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Bayesian Classification of Surface-Based Ice-Radar
Images

HEMA A. MURTHY anp SIMON HAYKIN, FELLOW, IEEE

Abstract—This paper deals with the application of the Bayes classifica-
tion procedure to discriminate types of sea ice based on images obtained
from surface-based marine radars. The data sets were digitized images
obtained from a dual-polarized Ku-band radar (16 GHz) and a like-
polarized S-band radar (3 GH2) at a site located on the northern tip of
Baffin Island, Canada. The images were first range-compensated, and
statistical properties of different ice types were then determined. The
observed histograms for different ice types were approximated by
continuous density functions. The images were classified by maximizing
the a posteriori probabilities obtained from Bayes’s rule.

The results reported herein suggest that there is sufficient information
in the reflectivity to classify the different forms of ice using decision-
theoretic pattern recognition techniques.

I. INTRODUCTION

SURFACE-BASED marine radar can be used specific-
ally for two different purposes, namely, iceberg detection
and imaging the surface features of ice.

Considerable research [1]-[10] has been done on the study
of the backscatter from sea ice using airborne synthetic
aperture radars (SAR’s), but surface-based imaging of sea ice
has received very little attention. In fact, [11] represents the
first systematic research aimed at improving the performance
of surface-based marine radars for ice surveillance.

The “‘reflectivity’’ of different ice types is known to depend
on certain physical characteristics of the ice types. Hence, it
seems worth while to employ a pattern-recognition approach
to classify the different forms of sea ice. As different ice types
cannot be identified by either definite shapes or sizes that are
immediately evident, the application of decision-theoretic
methods, rather than syntactic methods, seems more appropri-
ate to solve the ice classification problem.

This paper first briefly discusses the data sets used in the
study. The theory involved in the training of the Bayes
classifier is then developed, followed by a discussion of the
classification results obtained.

II. DaTta SETS

The data sets used for the study were obtained from field
experiments conducted by the Communications Research
Laboratory (CRL), McMaster University, in collaboration
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with the Department of Fisheries and Oceans (DFO), Canada
at a site located on the northern tip of Baffin Island. Five
different experimental radars were used, out of which the data
obtained from the Ku band (both like and cross polarization)
and S band (only like polarization) were used in the study
reported herein. The analog video output of the radars were
digitized to 8 bits at 9 MHz. All the images were obtained in
B-Scan format (i.e., azimuth versus range). Aerial photo-
graphs were obtained to perform ground-truthing. The ice
types on the aerial photographs were identified by ice experts
at the field.

II. SoME PRELIMINARIES

Suppose (2, A, P) is an arbitrary probability space, where
Q2 is the sample space, A is a class of sets of 2, closed under all
countable set operations, where elements of A are called
events, and P is the probability measure defined on 4. Let B
be an event in the sample space . Suppose, Ay, A3, -+, Ay
partition the sample space Q. Given that P(4;) > 0 for all i,
then the conditional probability of A; given B is defined by

P(B|A;))P(A))

P(4;|B)=~ ()

Y P(B|A)P(A)

i=1

In the problem of ice classification, A; corresponds to the
different ice types that occur in an ice field, and B corresponds
to the feature vector of an unknown pixel “x.”” P(B|A)
simply describes the probability of an event B belonging to
class A;. P(A;) represents the probability of occurrence of
class A; in the field of interest. The P(B|A)) for all i are
obtained by approximating the observed histograms for
different ice types by continuous density functions. P(A;) was
assumed to be equal for all classes, that is, P(4;) = /M
where M is the total number of classes. Classification is
performed by maximizing the a posteriori probability ob-
tained in (1). This is the Bayes rule for optimal classification.
In the ice classification problem, the feature vector is one
dimensional, and the feature being measured is ‘‘reflectivity.”’

Fig. 1 shows the block diagram of the Bayes classifier,
where d; represents the discriminant function. Specifically, we
have d; = p(x|w), where p(x|w;) is the probability that a
pixel with feature vector x belongs to class w;.

The classifier was built to take care of situations where one
class may have a bounded density function and the other may
have an unbounded density function. This would require the
evaluation of the probability over an infinitesimal width for an
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Fig. 2. (a) Section of the original Ku-band like-polarized and cross-
polarized images: I = icebergs, M = multiyear ice, and F = first-year
ice. (b) Enlarged picture of iceberg followed by a shadow.

unambiguous decision at the class boundary, hence the use of
conditional probabilities in (1).

