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Note: R will denote a commutative ring with unity.
Z: the ring of integers,
Q: the field of rational numbers and
C: the field of complex numbers.

. Let k£ be an infinite field and f(X1,---, X,,) be a non-zero element of the polynomial ring
k[X1,---,X,]. Show that there exist aj,--- ,a, such that f(aj, - ,a,) # 0. 6]
. Prove that the polynomial ring R[X] has infinitely many maximal ideals. [7]

. Let A =C[X,Y,Z]/(XY - Z?). Denote the images of X,Y,Z in A by z,y, z respectively.

(1) Which of the ideals zA, (z,y)A and (z, z)A are prime ideals of A?
(ii) Explicitly describe two maximal ideals of A. [6+4=10]

. Let R =Z[/-5].
(i) Prove that R = Z[X]/(X? +5).
(ii) Prove that R/3R & Z/3Z x Z/3Z.
(iii) Show that 3 is not a prime in R.
(iv) Examine whether 3 is an irreducible element of R.

(v) Give an example of an idempotent element of the ring R/3R. [44+-4+143+2=14]
. Describe all units in the Eisenstein ring Z[w). [4]

. Let R =Z[i}, u = -3+ 11i and v = 8 —¢. Find d,a,b in R such that (u,v)R = dR and
d = au + bv. : (7

. State whether the following statements are TRUE or FALSE with brief justification.

(i) The ring C[0, 1] of real-valued continuous functions on [0, 1] has no non-zero nilpotents.

(ii) If P is a prime ideal of R and I any ideal of R, then the image of P in R/ is a prime
ideal of R/I.

(iii) If R is any commutative ring and f(X) € R[X] is a polynomial of degree n, then f(X)
has at most n roots in R.

(iv) If R has exactly one maximal ideal then R cannot contain any non-trivial idempotent.

(v) (X — 1)Q[[X]] is a maximal ideal of Q[[X]].

(vi) Any subring of a PID is a PID. [3x6=18]
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Answer all questions.
Any result that you use should be stated clearly.

1. e Define the notion of a basis for a topology on a non-empty set X.

e Prove that a basis generate a topology on X.
[24+4=06]

2. e Describe the Hausdorff property of a topological space.

e Let X denote the product space of an indexed family of Hausdorft
topological spaces {X,; a € J}, J being the indexing set. Prove that
X is Hausdorft.

e Prove that a topological space X is Hausdorft if and only if the diag-

onal
A={(r,r): e X}

is closed in X x X.

[2+4+6=12)]

3. e Define limit point of a subset A of a topological space X.

e Let X be the set of all real numbers with the finite complement topol-
ogy and let A be the subset of all integers. What is the closure of A
in X7 Justify your answer.

[2+4=6]

P.T.O



4. Let R be an equivalence relation on a topological space X and g X —

X/R be the quotient map.

e Prove that if the quotient space X/R is Hausdorft then R s a closed

set in X x X.
e Suppose ¢ is an open map and R is closed in
X/R is Hausdorft.

X x X. Then prove that
[4+4=8]

5 Let X be a G-space, G being a finite group.

e Explain the notion of the orbit space X/G.
e Prove that the map X — X /G, sending an clement z € X to 1its
orbit, is an open map.

e Prove that if X is Hausdorff then X/G is also Hausdorft.

[24+4+10=16]
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Answer ALL questions. Marks are indicated in brackets.

(1) Suppose that F is a continuous 1-1 map from an open subset U of JR" onto an open
subset V of IR™, and the inverse map F~! : V — U is continuous too. Let a € U, b = F(a).
Assume furthermore the following:

(i) F is differentiable at the point a and F'(a) is invertible;

(ii) 3 6 > 0 and C > 0 such that Bs(b) C V and [|[F~1(b1) — F71(ba)|| < C|lby — byl| for all
b1, bg in Bs(b).

Prove that F~! is differentiable at the point b.

[10)

(2) Let S be the solid sphere given by {(z,y,2) € R* : 2%+ y? + 22 < 1}. Compute its
volume given by the integral [ dzdydz.
(Hint: use a suitable change of variable and justify it.)

(10}

(3) Prove that a continuously differentiable function from IR™ to IR™ cannot be one-to-one
unless m > n.

(Hint: recall that rank of an m x n matrix A is the maximum integer r for which A hasr x 7
invertible principal submatrix.)

[10]
(4) Let f: IR? — IR be given by:
flz,y) = 22° — 327 + 2y° + 3%,

Find out all the points where f attains a local maximum or local minimum, with justifica-
tions.

[10]
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Note: There are 5 questions on this test. Answer all questions. JUSTIFY your answers. Each question
carries 8 marks.

1. Let V be a vector space over the field F. [4+4]

(a) Define the algebraic dual V* of V. Show that V* is isomorphic to V' if dimp(V) is finite.

(b) Consider the map ¢ : V — (V*)* defined by «(v)(¢) = ¢(v) for each v € V and each ¢ € V*.
Show that ¢ is an injective linear map which is an isomorphism if dimg(V') is finite.

2. Suppose V and W are finite dimensional vector spaces over the field F'. [5+3]

(a) Show that dimp(V @ W) = dimp (V) dimp(W).

(b) If B(V,W) is the space of all bilinear maps from V x V to W, find the dimension of B(V, W)
in terms of dimp (V) and dimp (W) using (a).

3. Consider R? to be equipped with the Euclidean inner product. Let W be the subspace of R3
defined by W = {(z,y,2) e R® : 2 + y + z = 0}. [2+3 +3]

(a) Show that A = {(1,~1,0), (1,0,—1)} and B = {(1,1,1)} are ordered bases for W and the
orthogonal complement W+ respectively.

