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dynamic conditions. A brief account of such approaches is

presented in Section II-B.

This article proposes a multipopulation-based adaptive DE

with Brownian and Quantum individuals (DDEBQ) to address

DOPs. In each subpopulation, one individual is an adaptive

quantum individual, analogous to particles following the laws

of quantum mechanics and one individual is a Brownian

individual, whose trajectory is similar to the trajectory of any

particle in Brownian motion. Other individuals in the subpop-

ulation evolve in the DE framework with a neighborhood-

based double mutation strategy. As quantum and Brownian

individuals do not follow the same DE rules as others, they

help in controlling the diversity of the population and thereby,

in enhancing the search efficiency of the algorithm. A double

mutation strategy is developed under the DE-framework to

prevent the algorithm from converging quickly. In order to

circumvent the problem of stagnation, an aging mechanism

is integrated within DE. Also an exclusion scheme is used

so that subpopulations may distribute themselves evenly over

the entire search space. This increases the explorative power

and the ability of the algorithm to track the global optimum.

The performance of the proposed algorithm is primarily tested

on a suite of DOPs generated by the generalized dynamic

benchmark generator (GDBG) that was proposed for the spe-

cial session and competition on “Evolutionary Computation in

Dynamic and Uncertain Environments,” held under the IEEE

Congress on Evolutionary Computation (CEC) 2009 [7]. A

comparison of DDEBQ with several state-of-the-art dynamic

evolutionary optimizers reflects the statistical superiority of

the algorithm over a wide variety of real-parameter DOPs. A

list of terminologies used to describe DDEBQ can be found

in Table IV of the appendix.

The rest of the paper is organized as follows. Section II

provides a brief description of classical DE and also presents

a compact survey of the different modified DE schemes

previously used for solving DOPs. Section III describes the

proposed DDEBQ algorithm with all its salient features in

sufficient detail. Section IV describes the benchmarks used

and explains the simulation strategies used for undertaking

the experiments reported in the subsequent sections. Results

of comparing DDEBQ with several state-of-the-art EAs are

presented and discussed in Section V. Finally, conclusions are

drawn in Section VI.

II. Background

A. Classical DE

A generation of the classical DE algorithm consists of four

basic steps—initialization, mutation, crossover, and selection,

of which, only last three steps are employed into DE genera-

tions. The generations continue till some termination criterion

(such as exhaustion of maximum functional evaluations) is

satisfied.

1) Initialization of Population:: DE searches for a global

optimum within a continuous search space of dimensionality

D. It begins with an initial population of target vectors
�Xi = [x1

i , x
2
i , ..., x

D
i ], where i = 1, 2, 3 . . . .Np (Np is the

population size). The individuals of the initial population

are randomly generated from a uniform distribution within

the search-space. The search-space has maximum and min-

imum bounds in each dimension and the bounds can be

expressed as

�Xmax =
[

x1
max, x

2
max, ..., x

D
max

]

and �Xmin =
[

x1
min, x

2
min, ..., x

D
min

]

.

The jth component of the ith individual is initialized in the

following way:

x
j
i,0 = x

j

min + rand
j
i (0, 1) · (xj

max − x
j

min), j ∈ {1, 2, . . ., D} (1)

where rand
j
i (0, 1) is a uniformly distributed random number

in (0, 1) and it is instantiated independently for each jth

component of the ith individual.

2) Mutation: After initialization, DE creates a donor

vector �Vi,G corresponding to each population member or target

vector �Xi,Gin the current generation through mutation. The

three most frequently referred mutation strategies for DE are

listed below as

DE/rand/1 : �Vi,G = �Xri
1,G

+ F · ( �Xri
2,G

− �Xri
3,G

) (2)

DE/best/1 : �Vi,G = �Xbest,G + F · ( �Xri
1,G

− �Xri
2,G

) (3)

DE/current−to−best/1:

�Vi,G = �Xi,G+F · ( �Xbest,G−�Xi,G)+F · ( �Xri
1,G

− �Xri
2,G

). (4)

The indices ri
1, ri

2, and ri
3 are mutually exclusive integers

randomly chosen from the range {1, 2, . . . , Np}, and all are

different from the base index i. These indices are randomly

generated anew for each donor vector. The scaling factor

F is a positive control parameter for scaling the difference

vectors. �Xbest,G is the best individual vector with the best

fitness (i.e., having the highest objective function value for

a maximization problem) in the population at generation G.