IV. PARAMETRIC TRAINING OF THE BAYES CLASSIFIER

Parametric training of the Bayes classifier involves two
steps: sample collection and estimation of unknown distribu-
tion parameters. These two steps are described in the sequel.

A. Sample Collection

The sample collection was performed separately for each of
the data sets, and the Bayes classifier trained accordingly. The
ice-radar image of Fig. 2(a) and the aerial photograph of Fig. 3
were compared, and sites corresponding to different ice types
were located on the images. A simple rule of thumb for
identifying an iceberg on the like-polarized image is to locate
the shadow cast by it (Fig. 2(b)). It is observed in [11] that
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Fig. 3. Aerial photo mosaic: / = icebergs, M = multiyear ice, F = first-

year ice, and X = camp location.

multiyear ice and icebergs depolarize the radar signal to a
much larger extent than first-year ice. Hence, strong reflec-
tions are received from multiyear ice and icebergs, while
feeble returns are received from first-year ice on the cross-
polarized image. Regions corresponding to different ice types
can be identified by comparing the like- and cross-polarized
images obtained for the same radar. At least three different
regions corresponding to an ice type were identified, and
parameter estimation was performed for each of them sepa-
rately. In some situations, the samples were combined, and the
Bayes classifier was trained with the parameters estimated for
the combined sample. In other situations, the classifier was
trained with the parameters of the sample that produced the
best classification results in terms of accuracy (to be described
later).

B. Estimation of Unknown Density Parameters

The estimation of unknown density parameters can be
divided into the following steps: identifying the shape of the
density, estimating the unknown parameters, and performing a
test of fit. We now address these issues one by one.

1. Identifying the Shape of the Density: The shape of the
underlying density can be identified by first obtaining esti-
mates of the first four sample moments, followed by the
application of the Pearson rule for unimodal distributions.

Some families of distributions have been constructed by
statisticians which are expected to provide approximations to a
wide variety of observed distributions. The *‘Pearson System”’
is one such family, and was originated by Karl Pearson
between 1890 and 1900 [12].

For every member of this system, the probability density
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Jx(x) satisfies the differential equation [12]

1df
S

(x+a)
o+ o x+ext’

The shape of the density depends on the parameters a, ¢,
¢y, and ¢;. Provided that a is not a root of the equation

ctop+ex2=0

the function f is finite when x = a, and df/dx = O whenx =
—a. Pearson classified the different shapes into a number of
types. The solution of a, ¢, ¢, ¢, is obtained in terms of the
first four moments p |, s, p3, and pg (u, is the first moment
about the origin and p», ps, p4 are the second, third, and fourth
moments about the mean). Define

2
©
gi=t3
K3
14
e
M3

The “‘Pearson System’’ defined in terms of 3, and 3, is as
follows [12]: If

1
k=Z C%(C()Cz)_l

B1(B2+3)*(48,—3B1)(26,—36,—-6)"!

FNYI,

then we may recognize the following special cases:

Normal ,81 = O, 62 =3
Type 1 k<1

Type II B =0, B <3
Type 11 28, — 38, -6 =20
Type IV O0<k«l

Type V k=1

Type VI k>1

Type VI 8 =0,86,> 3.

Type I corresponds to the general form of the beta distribution.
Type HI corresponds to the general form of the gamma
distribution. Type VII corresponds to the general form of the
Student’s #-distribution. Type II, Type IV, Type V, and Type
VI do not conform to any known continuous distribution.

If X, %3, * * *, X, represent n independent samples of an ice
type, the rth moment (#71,) about the mean is given by

J .
mr=;2 (xi—x*)

i=1

where x* is the sample mean defined by

This estimate assumes that each of the n samples has a
probability of 1/7. The estimate of the sample skewness (v51)
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and kurtosis (3,) are then given by

and

Using the estimated values of the skewness and kurtosis, the
shapes of the sampling distributions of different ice types were
determined. The distributions of all ice types were found to
belong to the Type I family of distributions.

2. Estimating the Unknown Parameters: The method of
moments was employed to estimate the parameters of the
underlying sampling distributions. Although the method of
maximum-likelihood is supposed to yield reliable estimates, it
was not used because estimation of four parameters for the
Type I distribution becomes rather complicated.