(b) Suppose P : R® — W is the orthogonal projection map. Find the matrix representing P
with respect to the ordered bases {(1,-1,0), (1,0,-1), (1,1,1)} and A.

(¢) Then find the matrix representing P with respect to the standard basis of R® and the basis
A. '

4. Let ||z|| denote the Euclidean norm of a vector x € R". Show that an n X n real matrix P is
orthogonal ifi)hrﬁy if ||Pz|| = ||z{| for all z € R™. 8]
5. Suppose A € M, ,(C). Denote the conjugate transpose of A by A*. Then prove that [14+3+4]

(a) A*A is Hermitian
(b) All eigenvalues of A*A are real and nonnegative

(c) det(I + A*A) is real and positive.
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Note : This paper carries questions worth a total of 8¢ MARKS. Answer as much as you
can. The MAXIMUM you can score is 70.

1. When is a class S of subsets of a non-empty set £} called a semi-field?
Show that if S is a semi-field, then the class of subsets obtained by forming all possible
finite disjoint unions of sets in S is closed under finite intersections and complementations.

(448)=[12]

2. Let Ay,..., A, be non-empty subsets of a set 2. Consider sets obtained by taking the
n
intersections [} B; where each B; equals either A; or AS. Let Cj,. .., Cy be the non-empty

i=1
sets obtained this way. Show that Cj,...,C) form a partition of Q and that the o-field
generated by the sets Aj,..., A, is the same as that generated by the sets Ci,...,C},
which in turn consists of all possible unions from the sets Cy,...,C.

(8+8+8)=[24]

3. Let A is a o-field on a non-empty set 2. Show that, if f : Q@ — R is a function such that,
for every z € R, the set {w € Q : f(w) < z} belongs to A, then for any borel set B, the
" set {w e Q: f(w) € B} also belongs to A.

(8]

4. Let F : R — R be a distribution function and p be the associated Radon measure on B(R).
Suppose a < b are two real numbers. Show that the function G defined by G(z) = F(z)
for a < z < b, G(z) = F(a) for ¢ < a and G(x) = F(b) for x > b is a distribution function
and that the associated measure v on B(R) is given by v(B) = u(B N (a,bl).

(8+8)=[16]

5. Let p be a measure on B(R) satisfying the property that (B + z) = u(B) for all borel
sets B and all z € R. Suppose u((0,1]) = ¢ < oo.
(a) Show that, for any two integers a < b, u((a,b]) = c- (b —a).
(b) Show that, for any two rational numbers a < b, u((a,b]) =c- (b - a). [Show first that
(¢) Conclude that p = ¢ - A on B(R), where A denotes the lebesgue measure.

(8+8+8)=[24]
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1.

ANSWER Q. 1 AND ANY FIVE FROM THE REST.
Clearly state the results that you use.
R will denote a commutative ring with unity.
Z: the ring of integers.
Q: the field of rational numbers
R: the field of real numbers
C: the field of complex numbers.

State whether the following statements are TRUE or FALSE with brief justification.

(i) If B is a subring of A such that B and A are isomorphic as rings, then B = A.

(ii) The ring Z[4]/(2) has exactly one non-zero nilpotent element.

(iii) If @ and b are coprime elements in a UFD R, then X — b is a prime element of R[X].
(iv) In R = Z[X], the ideal (5X,9X)R is a free R-module.

(v) If N and P are internal direct summands of M, then N + P is necessarily an internal
direct summand of M. [5x 3 =15

. Show that the following rings are Noetherian integral domains.

(i) Q[X]/(f), where f = X% +5X% + 10X> + 10X + 7X +5.
(i) R[X,Y]/(g), where g = X* +3X?Y2 + X2+ 2XY? + 7X + V3.
(iii) C[X,Y, Z]/(h), where h = X? + Y%+ Z? - 1. [12]

(i) Prove that any non-zero commutative ring R has a maximal ideal.
(ii) Deduce that any two bases of a finitely generated free module over a commutative ring
have the same cardinality.

(iii) Give an example of a non-zero module over a PID which does not have any maximal
submodule. [5+3+4=12)

(i) Let I, -+, I, be ideals in R such that I, n--- NI, = 0. If each R/I; is a Noetherian
ring, then show that R is a Noetherian ring.

(i) Let ¢ : M — F be a surjective R-linear map from a finitely generated R-module M
onto a free R-module F'. Show that the kernel of ¢ is finitely generated. [6+6=12]

P.T. 0.



5. Let M and N be modules over a commutative ring R.
(i} Define the tensor product M ®@p N.
(i) M and N are Noetherian, then show that M ®g N is Noetherian. -
(i) Compute M @z N when R =2, M = Q|w] and N = Z/3Z. [3-+6+3=12)
6. (i) Let G be a finite group which acts transitively on X. Let N be a normal subgroup of .
Show that all the orbits of the induced action of V on X have the same size.

(ii) Show that no group of order 24 can be simple. (7+5=12]

7. (i) Prove that any group with more than two elements has a non-trivial automorphism.

(i) How many non-isomorphic Abelian groups are there of order 900007 [9+3=12]
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(1) Let @, w and f be a smooth k-chain in R", smooth (k — 1)-form in /R"™ and smooth

function on IR™ respectively. Prove that

/ﬁfdwz/%fw—[i(df)/\w.

As a corollary to this, derive the formula for integration by parts of calculus (of one variable).

