions (from B and D), since that would decrease the per-
formance when f¢ T (recall that g, can be considered as a halo, and equivalently
as the size of a discretization grid in the space of all densities).

6. Appendix: The proof of Theorem 5

6.1. Behavior of t,

First we need a simple upper bound for the L; error committed with £,. Let fs»
denote a normal density with mean a and standard deviation b. (Thus, t,=/;;)
Since the L; error is invariant under linear transformations of the axis, we cap ‘
and do assume, without loss of generality, that u=0,0=1.

Lemma 2.

f|fa,b—f0,1| =2log (max (b, 1/b))+(1+‘/§) @]

=2 (max (b, 1/b)—1)+(1+V2;4) @ .

f”“-b_f°'ll§f [fap—Fanl + [ |fa1—Fo1l
=f|fo,b—fo,1|+f \fa,1—fo,1] -

Proof.
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-

For b>1,
b
1 a2
fov=fo1+ f ” fo,u (u—z*l) du
i
by taking the derivative of f with respect to b. Thus,

b
f lfo,b_fo,lléj;fql;fo'“ u?

<[ (f0s3

dudz

» _
1 .
— = —1 —_ = — .
dx) - du=21fu du=2logb=2 (b—1)

A similar argument is valid for b <1, so that we obtain the first bound of the
Lemma. By a similar line of reasoning, for a>0,

Slfa1—forl=/ f (@—a) fudu dx<ff}x a| fu,1dxdu

émin(2, ]/ja-i-—) (1+l/ )

Combining all this proves Lemma 2. =

It is known that & is normal with mean 0 and variance 1/n, and that 62 is 1/n
times a chi-square random variable with n —1 degrees of freedom. This can be
used to bound the L; error. In Lemma 3 below, we also establish that the estimate
b is minimax-optimal for 7.

Lemma 3. Let T be the class of all normal densities on tk_e real line. The normal
tstimate t,, satisfics the following inequality, for all 0 <u= Y8 —2:
sup P (ftn—fi>u)=3 67",
FerT

Additionally, there exists a positive constant a=>0 such that
—:mf E (flta=fl) _sup E(flta—Pl=—=
i e Ul =1

where B=6 1F 24 }/2/3+V 2/m+2/n, and for tke upper bound, it is assumed that
"Z6. Finally, for some positive constant =0,
) B
infsup E ([|fa—fllz=—
fn feT Jifs Yn
Proof. For the first inequality, it is clear that we can assume that uwz=4/Vn.
Furthermore, the distribution of f |t —f| is scale (and thus ¢-) invariant, so we
‘an and do assume that o=1. Let N be a normal (0, 1) random variable, and let
Gbe gamma (n—1)/2. Then

P (flta—fl>u) =P (2 max (3, 1/&>>;—‘)+P(<1+V5/7;>m|>;i)i1+11;
Yow, defining 6=1/(2 (1 + V‘2/n)), and using § =1/4 and w=4/n, we have

Y statistics 20 (1089) 3



370 statistics 20 (1989)3

2 - 2802
II=2P(N 01/nu ———— R

T8Y2anu
= V% o T3
n
Also,

. 1 . -p {4
<1+u/4)+P (6>14u/4)=P (0'2<

(
p (G<2—:%;),+P (G>;i+”T“)
(o

I

i

P

! 52 > 2
H_u/z)-}-P(cr =>1+u/?)

I

if

n-1 nu-—-2-u n—1 nu+2
U i w7 )+P(G>_2_+ Y )

— nu—2~u ln— nu+2 42 nu+2y~1
=e ‘n [(2+u) (= 1)] 375 Lana] (7 ons

_ (n—1)u? u _ 1 (nu+2)? 292
=e 4(2+uyr  (2+u)? +e i6 {(n—1) (2n+nu)
nut % 1 2
— 5 — = (Pu)?——
=e T Aeru)? 4(2+u)2 +e 16 n V8
1

1
—nu32+ —+ 3 2
e 36 8+e—nu /32

[IA

by some tail inequalities for the gamma distribution, and the fact that
ws)8-2=1. Simplification of these bounds yields the bound

E— e® ~nUH32 - o —nUu32

(Vn +1 +§é") e =3e .