The general form of the density function for the Type I
family of distributions is given by

(y—a)*-1(b—y)s-!
(b—a)**f-1B(a, B)’

Sr(y)=

a<y=b
where
1
B(a, B)= SO ue=1(1— )81 du.

The four parameters, a, b, «, and (8, have to be estimated; b
and g correspond to the maximum and minimum values of the
distributions, respectively. The maximum and minimum
values of the samples were obtained, and these were used as
the estimates for » and @. The sampling distribution was then
transformed to

_x"‘“‘(l —x)8-1
Jx(x) _W s

by assuming that Y* occursatx = [ and Y* occursatx =
0. The values of x corresponding to the values of y were
obtained by using the equation

x=(y—a)/(b—-a).

O0=<x=<l

Let x;, X3, *-*, X, be random variables drawn from a
population whose density function involves the unknown
parameters 8, 6, -+, 8,. The moment estimators 6%, 0%,
cee, 0F of 6y, 6, -+, 6, respectively, are solutions of the
system of simultaneous equations [13]:
m,-l(xhxb ”'9xn)=u,-,(01’92a o "Gk)’ r=1,2, -+, k
where m is the rth sample moment about the origin. It is
given by

1

n
r__ r
r Exi

=1

[
i=
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and p/ is the rth moment of x about the origin obtained
analytically. It is given by

w=EG)=|_ xfxx) dx

where fy(x) is a continuous density function.
The moment estimators for o and 8 for the Type 1
distribution were obtained as

and

3. Performing a Test of Fit: The chi-square goodness-of-
fit test was performed to determine the closeness between the
estimated theoretical distribution and the observed sample
histogram. To test the hypothesis that the sample does come
from the estimated distribution, we form the statistic

(foi— nfe(x))?

2
nfe(x) @

k
x:=Y,
1

under the condition that there are k intervals of values of x
giving nonzero expected frequencies. The parameters in (2)
are as follows:

nf.(x) the expected frequencies,
Joi the observed frequencies,
n the total number of samples.

As n — oo, the limiting distribution of (2) is chi-square (k¥ —
1) [14].

The theoretical distribution is tested by comparing the
values obtained in (2) with that of the value of chi-square (kK —
1) obtained from the tables. The hypothesis is accepted if the
value of the computed x? is less than some critical value such
a8 X 054~ 1> Xo.01.4 1 Which are critical values at the 5- and 1-
percent significance levels, respectively.

V. IMPLEMENTATION OF THE CLASSIFIER

Four spatial preprocessing operations were performed on
the data. They were noise reduction, calibration, range
normalization, and noise thresholding.

1. Noise Reduction: As radar images are not noise free,
the images were first median filtered; the median filter order is
3 X 3. This filter has the effect of reducing the dispersion in
the class densities and, hence, the region of indecision between
classes.

2. Calibration: The digitized gray levels were converted to
power by using a set of calibration points available for each
radar.

3. Range Normalization: The normal free-space equation
for power received from a point target (ignoring system losses)
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Fig. 4. Block diagram of noise-thresholding scheme.

in a radar environment is given by

3 G\, 3)
"7 4n)’R*
where
P, received power (kilowatts),

transmitted power (kilowatts),

G antenna gain,

g, radar cross section of the target (square meters),
A radar wavelength (meters), and

R range of the target (meters).

For a distributed target, the antenna beam illuminates the area
of the target. Hence, the radar equation, (3), is modified to
include the proximity of the target to the reflecting surface.
Accordingly, P; is given by

_PZGZ)\ZCTebO’o sec¥
- 2(47)3R3

@

6, antenna horizontal beamwidth (radians),
¥ grazing angle,

¢ velocity of light (meters per second),

7 pulse width (seconds), and

oy o area of target.

For small ¥, we have sec¥ =~ 1. For the radars in question, ¥
is very small; hence, we may let sec¥ = 1. From (4), it is
obvious that P, X R? should provide a scaled value of oy, the
“‘reflectivity’’ of the target.

4. Noise Thresholding: Some of the images had to be
thresholded for noise before any classification studies could be
performed on them. The mean u and variance o2 of the noise
were determined. Samples lying within =+ 2¢ of the mean (u)
were eliminated from the study. These pixels were also
bypassed by the classifier. Fig. 4 shows the block diagram of
the scheme employed.