[9+3=12]

(2)Let E be an open convex subset of IR” and w is a smooth 1-form in £. prove that w is
exact, i.e. w = df for some smooth function f on E, if and only if f'r w = 0 for every smooth

closed curve 7 in & (closed means v(0) = v(1)). [1045=15]

(3) Consider the smooth curve  in JR® given by the intersection of the sphere S = {(z,y, 2) :
2?2 4 y? 4 22 = 2azx} and the infinite cylinder B = {(z,y,2) : z > 0,2% + y? = 2bz}, where
a > b > 0 are constants. The orientation of the curve is chosen in such a way that the curve
begins from the origin and moves first in the positive octant {(z,y,z): = > 0,y > 0,z > 0}.
(i) Write down a parametrization of the above curve 7.

(i1) Prove that fy w = —2mab?, where w is the one-form given by

w = (y? 4+ 2%)dz + (22 + a:z)dy + (2% + y?)d.

[5+15=20]

(4) We say that an n X n matrix A with real entries is conformal if satisfies A'A = AA" = cI
for some constant ¢ > 0, where A’ denotes the transpose of A. Moreover, a smooth map f
from some open set of R™ to IR™ is called conformal if Df(z) is conformal for every z in
the domain of f. Now, let n > 2 and suppose that g : (0,00) — R is a smooth map, and
f(x) := g(l|z||)z for z € IR, z # 0. Prove that f is conformal if and only if g is either a
nonzero constant map or of the form g(t) = § for some ¢ # 0.

(18]
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l.

Answer all questions.
Any result that you use should be stated clearly.

Prove that aosubset of R s connected il and only if it s animterval

5]

Explain the notion of local path connectedness of a topological space
X.

Prove that a space X is locally path connected if and only if for every
open set U of X, each path component of U/ is open in X,

2410=12]

What is a normal topological space?

Prove that every regular second countable space is normal.
2412=11)

Let f: X — Y be a continuous surjection and X be compact. Prove
that ¥ is also compact.

Explain what is the real projective space EP2 Prove that it is a
compact space.



Explain the notions of a filter and an ultrafilter vu a set .

Prove that a filter F is an ultrafilter if and only if for any subset -4 of
X either A€ For X —AeF.

R
What is a contractible space? Prove that a space X is coritractible

if and only if for any space Y any two maps /. g : X —— Y are
homotopic.

Compute fundamental group of S!.

[24-5+8:-15]
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Note: There are TEN questions in this test. Answer ANY EIGHT. JUSTIFY your answers. Each

question carries 8 marks.

L.

Let V' be a finite dimensional vector space. Suppose A and B are two ordered bases for V. Define
the transition matrix S from A to B. Suppose a linear transformation 7' : V — V is represented
by the matrix A in the basis A. Find the matrix representing T' in the basis B in terms of S and

A [3+5)

- Define the tensor product of two finite dimensional vector spaces V' and W over the field F. Show

that Homy (V) =V e WL 14+4]

. Consider R* to be equipped with the Euclidean inner product. Let V be the subspace of R*

defined by V = {(z,y,z,w) e R* 1z +y + 2 =0,w — z = 0}. [4-+4]

(a) Find an (ordered)-orthogonal basis A for V.

(b) Find the matrix representation of the orthogonal projection operator P : R* — V in terms
of the standard basis of R* and the basis A of V.

. Suppose A is an eigenvalue of a Hermitian matrix A. Define the algebraic and geometric multi-

plicities of A\. Show that they are equal. 18]
Let V' be a finite dimensional vector space over R. [4+4]
(a) Verify that the pairing (, ) AF(V*) x A (V) — R defined by
(UF A AU AL A ) = det(v] (1),

on decomposable elements, is nonsingular.
: . N
(b) Use the pairing to define a natural isomorphism between AF(V*) and (A*(V))*.

Suppose R is an integral domain and M is an R-module. Define Tor(M) and rank(M). If R = Z[z],
find a rank one torsion-free R-module which is not free. {3+5]

(a) When is an R-module M said to be finitely generated? Give an example of a finitely generated

module such that it has a submodule which is not finitely generated. [243]
(b) If every submodule of M is finitely generated, then show that M must satisfy the ascending
chain condition on submodules. [3]

{Please turn over]



8. Let V be a vector space over a ficld F and let S and T be linear transformations of V. Prove that
S and T are similar linear transformations if and only if the F[z]-module structures on V' defined

by S and T are isomorphic. 8

9. Find the invariant factors and the rational canonical form of the following matrix A (over the ficld

Q). Determine if the matrix A is diagonalizable. [6+2
2 2
A=10 2 -1
00 3

10. Let R be a commutative ring and M be a finitely generated R-module with trivial annihilator.
Show that R is isomorphic to a submodule of M™ for some integer n. 8
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Z: the ring of integers.
Q: the field of rational numbers
R: the field of real numbers
C: the field of complex numbers.

1. Prove that any finitely generated subgroup of R is countable. Deduce that R is not finitely
generated. [12]

2. Let G be a simple group of order 60. Show that if X is a set with |X| < 4, then the only
group action of G on X is the trivial action. [10]

3. Let G be a finite Abelian group. Let f : G — G be defined by f(z) = z", where n is coprime
to |G|. Show that f € Aut G. [10]
4. Let R = Q[X]/(X3 - X).
(1) Prove that R is isomorphic to the product ring Q x Q x Q.
(i1) Which element of Q x Q x Q corresponds to the element X of R?