Also, assuming again that f is/ normal (0, 1), we have
E (f|ta—f)) =2 E (max (6, 1/8)—1)=I+1I .

o
Now, II= ——+V% . Farthermore,

oy

I=2E(max (V—%fT 7) ) (]/——1) +2E( 2_%_-1)+
o2 ) e o a5
+E(E () rs),
(M) e (e ),
éiVW+3+nl/’/m,

where we used the CAucHY-SCHWARZ inequality. We know that for a gamm&
random variable G with parameter a, Var (G) =« and Var (1/Q) =(a—1)-2 (cc-'z)

IIA
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Thus, we have for n=6,

I< 4 + 272 672 _ 4
- Vn—o (n 3) yn -5 Vn
where 4 =6 1/2+V2/3.
The minimax lower bound can be obtained by standard information-theore-

tiec methods (see e.g. DEVROYE, 1987). Also, the lower bound on E (f]tn—fl) is a
straight-forward exercise. m

6.2. The scale-invariant kernel estimate

Let g be the kernel estimate with the data-based & given above, and let g, be
the kernel estimate based upon the same data and %, but with % replaced by
1

ho=cn ®c,

where ¢=o0(f) is a scale factor for f which is equal to the standard deviation if it
exists. It is assumed that ¢ is close to o in some probabilistic sense. The closeness
of gn t0 gno is dealt with in the following lemma.

Lemma 4.

A, We have

S 1gn—gnol =2 (l—min (g 3))iA(a, g) .

B. Let T be the class of all normal densities on the real line. For all u=)8—2:

sup P (d(o, 6)>u)=2e""""32

i

For all n§6,

sup E (A(o, 6))=——— k V2+V_

fer Yn -5
C. E(A(o, 8))=0(n"*®) when []a|%**3 f(z)dz <o for some &>0.
D.

flgn_ﬂéffgno—ﬂ‘f‘QA(O', ),
E (flgn—F)=E (flgno—f1)+2 E(A(a, 6)) ,

S1gn~f1—E (flgn—1))
= [Igno—f1—E (flgno— 1) +24(, 6)+2 E(4(a, 8)) .
Proof. Statement A follows from the unimodality of K, jointly with

J lan—gmol = 1K; =K. =2 (1-min (7. 7))

(DEvROYE and GYORFI, 1985, pp. 186—187).
2

and
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Lemma 5 and part B of Lemma 4). It should be stressed that C and D are the
constants defined in Lemma 5 if & if 6n~Y% with ¢=1.2019409 ... as suggested in
that Lemma. Otherwise, the values of C and D are slightly different. Note fur-
ther that Vn E( f [ta—f)) is asymptotically sandwiched between two positive con-
stants a<f (see Lemma 3). It suffices to establish that we can find sequences
#u=u(n)>0 and v=v(n) >0 such that u+v=c* Vlog nin,

P (Iflgs—f1—E (flgn—FD| =u) =0 (VITT)

and
P (flta=fi=0)=0 (=)

The latter probability does not exceed 2 exp (—nv2/32) (Lemma 3). This tends to

zero at the required rate if we take v=V(16+s) log n/n for some ¢>0. The for-
mer probability is dealt with by a three-way decomposition as in the last part
of part D of Lemma 4. The probability does not exceed

P (1/lgm—~11-E (Jlm—1) =)

+P (A(r_r, 6,)>Z-) +P (E Ao, &)>%)
_ _nu? nu?
=g2¢ 1032 30 1632

provided that n=6, u=4 (Vg— 2), and 8 (6 VE+ VEE))/VE =u (apply DEVROYE
(1988) (see also Theorem 2) and part B of Lemma 4). All of this is o(l/V;) when
u=Y(256 +¢) log n/n for some ¢>0. Thus, asymptotic optimality follows for
€T if gn is at least equal to R,(T) plus c* Vlog n/n where o*=>)16+V256=20.
It suffices, for example, that g, is at least equal to C;,z/ S4c* ]/log—n/n This con-

cludes the proof of part B. Part C was also essentially proved when we obtained

part B. Finally, the inequality in part D is obtained without work from the proof
of part B. ®m
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