Sites corresponding to different ice types were located on
the image using a digital tablet and a Ramtek 9460 Graphics
Display system. The classification studies were performed
separately for each data set. Table I gives the values of the
estimated parameters for different ice types for each of the
radar data. Fig. 5 shows a plot of the a posteriori probabilities
Dp(w;|x) for the Ku- and S-band radar data, where p(w;|x)
denotes the a posteriori probability that a pixel with feature
vector x belongs to class w;. Fig. 5(a) and (b) refers to like-
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(a) A posteriori probabilities for the Ku-band (like-polarized) data.
(b) A posteriori probabilities for the Ku-band (cross-polarized) data. (c) A
posteriori probabilities for the S-band (like-polarized) data.



498 IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. OE-12, NO. 3, JULY 1987

TABLE I-A
PARAMETERS ESTIMATED FOR THE CLASS DENSITIES OF DIFFERENT ICE
TYPES IN THE Ku-BAND LIKE-POLARIZED IMAGE

sample moments of the sample paramekars of class disbn. chi-square confidence
(n) level
type wy ny Skewness Rurtosis shape Ymax Yoin 8y 85
First-
year ice:
(1) 1.45 0.0B1 0.62 4.21
(2) 1.83 ©.086 -0.11 2.48
I 3.0 0.47 4.1 3.9 13.35(10) 90%
(3) 1.62 0.13 -0.2 2.69
{4) 2.18 0.12 -0.38 3.02
Ice-bergs
or multi-
year ice:
1) 2.72 0.24 -1.53 4.96
(2) 3.56 9.11 -0.38 2.89 I 4.48 1.03 5.9 4.2 9.75(86) 95%
(3) 3.06 0.073 ~0.36 3.53
Shadows:
(1) ©0.55 0_.067 -0.47 3.22
{2) 1.04 0.038 ~0.19 3.12 I 1.46 -0.34 3.2 2.4 14.9(8) 95¢%
(3) 0.43 0.04 -0.37 3.06

TABLE I-B
PARAMETERS ESTIMATED FOR THE CLASS DENSITIES OF DIFFERENT ICE
TYPES IN THE Ku-BAND CROSS-POLARIZED IMAGE

sample moments of the sample parameters of class disbn. chi-square confidence
(n) level
type Ry Moy Skewness Kurtosis shape Yp.. Ypip Y 8y
Multi-~
year ice:
*(1) 2.46 0.06 -0.32 3.43 1 3.05 1.67 3.8 2.9 9.06(11) 90
(2) 3.08 0.085 0.19 2.36 I i 2.36 2.1 2.2 7.61(7) 95%
Ice-bergs:
(1) 3.44 0.15 0.14 2.25 1 4.13 2.63 1.6 1.3 13.3(5) reject
*(2) 3.35 0.13 -8.99 3.62 1 3.94 2.35 2.8 1.5 12.72(10) 90%
(3) 3.02 0.3 -0.4Yy 2.51 I 4.04 1.55 1.9 1.4 22.5(9) reject
(4) 3.8 6.31 -0.67 2.93 1 1.61 2.2 2.2 1.1 4.5(3) 90%
**Noise
threshold:

55.6 56.4 (threshold 40.5 - 70.6)

* Classifier trained with these parameters for the corresponding classes.
** The image was first thresholded to eliminate noise within +2g of u,.
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TABLE I-C
PARAMETERS ESTIMATED FOR THE CLASS DENSITIES OF DIFFERENT ICE
TYPES IN THE S-BAND LIKE-POLARIZED IMAGE

sample moments of the sample parameters of class disbn. chi-square confidence
(n) level
type Yy Hoy Skewness Rurtosis shape Yp.., Ypig 8) sy
Pirst-
year ice:
(1) -0.71 0.1§ 0.16 2.67 1 0.24 -1.85 -0.71 0.15 B.4(11) 75%
*(2) -0.93 0.5 -0.03 2.1 1 0.52 -2.92 2.5 2.0 14.85(3) 95%
(3) -0.57 0.25 0.42 3.41 normal 0.9 -2.13 -0.53 0.25 81.3(30) reject
Ice-bergs
or multi-
year ice:
(1) 1.2 0.1 -2.24 6.61 I 1.41 0.2 1.7 0.55  4.8(2) 30%
*2) 1.35 0.5 -0.85 2.17 1 1.96 -0.27 0.7 0.26 2.7(3) 75%
(3) 0.52 0.19 -0.55 2.52 I 1.27 -0.65 2.3 1.5 12.09 75%
**Noise threshold:
62.3 69.5 (threshold 45.6 - 78.9)
= Classifier trained with these parameters for the corresponding classes.
#* The image was first thresholded to eliminate noise within + 20 of u,.
polarized and cross-polarized Ku-band radar data, respec- TABLE I

tively. Fig. 5(c) refers to like-polarized S-band radar data.