(iii) Describe all prime and maximal ideals of R. (L5]

5. Show that if R is a Noetherian ring, then so is R[X]. [16]

6. Let My,--- , M, be submodules of a module M such that each M/M; is Noetherian. Show
that M/M; N--- N M, is Noetherian. [10]

7. Define the tensor product M ®pg N of modules M and N over a commutative ring R. Show
that the tensor product exists and is unique up to isomorphism. [12]
8. State whether the following statements are TRUE or FALSE with brief justification.
(i) If the groups G and H have the same composition sefies, then they are isomorphic.
(ii) The image of X in Z[X,Y]/(XY —1) is a prime element.
(ili) C[X,Y, Z]/(X2 + Y? + Z% — 1) is not a Euclidean domain.
(iv) Any submodule of a finitely generated module is finitely generated.

(v) If every ideal of a non-zero commutative ring R is a free R-module, then l%slsx e;tgei 5?
field or a PID.
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(1) Prove that a continuously differentiable function from IR? to IR cannot be one-to-one.

[15]

(2) Let E = {z € R®: z # 0}. and w be the 2-form in E given by

zdy A dz + ydz A dz + zdx A dy
w = PEREIY .
(2 + 42 + 2?)
(i) Prove that w is closed, i.e. dw =0 in E.
(ii) Is w exact in E ? Justify your answer.

[10-+20=30]

(3) Let E be as in Problem 2 above. Prove or disprove (with arguments) the following:
Every closed one-form in F is exact.

[25]

(4) Let F ;: R® — IR3 be a differentiable function such that F(z,y,z) = F(z',y', 2’) whenever
T~y=g'—y and y — z =y — 2’. Prove that

oF OF OF
B By 0z

(15]
. - S
(5) Let ~ be the curve obtained by intersecting the unit sphere {(x,y,2): =% +y*+2? =1}

with the plane {(z,y,2) : = +y+z = 1}, and orientation of v is chosen in such a way

that the curve starts at (1,0,0) and then moves into the positive octant first. Evaluate the

following integral:
/(yd:l; + zdy + zdz).
7

(15]
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RESULTS USED MUST BE CLEARLY STATED.

1. Let G be a non-decreasing real-valued function on R, which is continuously differentiable
everywhere. Show that the Radon measure y induced by G satisfies u(B) = [ G'(z) dz,
for every Borel set B C R and that [ fdu = [ f(z)G'(z) dz, for any measurable function
FR-R

2. Let X denote the Lebesgue measure on the real line. Show that for any Borel set B C R
with A(B) < oo and for any e > 0, there is a finite disjoint union F' of intervals such that
A(BAF) < €. Use this to show that continuous functions with compact support are dense
in L1(R, B, \).

3. (a) State and prove Borel-Cantelli Lemma.

(b) Show that if {X,} is a sequence of real random variables converging in probability to
a random variable X, then there is a subsequence converging almost surely.

4. (a) State and prove Fubini’s Theorem.
(b) Using Fubini’s Theorem, show that for any non-negative random variable X, Eftan™}(X)] =
L1+ IP(X > u)du.
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Answer all questions.
Any result that you use should be stated clearly.

1. e Define the notion of a topology on a non-empty set X.
e Let (X, d) be a metric space. Prove that the metric d on X defines a
topology on X.

[24+8=10]

. Let f: X — Y be a continuous surjection and X be connected. Prove
that Y is also connected.

[\]

(6]
3. e What is a normal topological space?
e Prove that a metric space is always a normal space.
e Prove that a compact T space is normal.
[24+446=12]

4. e Explain the notion of local connectedness of a topological space X.

Prove that a space X is locally connected if and only if for every open
set U of X, each path component of U is open in X.

[2+10=12]
5. e Explain the notion of sequential compactne§s.
e Prove that a sequentially compact metric space is compact.
[2+7=9]
P.T.O



10.

Let X be a Hausdorff space and A be a compact subset in X and z be a
point not belonging to A. Prove that there exist disjoint open subsets U
and V in X such that z € U and AC V.

16]

. Suppose X and Y are compact spaces. Prove that X x Y with the product

topology is compact.

8]

e Explain the notion of a filter on a set X.

e Let X and Y be topological spaces and f : X — Y be a function.
Prove that f is continuous if and only if for every filter F on X
converging to a point z € X, the filter f.(F) converges to f(x).

[4+10=14]
Prove that a contractible space is simply connected.
[10]

Compute fundamental group of S' and hence show that there does not

gxist a continuous function f : D? — S whose restriction to S! is the
identity map id : S — S,

[845=13]
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State clearly any result that you use in your answer.

(1) Let X be a vector field on R? defined by X{(z1,22) = (1,22, —2,, —25). Determine
the maximal integral curve of this vector field through a point (a,b). What happens
when (a,b) = (0,0)? 6

(2) Let o : I — R™ be a maximal integral curve of a smooth vector field ¥’ satisfying
a(0) = a(ty), where 0,ty € I. Prove that 7 =R and « is periodic. 8

(3) Let S be an n-surface in R"** and let py ¢ S. Suppose p is a point of S such that
o~ poll < llg = pol| for all ¢ € S. Then show that (p,p — po) is orthogonal to Sp. 8

(4) Consider the right circular cylinder § = {(z,y,2) € R¥a? + 32 = 1}. Ifa isa
geodesic in S then prove that it is of the following form:
a(t) = (cos(at + b),sin(at + b), ct + d) for t € R,

where a, b, ¢, d are constants. 8
(5) Let f : R® — R be a smooth function defined by f(z,y,2) = 2% + % — 2% Let
S= f~1(1) and p = (1,0,0). Note that p € S.
(a) Prove that S is a 2-surface in R3. Show that v = (p,0,1,1) and w = (p,0, —1,1)
are in the tangent space Sy,.
(b) Choose an orientation for S. Determine the matrix of the Weingarten map L,

relative to the basis v,w. Hence find the Gauss-Kronecker curvature of § at

v 4+8

(6) Let «: I — S be a smooth curve in an n-surface § in R™1,
(a) Explain the notion of a parallel vector field on S along o.