The general convention used for naming the various offspring

generation strategies of DE is DE/x/y/z, where x represents a

string denoting the vector to be perturbed and y is the number

of difference vectors considered for perturbation of x. z stands

for the type of crossover being used (exp: exponential; bin:

binomial).

3) Crossover: The donor vector mixes its components

with the target vector �Xi,G under the crossover operation to

form a trial vector of the same index denoted as �Ui,G =

[u1
i,G, u2

i,G, ....., uD
i,G]. The DE family of algorithms primarily

uses two kinds of crossover schemes— exponential (or two-

point modulo) and binomial (or uniform) [2]. The binomial

crossover scheme is briefly explained below since it is used

in the proposed algorithm. Under this scheme the trial vector

is created as follows:

u
j
i,G =

{

v
j
i,G if rand

j
i (0, 1)≤CR or j = jrand

x
j
i,G otherwise

(5)

where Cr is a user-specified parameter (crossover rate) in

the range [0, 1) and jrand ∈ {1, 2, ...., D} is a randomly

chosen index, which ensures that the trial vector �Ui,G differs

from its corresponding target vector �Xi,G by at least one

component.
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4) Selection: The next step of the algorithm calls for

selection to determine which of the target or the trial vectors

survives to the next generation, i.e., at G = G + 1. For

a maximization problem, if the objective function value of

the trial vector is not less than that of the corresponding

target vector, then the trial vector is selected for the next

generation; otherwise the target vector is selected for the

next generation. Obviously, for a minimization problem the

condition for selection is just the opposite.

B. Dynamic Optimization With DE—Brief Overview

Since the late 1990s, DE started to receive attention from

DOP researchers. Mendes and Mohais presented DynDE [8],

a multipopulation DE algorithm, developed specifically to

optimize slowly time-varying objective functions. In DynDE,

the diversity of the population is maintained in two ways:

first, by reinitializing a population if the best individual of

the population moves too close to the best individual of

another population and secondly, by randomization of one

or more population vectors by adding a random deviation to

the components. The authors showed that DynDE is capable

of solving the Moving Peaks Benchmark (MPB) problems

efficiently. Brest et al. [9] investigated a self-adaptive DE

algorithm (jDE), where the control parameters F and Cr are

self-adapted and a multipopulation method with an aging

mechanism is used to improve performance on DOPs. This

algorithm ranked first in the competition on “Evolutionary

Computation in Dynamic and Uncertain Environments” under

IEEE CEC, 2009. Some other interesting research efforts on

modifying DE for optimizing in dynamic environments can

be found in [10]–[13]. Recently, Halder et al. [14] proposed

a multipopulation DE for solving DOPs. In this proposal, the

entire population is partitioned into several clusters according

to the spatial locations of the trial solutions. The clusters are

evolved separately using a standard DE algorithm. The number

of clusters is an adaptive parameter and its value is updated

after a certain number of iterations.

Various niching strategies [15] have been proposed by the

EA researchers to adapt an EA for detecting and maintain-

ing multiple optima over a multimodal functional landscape.