VI. CLASSIFICATION RESULTS

The classifier was trained with the density functions in
Table I. The classification results are presented in Figs. 6-8.
Figs. 6 and 7 show sections of the original Ku-band like- and
cross-polarized images and the corresponding classification
maps. Fig. 8 shows a section of the original S-band like-
polarized image and its classification map.

An empirical approach has been employed to quantitatively
measure the performance of the classifier. The classification
was evaluated with respect to the training samples. Hence, the
classification is biased (in the sense of Lachenbruch [15]). The
performance was evaluated in the following way. Let

N, =total number of sample points for an ice type
N, =total number of sample points classified correctly.

Then, the classification accuracy is defined as

N,
accuracy = — .
s

Table II gives the classification accuracies obtained for
different ice types for all the images. It is observed that the
classification accuracies obtained for the Ku-band data are
significantly higher than those obtained for the S-band data.
This is perhaps due to the poor range resolution of the S-band
data.

Postclassification Processing

To smooth out the boundaries between different ice types,
all the classification maps were median filtered.
So far we have dealt with images in the B-scan format. The

PERFORMANCE OF THE BAYES CLASSIFIER

Performance of the Bayes' classifier(Z)

Ku-band radar(like-polarized) data:

first-year ice-bergs/multi shadows
icas year ice
82.9 75.7 96.9

Ku-band radar{cross-polarized) data:

multi- ice-bergs
year ice
52.1 67.5

S-band radar(like-polarized) data:

first-year ice-bergs/multi-
ice year ice
96.6 52.7

images were scan-converted to plan-position-indicator (PPI)
format so that the location of different target classes with
respect to the radar could be ascertained. Figs. 9 and 10 show
the scan-converted classification maps of the Ku- and S-band
data, respectively. In Fig. 9 we observe that icebergs have
been identified on the like- and cross-polarized images at the
same range and azimuth, although a lot of multiyear ice has
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Fig. 6. Section of the original Ku-band like-polarized image and its
classification map.

Fig. 7. Section of the original Ku-band cross-polarized image and its
classification map.
Fig. 8. Section of the original S-band like-polarized image and its

classification map.

Fig. 9. Scan-converted Ku-band classification maps.

Fig. 10. Scan-converted S-band classification map.

Fig. 11. Combined Ku-band classification map.

501

been classified as belonging to the iceberg class in the cross-
polarized map.
A reduction in the probability of misclassification can be

. obtained by logically combining the two maps. An iceberg is

always followed by a shadow in the like-polarized image.
Hence, if a region corresponds to the iceberg or the multiyear
ice class, and it is not followed by a shadow, the region may be
assumed to correspond to the multiyear ice class rather than to
the iceberg class. The distinction can be achieved by tracing
the contours of the regions corresponding to either icebergs or
multiyear ice. Once the contour is traced, a check is made to
locate a shadow contour immediately following this region. If
a shadow is not found, the region is classified as belonging to
the multiyear ice class; otherwise, it is classified as an iceberg.

Finally, the cross-polarized classification map is combined
with the modified like-polarized classification map to produce
the result of Fig. 11. In this figure, the information about the
different forms of ice is presented in such a way that we may
readily distinguish between the regions of first-year ice,
multiyear ice, and icebergs.

VII. CoNcLUDING REMARKS

In this paper we have confirmed that ice, as seen by a
surface-based marine radar, does exhibit considerable statisti-
cal variability. Hence, we may use decision-theoretic pattern
recognition techniques to classify an ice field.

The Bayes procedure described in this paper is not the only
way in which ice classification can be performed. The
alternatives to this approach include 1) nonparametric classifi-
cation techniques, and 2) multilevel thresholding. Although
these procedures may not yield optimal classification results,
nevertheless, they will consume significantly less computation
time with not so significant a loss in classification accuracy.
These two alternative approaches will be the subject of a future

paper.
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