(b) Justify the following statement:
There is a unique parallel vector field X along o such that X(to) = (p, v), where

to € I, afty) = p and (p,v) € Sp.

(c) Suppose that X and Y are two parallel vector fields on S along . Then show
that the dot product of X and Y is a constant function along a.

(d) Show by an example that if o and (3 are two curves in S from p to g then the

¢ ive the same vector
parallel transport of (p,v) € 8, along a and 0 need not give the sa4f4+4+6

at q.
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1. Indicate TRUE/FALSE with justification. [8]

(a) A finite field cannot be algebraically closed.

(b) Let K C I C L be a tower of fields where F/k and L/F are both f1mte Galois. Then
L/k is also finite Galois.

(c) If L/k is a field extension of prime degree, then L = k(«) for every o € L \ k.

(d) i. Any degree 2 extension of a field is normal.
ii. Any degree 2 extension of a field is separable.

2. Let f(X) be an irreducible polynomial in k[X] and let L be a finite normal field extension
of k. Suppose that f(X) = g(X)h(X), where g(X),h(X) € L[X] and g(X),h(.\) are
irreducible in L[X]. Show that there exists a k-automorphism o of L such that when o is
extended to L[X] by defining o(X) = X, we have ¢(g(X)) = h(X). [8]

3. Let & be a field and f(X), g(X) be coprime in k[X]. Prove that
k(2) : A;(i@)] = max{deg f,deg g}
[8]

denote the nth cyclotomic polynomial over Q.
(3]
where ¢ is the

[5]

5. (a) Let X® + bX + ¢ € Q[X] be irreducible and let K be its splitting field. Prove that
[K : Q] = 3 or 6 according as whether —4b3 ~ 27¢% is a square or not. (5]

4. (a) Letn be a positive integer and &, (X)
Prove that ®,,(X) € Z[X].
(b) Prove that the degree of the cyclotomic field extension Q((,) is w(n),
Euler ¢-function.

(b) Find the Galois group of X* — 4X + 1 over Q. [3]
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This paper carries 65 marks. Maximum you can score is 60. Precisely justify all your

steps. Carefully state all the results you are using.

- Let X be a normed linear space over K and f : X — K be a linear map. Show that

ker f = {x € X : f(z) = 0} is either closed or dense in X. [15]

. Let {e,} be an orthonormal basis of a Hilbert space . Suppose {f,} C H is an

orthonormal set such that -
Z len — fall® < 1.
n=1

Show that { f,,} is also an orthonormal basis for . [15]

. Let Y be a linear subspace of C[0, 1]. Show that Y is closed in L*[0, 1] if and only if ¥
[5+(5+10+10+5)=35]

is finite dimensional.

To prove necessity, argue as follows :

(a) Show that Y is also closed in C[0, 1].
(b) Show that there is a constant M > 0 such that for all fey,

Ifll2 < 1 flleo < M fll2-

, fn} is a finite orthonormal setin ¥ C L?[0, 1], then show that

(@ U{f1, fay -

z": |fe(2)]? < M* forallz € [0,1].
k=1

[Hint : Consider f = Z ag frin (b) for a suitable choice of ay’s.]
k=1
(d) Show that dim(Y) < M>.

[Note : The constant in (c) and (d) is same as that in (b).]
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Answers must be justified with clear and precise arguments. If you use any theorem /propositic
proved in class state it explicitly.

1. Suppose that f is holomorphic in a region £ and - is a closed curve in . Show that

ﬂ T (2)dz

is purely imaginary. (Hint: write w = f(z) and do the calculation in the image space.) 5 pts

2. Using contour integration show that

o 1 T
———5dr = —,a > 0.
/0 e a2)2d93 123'Y
5 pts

3. Suppose that f and g are holomorphic in a region containing the disc {z: |z] <1}. Suppose that f has :
simple zero at z = 0 and vanishes nowhere else in {z;|z| < 1}. Let

fe(2) = f(2) + eg(2).
Show that if € is sufficiently small then 54 5 =10 pts
(a) fe(2) has a unique zero in {z : |2| < 1}, and
(b) if z, is this zero then the mapping € — 2 is continuous.

4. Suppose A is an n x n matrix. For ¢ such that || is sufficiently large, the expansion

(Cl A Z €k+1

is valid (e.g. when |¢| > [|4]], a suitable matrix norm of A). Assuming the above expansion.
5+ 5 =10 pts

(a) for [¢] = r, with r sufficiently large, show that for any polynomial of degree m in A, one has

-1
p(4 )_zm ICIZTp(C)(CI—A) d¢.

“ For _k

(Note that the integrand on the right hand side contains matrices. You can first prove it for p(¢) = (%, k €
N) | Y |

(b) Call the above the Cauchy integral formula for polymonials with matrix argument. Now in(.)ve t}he
Cayley-Hamilton theorem: if p(¢) is the characteristic polynomial of A, then p(A) = 0, by completing the
argument below, | y

] y —A E
The characteristic polynomial of A is p(¢) = det(¢(I — A). Note that the ijth entry of ((/ — A)
My(Q)
R VP AT A—
((CI —A) )u - [det({]—A)]

where M;;(¢) is the ijth cofactor, a polynomial of degree n— 1 in (. You. have t.o pr(t);zle th;as fﬁ;ti?f
particulajtr p(¢) = det(¢I — A), the Canchy integral formula proved in (a) gives the ze .
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2.