Niching also helps in preserving the population diversity in

the course of an EA and track moving peaks in dynamic

optimization. DE has been modified to induce efficient niching

behavior on multimodal landscapes in some prominent works,

such as bi-objective DE with mean distance-based selection

[16], crowding-based DE [17], and DE-based multimodal

optimization using the principle of locality [18]. Parrott and Li

[19] used the speciation technique to track multiple peaks in

a dynamic environment. Subsequently in 2006, Li et al. [20]

used speciation-based particle swarm optimization (SPSO) to

tackle DOPs by using detection and response. The method

is designed for solving problems with primarily unknown

numbers of peaks. Lung and Dumitrescu [21] used crowd-

ing DE to maintain diversity and combined it with PSO,

called collaborative evolutionary-swarm optimization (CESO)

to solve dynamic optimization problems. In 2009, Lung and

Dumitrescu [22] further improved and extended their work

by introducing one more crowing DE population that acted

as a memory for the main population. However, most of the

dynamic niching techniques necessitate the use of niching

parameters, such as the niching radius or the crowding factor,

which in turn require prior knowledge about the functional

landscape for proper tuning [15]. This may lead to poor

performance on complicated dynamic functions like those

designed with the GDBG system.

III. DDEBQ Algorithm

A. Dynamic DE Scheme

In order to maintain diversity of the population to a larger

extent, DDEBQ introduces adaptive quantum and Brownian

individuals along with the DE individuals in the population.

These quantum and Brownian individuals do not follow the

same rule as the DE individuals. Actually, within a subpopula-

tion, two individuals are randomly chosen at each generation.

The quantum individual generation rules are applied to one

of them and the Brownian individual generation rules to

the other. If one of the chosen individuals happens to be

the best individual of that subpopulation, then the choice

is discarded and another individual is randomly picked for

subjecting it to the Brownian or quantum individual generation

processes.

1) Quantum Individuals: In quantum mechanics, due to

the uncertainty in position measurement, the position of a

particle is probabilistically defined. This idea is used here

to generate individuals within a specific region around the

local best position. The steps for stochastically generating an

individual, whose position is inside a hyper-sphere of radius

R and centered at the local best position �Lb can be outlined

as follows.

1) Generate a radial distance randomly from a uniform

distribution within the range (0, R) as:r ∼ U(0, R). This

implies 0≤r≤R.

2) Generate a vector with each component being sampled at

random from a normal distribution having zero mean and

unity variance: �X = [x1, x2, ..., xD] ; xd = N(0, 1), where

1≤ d ≤ D and N(µ, σ) denotes the normal distribution

with mean µ and standard deviation σ.

3) Compute the distance of the vector from the origin
∥

∥ �X
∥

∥ =

√

∑D
i=1 x2

i .

4) The new quantum individual’s position will be

�Xq = �Lb +

(

r
∥

∥ �X
∥

∥

)

�X. (6)

In DDEBQ, the radius R within which the quantum in-

dividuals are generated is adaptive in nature, i.e., the ra-

dius is automatically updated according to certain conditions

and with the progress of the search. The adaptation of R

is explained in Section III-E as it depends on the control

parameter C.

2) Brownian Individuals: Brownian motion is used to

describe the random movement of particles suspended in a

fluid. In mathematics, Brownian motion is described by the

Wiener process (a continuous-time stochastic process named
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in honor of Norbert Wiener). The Wiener process Wtis char-

acterized by the following three facts: 1)W0 = 0; 2) is almost

surely continuous; and 3) Wthas independent increments with

distribution, i.e., Wt − Ws ∼ N(0, t − s). for 0≤s≤t. DDEBQ

employs a very simple method to simulate the Brownian

motion. New individuals are generated within a Gaussian

hyper-ellipsoid centered at the local best position. If the local

best position is �Lb, then, the new Brownian individual’s

position will be

�XB = �Lb + �� (7)

where the Gaussian perturbation vector �� = [�1, �2, ..., �D];

�d = N(0, σ), with 1 ≤ d≤D and σ is the standard devia-

tion of the multivariate normal distribution from which each

component of the perturbation is randomly sampled. Here, the

value σ = 0.2 is used following [8] and considering the fact

that this value gave the best results for most of the tested

benchmark instances.