Answer all questions.
Any result that you use should be stated clearly.

Define a Contractible space.

Suppose X is a contractible space and f : X —— Y is a sujective
continuous function. Should Y be also contractible? Justify your
answer.

Prove that retract of a contractible space is contractible.

[2+434+5=10]

Prove that R™* — {(0,0, -~ ,0)} has the same homotopy tyj-e as the
space S™.

Suppose f : X — S™ is a continuous function which is not st rjective.
Prove that f is nullhomotopic.

[5+5 =10]

. Prove shat the

Define degree deg(|o]) of an element [o] € m (5% 1) " u
0,1 —

degree of the homotopy class represented by the loop o :
given by o(t) = e”™™ ism € Z.
Prove that the function deg : mi(S*, 1) — Z 1s an isomorphism.

[ +6=10]

P.T.O



e Let X, Y be path connected spaces and X >~ Y . Prove that for anv
o€ Xandy €Y,

m (Ia Cli'o) = WI(Y) yO)

Is S* homotopically equivalent to S?? Justify your answei

[8+2=11]

Prove that for any two pointed spaces (X, zp) and (Y, y).

Wl(X X Y? (IanO)) = 71(33,550) X 7['1(}/7 yU)

Compute fundamental group of 72 v S, where 72 = S! x S'.
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Answer all questions. State clearly any result that you use in your answer.
Unless stated otherwise all maps and vector fields are assumed to be smooth.

For any n-surface S and a point p € S, Sp will denote the tangent space of S at p.

(1) Let @ : U — R™! be a smooth parametrized n-surface in R™*1. Let e;, i =
1.2,... n, denote the coordinate vector fields on R" and E; = d¢(e;) the coordinate
vector ficlds along ¢.

(a) Show that Ve E; = Ve, E;.
(b) Suppose that ¢ is one-to-one. Define vector fields V; on ¢(U) by V; = E;0¢™ 1.
Prove that the Lie bracket [V;, V] = 0. 6+7

(2) Let M,(R) denote the set of all n x n matrices over reals and 9, (R) the subset of
M, (R) consisting of all symmetric matrices. Consizder the map @ : M,(R) — S,(R)
defined by ®(A) = AAT. Identify M, (R) with R™".

(a) Provc that S = @”1(1) is a surface in R™. Find the dimension of S. ‘
(b) Let A € S. Show that the tangent space of S at A consists of all n x n matrices
H which satisfy the relation AHTA = —H, where H T denotes the transpose

. 845
of the matrix H. 0
(3) (a) Let wy, i = 1,2,3 be 1-forms on R®. Define w; Awy Aws by
w1 A wy Awz(V1,V2,V3) =D ;580 0 w1 (Vo Jw2(Vo, Jws(Vas ) 2
where the sum is taken over all permutations o of {1,2,3}, v1,va,vs € R;,

: 3
p € R3. Show that w; A w2 Aws is a 3-form on R®. ) e
i i sider the 3-form
(b) Let z1,z, 3 denote the coordinate functions on R°. Consi

w = dzj A dzg A dzz. Determine the value of w(vl,V2,V3) in terms of the

coordinates of vi, vz, V3.
1



(¢) Let N be a vector field on R® defined by N(w1, w9, 2z3) = (w1, 02, 0. 0102, 01
Define a 2-form ¢ on R3 by ((v1,va) = w(v1,v2, N(p)), where viova ¢ B for
p € R3. Show that ¢ = (z; dzs — z9 dz1) A di3. SHiAT

(4) Let S denote the subset of R® defined by 23 + 2 =1, -1 <a3 < 1.

{a) Show that S is a surface with boundary.

(b) Let i : § — R3 denote the inclusion map. Show that i*( is of the form oy for
some 1-form 7 on S, where ( is as in 3(c).

(c) Prove that [¢4*( = 4. G+t T
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1. Indicate True / False with justification for the following statements. [6x3=15]

(a) There are finite extensions of R of odd degree > 1.

(b) Let F' be a field of characteristic p > 0 and K = F(ay,--- ,an) where af € F for all 4.
The only F-automorphism of K is the identity.

(©) [Q(V2,V18): Q] = 16.

(d) Let K = Fy(z,y) be the rational function field in two variables over F,. Let F =
F,(«*,yP). Then K is a simple extension of F.

(e) There may exist f(X) € Q[X] of degree 6 with distinct non-rational roots such that the
Galois group of the splitting field of f is Z/2Z.

[\

(a) A Fermat prime is a number of the form 22" + 1 for some r. Let p be an odd prime such
that a regular p-gon is constructible. Show that p is a Fermat prime. [8]

(b) Let ¢ € R be algebraic over Q and N be the normal closure of Q(c)|Q. Assume that
[N : Q] = 27 for some positive integer 7. Prove that c is constructible. [7]

3. (a) Let f(X) € Q[X] and K be the splitting field of f over Q. Suppose that f is solvable by
radicals. Prove that Gal(K|Q) is a solvable group. [8]

(b) Consider f(X) = X° — 10X + 5 € Q[X]. Show that f is not solvable by radicals.  [7]

1 (a) Let f(X) = X% 4+ aX? +bX% + cX + d € Q[X] be irreducible. Let a1, az, a3, aq be the
roots of f in a splitting field K of f. Consider the resolvent cubic 7(X) = X% — bX? +
(ac—A4d) X +4bd — a>d - ¢?, whose roots in K are g + 3oy, 013+ g, 010+ az03.
Let L be a splitting field of r(X) over Q. Now prove the following : [8]

(i) Gal(K|Q) ~ Sy <= [L: Q] = 6 «= r(X) is irreducible over Q and disc(f) ¢ Q2
(i) Gal(K|Q) ~ Ag <= [L: Q] = 3 <= r(X) is irreducible over Q and disc(f) € Q2
(5) Let f(X) = X% — 4X? + 4X2 + 6 € Q[X]. Determine the Galois group of f. [7]

5. Let F be field containing a primitive nth root of unity and let K IF be an n—Kummer‘ ex-
tension. Let x(F) denote the set of all nth roots of unity in F. Define the Kummer pairing

B : Gal(K|F) x kum(K|F) — u(F) by B(o,aF*) = o(a)/a. Prove that:
(a) B is well defined.
{b) B is bilinear.