We would like to mention here that Wong et al. [23]

proposed a niching algorithm where, in the species-specific

exploration stage, random individuals are generated to main-

tain the diversity of the population for detecting multiple

peaks on a static landscape. However, the proposed Brownian

and quantum individual generation schemes are considerably

different from what was done in [23].

3) DE Individuals: These individuals evolve following

the standard DE algorithm. The donor vectors are gen-

erated following a new mutation scheme that is detailed

below. However, these individuals follow the same bino-

mial crossover and selection process as that of the standard

DE algorithm.

B. Double Mutation Strategy

In a dynamic environment, if the population is concentrated

around the global optimum, then the individuals will lose

their ability to detect the global optimum again when the

position of the latter changes. Thus, here the idea is to control

the perturbation to slow down the searching process and

make the subpopulations evenly distributed over the entire

search space. An exclusion rule is employed to meet the

second objective and the rule is discussed in Subsection III-C.

For the first objective, DDEBQ follows a double mutation

scheme, which is conceptually motivated by the work of Das

et al. [24] in a different context. Under this scheme, first a

mutant vector is generated according to a neighborhood-based

mutation scheme and then the final donor vector is produced

as a linear combination of the mutant vector with the local best

vector (of the corresponding subpopulation) formed through a

constant weight factor.

1) Neighborhood-Based Mutation Strategy: In order to

overcome the limitations of the fast but less reliable con-

vergence characteristics of DE/current-to-best/ 1/bin, some

changes are introduced in the process of generating the dif-

ference vectors. For the first difference vector, the original

scheme uses the difference between the global best individual

and the current individual; however, in the modified scheme,

the difference between the nearest memory individual and

the current individual is considered. The memory archive

contains a collection of the best individuals from the previ-

ous subpopulations. This modification is done to control the

convergence of the population toward global optima and to

encourage the subpopulations to explore the vicinity of the

corresponding local best positions. For the second differential

vector, instead of taking the difference between two randomly

chosen individuals, DDEBQ uses the difference between the

best individual in the neighborhood and the worst individual

in the neighborhood with respect to the current individual.

This modification is likely to guide the mutant vector to

explore the neighborhood of the current individual within the

subpopulation.

Note that the concept of neighborhood in [24] is solely

based on the index graph of the DE vectors and two given

vectors are neighbors if they have adjacent indices, albeit they

may not be adjacent geographically or according to fitness

values. In this paper, the neighborhoods bear a completely

different meaning as will be evident from the following

discussion. The first mutation can be expressed as

v
j
mut,G = x

j
i,G+F j

mem·(x
j
mem,G−x

j
i,G)+F

j

bw·(x
j

n best,G−x
j
n worst,G)

(8)

where jǫ{1, 2, . . . , D} and x
j
i,G is the jth component of �Xi,G

that is the current vector. Similarly x
j

n best,Gis the jth compo-

nent of �Xn best,G that is the best vector in the neighborhood

with respect to the current vector. It is the vector within

the corresponding subpopulation for which 1
rik

(

f ( �Xk,G)

f ( �Xi,G)
− 1

)

(k = 1, 2, . . . , m, where m = number of individuals in the sub-

population and k �= i) is maximum. Here, rik is the Euclidean

distance between the vectors �Xi,G and �Xk,G. x
j
n worst,G denotes

the jth component of �Xn worst,G, which is the worst vector

in the neighborhood with respect to the current vector. For

this vector, 1
rik

(

1 − f ( �Xk,G)

f ( �Xi,G)

)

(k = 1, 2, . . . , m and k �= i) is

maximum among all individuals within the subpopulation.

x
j
mem,G denotes jth component of the nearest memory individ-

ual (memory individuals are the best individuals from the pre-

vious subpopulations) to �Xi,G in terms of Euclidean distance.