(¢) B is non-degenerate.

(d) kum(K|F) ~ Gal(K|F) (clearly state the results you used).

. * *70
() Thereis an injective group homomorphism f:kum(K|F) — F*/F*".[1 +4+3+3+4]
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The question carries 110 marks. Maximum you can score is 100. Precisely justify all

your steps. Carefully state all the results you are using.

1. Given a sequence {ay} of complex numbers, show that there exists a complex mea-

sure 12 on {0, 1] such that [u|([0,1]) <1 and/ z"dy = an for all n > 0 if and only if

for any scalars ag, ay, ..., an,
n
Zakak <sup{lag + az+ ... + a2 1z €[0,1)}). [10]
k=0

2. Let ¢o be the space of all sequences of real numbers converging to zero equipped with

the sup norm. Let A be the subset of ¢ consisting of all rational sequences. Show that

A cannot be a G; setin ¢g. (15]

3. Let(X,]|-|[x)and (Y, ||y ) be Banach spacesand 7" : X — Y be a linear map. Define
Izl =Ty, z€X.

(@) Is || - ||, a norm on X? If yes, prove it. If not, can you find a necessary and
sufficient condition on T that will make it a norm on X? [7]

(b) Given that || - || is a norm on X, find a necessary and sufficient condition on the

range of T' that will make | - || a complete norm. (8]
(c) Given that (X, | - [l1) is a Banach space, prove that || - || is equivalent to || - || v if
[10]

and only if 7: (X, || - [Ix) = (Y.l - ly) is continuous.



4. (a) Let X* be a dual Banach space. Show that the norm on X* is w*-lower semicon-
tinuous. [5]

(b) LetY be a w*-closed subspace of X*. Let z* € X*. Show that there exists y* € ¥’

such that ||z* — y*|| = inf{]jz* — 2*|| : 2* € Y'}. [10]

5. Given a sequence {ay} of scalars, define T' : {5 — {5 by

T({zn}) = {anzn}, {zn} € 0.
(a) Show that T is bounded if and only if {a;,} € £%°. And in that case, 7" is normal
with [T} = [{an}Hleo-
Suppose now that {a,,} € £*°. Show that
(b) T is invertible if and only if {a,} is bounded away from 0.

(c) Ais an eigenvalue of T if and only if X\ = o, forsome n > 1, and, A € o(T) if

and only if A € {ap, : n > 11,

(d) T is compact if and only if {a, } € cp. 15+ 8+ 7+ 15 = 45]



Indian Statistical Institute
Semestral Examination
2010-11 (Second Semester)
M. Math. 1st. Year
Complex Analysis

Date and Time: Wednesday, 11.5.11, 10:30 am - 1:30 pm Total Points: 5 x 14 = 70

Answers must be justified with clear and precise arguments. If you use any theorem /proposition
proved in class state it explicitly.

1. (a) Evaluate the following integral

00 eitr
/ dz, t € R,

oo L+ 22

starting from the contour [-R, Rj U {Re®,0 < § < 7}. You may first assume ¢ > 0, but the final result
for t € R should be stated clearly.

(b) Let f be an entire function (i.e. holomorphic on C) and suppose there is a constant A/, an R > 0 and
an integer n > 1 such that |f(z)] < M|z|* for {z] > R. Show that f is a polynomial of degree n.

7+ 7 =14 pts.
2. (a) Consider the following map from D to C given by

a—z
1-az

Pa(2) = ,2 €D,

where o € . Prove that the map is D valued.

(b) Show that there is no one-one analytic function f which maps {z : 0 < |z| < 1} onto an annulus
Q= {z:r <|z] < R} where r > 0. (Hint: if there is, then show that 0 is a removable singularity of f,
hence if f is the analytic extension of f then by the open mapping theorem f(0) € (2. But for points w
near f(0) how many solutions are there for f(z) = f(z) = w?) 74+ 7 = 14 pts.

3. (a) Prove Rouche’s theorem: Suppose that f and g are holomorphic in an open set containing a circle C

and its interior. If
I7(2)] > lg(2)| for all z € C,

then f and f + ¢ have the same number of zeros inside the circle C.

(b) Consider f(z) = 2° + 5z + z — 2. Show that f has 3 roots in B(0,1). Does f have all its 5 roots in
B(0,5/2)7 7+ (3+4) =14 pts.

4. (a) Use the product
2

I(z) = &

“y=1,z/n
[T+
n=1
that was constructed in an ad hoc manner and was shown to be an analytic continuation of fooo e~tt57ldt, s >
1, to show that ['(z)I'(1 — z) = 7/sinnz.
(b) From the above deduce the value of fooo et~ (/2 gt
5. Let f be analytic on G = {z : Re(z) > 0}, one-one, with Ref(z) >0 for all z € G, a'nd f(a) = a for some
real number a € G. Show that |f’(a)] < 1. As an intermediate step you may consider a conform?Ile:p
taking G to D such that g(a) = 0. pts.