During the process of generating the mutant vector, for each

dimension of each difference vector, the respective scaling

factors are randomly generated from a uniform distribution

within a range and this range is varied inversely with the

magnitude of the differential vector along the corresponding

dimension. DDEBQ generates the scaling factors for each jth

component in the following way:

F j
mem = 0.3 + 0.7 · rand

j
i [0, 1] ·

(

1 −
|x

j
mem,G − x

j
i,G|

|SRj|

)

(9a)

F
j

bw = 0.3 + 0.7 · rand
j
i [0, 1] ·

(

1 −
|x

j

best,G − x
j
worst,G|

|SRj|

)

(9b)

where |SRj| is the search range corresponding to the jth

dimension. Clearly, as the difference increases, i.e., ap-

proaches |SRj|, the value of the scaling factor reduces to
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0.3. Zaharie [25] suggested that the values of F, which satisfy

the equation, 2F 2 − 2
/

m + Cr
/

m = 0 can be considered

to be critical. Here, m is the number of individuals in a

subpopulation. In case of a single population algorithm, m

should be replaced by Np. In DDEBQ, Cr is kept constant

at 0.9 and m is six. Putting these values in the equation,

the critical value for the scaling factor F becomes 0.285.

Therefore, the lowest value of the scaling factor is set to

0.3 for convenience. However, the above equation can be

used only for the DE/rand/1/bin scheme (2). For the DE-

variants involving best individuals, the expression describing

the influence of F and Cr becomes more complicated. The

above equation is used here only to provide an indication of

the actual critical value of F; it is not meant to give a precise

estimate.

2) Second Stage Mutation: A linear combination of the

mutant vector from the 1st stage of mutation to the local best

vector is formed by using a weight factor. This way the local

best vector is perturbed in a controlled manner. The second

mutation can be expressed as

�Vfinal,G = (1 − ω) · �Lb,G + ω · �Vmut,G (10)

where �Lb,G is the local best vector, i.e., the best vector

of the corresponding subpopulation, �Vmut,G is the mutant

vector generated from 1st stage mutation and ω is the weight

factor.

C. Exclusion Rule

In DDEBQ, an exclusion rule is employed to ensure that

different subpopulations are located around different basins

of attraction. However, this rule is slightly different from the

existing one [8] as it uses a new empirical formula to calculate

the marginal distance between two subpopulations. Here, the

strategy is to calculate the Euclidean distance between the

best individuals from two different subpopulations at each

generation. If the distance between the best individuals of

any two subpopulations falls below a marginal value, then the

subpopulation having the best individual of lower objective

function value (i.e., worse fitness for a maximization problem)

between the two is marked for reinitialization. The marginal

value of the distance is calculated according to the following

rule:

If there are D dimensions with search ranges SR and there

are Nsub subpopulations, then the marginal value for the

distance is

Dis marginal = SR/(Nsub · D). (11)

Here, the idea is to partition the search space almost equally

among the Nsub subpopulations. Note that the DyneDE [8]

algorithm uses the linear diameter of the basin of attraction

as an indicator for this exclusion radius. Unlike DyneDE’s

exclusion scheme [(1) of [8]], the formula given in (12)

does not make implicit assumption that the peaks are evenly

distributed in the search space. It also eliminates the need

for knowing the number of peaks of the objective function

beforehand.

Algorithm 1 Algorithm for Aging Mechanism: (Considering jth
individual of the ith subpopulation)

1. if the ith subpopulation contains the global best individual,

then do not perform aging mechanism on the subpopulation.

2. else if the j-th individual is the best individual in the i-th

subpopulation,

then Age−best(i, j) = Age−best(i, j) + 1.

if Age−best(i, j) ≥ 30, then reinitialize the i-th subpop-

ulation and reset Age−best(i,:) and Age−worst(i,:) entries

to 0.