74+ 7 =14 pts.
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g |

0.

~Let k be a field and f € k[X] be an irredu

_ Let L be an algebraic extension of a field k. Show that any k-endomorphism of L is an autom

phisnt. Is the result true if L is not algebraic over k7 [
Lot G be a finite group. Show that G can be realised as the Galois group of a suitable finite Gal
extensioll. [
Prove that every field has an algebraic closure. |

Lot F be a field of characteristic p. Answer the following :

(a) Let I|F be a cyclic Galois extension of degree p. Then prove that K = F(3) with P —(3~a
0 for some a € F.

(b} Let a € F be such that there is no b € F with # — b = a. Prove that f(X) = )'(7’ — X -
i irreducible over F and the splitting field of f over F is a cyclic Galois extension of F

degree p.

[

Let & be a field and E be a finite Galois extension of k. Show that an intermediary field
(k ¢ F C E)is a normal extension of & if and only if Gal(E/F) is a normal subgroup

Gal(E/k). In this case, prove that
Gal(E/k)/Gal(E/F) ~ Gal(F/k)
|

Let f(X) = X*—2 € Q[X]. Find the Galois group of the splitting field E of f over Q. Find
nternediate fields of £/Q. ‘

cible and separable polynomial. Assume that the Ga

oroup of f over k is abelian. Let E be a splitting field of f over k and let oy, -+, Qq be the rc

of fin E. Show that E = k(o) for any i.



INDIAN STATISTICAL INSTITUTE
Semester(Back Paper) Examination : 2010-2011
M.Math.-1 & M.Stat-11
Topology-11

Date : 2c¢ {1 Maximum Score : 100 Time : 3 Hours

Answer all questions.
Any result that you use should be stated clearly.

1. e Compute singular homology groups of a one point space.
e State Excision axiom of singular homology theory.

e Prove that H,(S™, D%) = H,(D", 5™ ') for all p. Here S™ is the n-
sphere, D7 is the closed upper hemisphere in S™ and D" is the closed
n-ball in R™.

e Prove that two chain maps which are chain homotopic induces the
same map in homology.

(5424345 10]

9. Prove that for any n > 0, H,(§") ® Z if i = n and 0. otherwise. where 1,
denotes ith reduced homology.
i

3. Let X be a path connected. locally path connected space and G be a finite
gronp acting freely on X. Prove that the quotient map ¢ : X — N/G 15

a covering map.

19

PT.0



4. Prove that for a regular covering space p : £ — B, the deck transforma-
tion group is isomorphic to

m(B,b)/pemi(E,e),

where b € B and e € p~*(b).

5. e Define a finite cell complex.
e Describe a cell complex structure of RP2.

e Compute homology groups of RP?.

(5+5-+15=20]
6. e Define Hurewicz homomorphism from the fundamental group of a path
connected space X to H;(X).

» Prove that for a path connected space X whose fundamental group
m1(X) is abelian, m(X) = H (X).

e Compute H,(T?).

15-+10+5=20]
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Answer all questions.
State clearly any result that you use in your answer.
Unless stated otherwise all maps and vector ficlds arc assumed to be smooth.

For any n-surfacc S and a point p € S, S, will denote the tangent spacc of S at p.

(1) Consider the vector field X(z1,22) = (z1,22, —2,21) on R For p € R?, let ap

denote the maximal integral curve of X such that a,(0) = p. Define for each ¢ € R
a transformation ¢, : R? — R? by ¢:(p) = ap(t). Show that

(a) ¢; is a homcomorphism of R?:
(b) t = @& is a homomorphism from the additive group of rcal numbers to the

group of all homeomorphisms of R? under composition. 15

(2) Let X and Y be two tangent vector fields on an n-sarface S in R™*!. Prove that

the vector field [X, Y] = VxY — VyX is also tangent to S. 12

(3) Let S be an oriented n-surface in R**1. Prove that

S={(p,v)e Sx R :v €S, v =1}

is a (2n — 1)-surface in R2"+2, 12

(4) Let S1 and So be two n-surfaces in R™*! and a : I — R™t! be a parametrized curve

which Lies in S; N Sy. Show by an example that a vector ficld X parallcl along o in

51 need not be parallel along o in Sy, 10

' ; 2.0 .2 022 = 1in R i
(5) Show that a paramctrized curve a in the unit sphere 21 + 3 + 73 = 1 in R’ is a

geodesic if and only if it is of the form
a(t) = (cosat)e + (sinat)e’,

where {e, e’} is an orthogonal pair of unit vectors in R? and a € R. 12



(6) Let f:R™! — R be a smooth function such that V f(p) # 0 for all p € R**! and
let g : R"*! - R be defined by g(p) = f(ap), wherc a € R, a # 0. Let S = f71(¢)
and § = g~!(c¢) for some real number ¢. Show that the Gauss-Kronecker curvatures
K and K of the n-surfaces of S and S respectively are related by K (p) = a"K(ap)
forall p e S. : 15

(7) Consider the 2-sphere S? in R® defined by the equation z? + 3+ x3 = 1. Orient S?
by the outward unit normal vector field. Show that the volume form of S? oriented
as above is { = z1dxg A dxs + 1o deg Adry + x3dey A dxo. 12

(8) Let f: R® — R be a smooth function defined by f(z1,z2,23) = (roxs. 123, 2122).
Let w = xy1dey + x9dxg + z3dry. Obtain the expression for f*w in the form
fiday + fodag + f3dxs.

12
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