3. else if j-th individual is the worst individual in the i-th

subpopulation, then Age−worst(i, j) = Age−worst(i, j) + 1.

if Age−worst(i, j) ≥ 20, then reinitialize the individual and

reset Age−worst(i, j) entries to 0 leaving other members of

the subpopulation intact.

4. else the Age−worst(i, j) and Age−best(i, j) of the j-th

individual are reset to 0.

D. Aging Mechanism

DDEBQ employs a simple aging mechanism to get rid of

the individuals stagnating at some local optimum. Algorithm 1

shows a schematic procedure to implement the aging mech-

anism. Age−best and Age−worst are two matrices with di-

mensions (Nsub, m), m being the number of individuals per

subpopulation. The (i, j)th entry of Age−best matrix represents

how many times consecutively the jth individual of ith subpop-

ulation has been the best individual of the ith subpopulation.

In the same way, the (i, j)th entry of Age−worst matrix

represents how many times consecutively the jth individual

of ith subpopulation has been the worst individual of the ith

subpopulation. If an individual is reinitialized owing to its

consistently bad performance then the corresponding entry of

the Age−worst matrix is reset to 0 but the Age−best matrix

remains unaltered. If a subpopulation is reinitialized due to

stagnating at any local optimum, then the corresponding row

entries of the Age−best and Age−worst matrices are all reset

to 0. The reinitialization is done randomly covering the entire

search space.

Aging is a heuristic method and its objective is to reinitialize

the individuals that may be trapped at some local optimum.

Except for the experimental results, it is difficult to justify the

choice for the thresholds. They should be set in such a fashion

that the reinitialization may occur only when stagnation is

heuristically sensed. In DDEBQ, the aging thresholds are set to

30 and 20 for Age−best and Age−worst, respectively, through

a series of experiments carried on the available benchmarks.

A lower aging threshold will mean more reinitializations that

might be unnecessary whereas a high aging threshold will

mean more wastage of FEs to achieve the same level of

accuracy.

E. Adaptation of Control Parameter and Radius of Generating

Quantum Individuals

In order to actuate the diversity within the subpopulations,

a control parameter is introduced in DDEBQ. Depending

on the conditions, this parameter can take any value among

0, 1, and 2. This parameter, denoted by C, helps the search
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process to achieve better convergence characteristics. If C

becomes one, then, the quantum individuals are not gener-

ated; if C becomes two, then, the Brownian individuals are

not generated, and if C becomes 0 then the search process

progresses in normal way, i.e., with quantum, Brownian, and

DE individuals.

As mentioned previously, when C is 0, the algorithm

generates all the individuals (DE, Brownian, and quan-

tum) to maintain the diversity at a higher level. When the

population concentrates around a global best position before

the occurrence of a dynamic change, as determined by the

control parameter C, the diversity should be reduced separately

within each of the subpopulations to ensure high precision in

locating the global optima. If the diversity of the individuals

in each of the subpopulations is reduced separately, then

irrespective of the whole population’s diversity, the subpop-

ulation containing the global best individual converges to the

global best position and the algorithm is likely to achieve a

high degree of accuracy. In this way, while preserving the

population diversity as a whole, DDEBQ can also obtain high

quality solutions. This is possible because the subpopulations

are located at different regions of the search space due to

the exclusion rule, which is described earlier. In DDEBQ,

the diversity is reduced in two steps, first by stopping the

generation of quantum individuals and then by stopping the

generation of Brownian individuals and starting the generation

of quantum individuals. As quantum individuals are likely to

possess less diversity than Brownian individuals [26], after the

second step, the diversity is expected to decrease more.

The value of C is chosen in the following way. First, the

difference of the global best objective function values before

and after the first update interval (UI) generations is defined

as PR. From this point onward, if the global best objective

function values over UI generations have a difference greater

than PR, then the current value of PR is replaced by this

new value. If the difference becomes less than (PR /10) but

greater than (PR /50), then C is set to one. If the difference

is less than (PR /50), then C is set to two. A value too

low as indicated by (PR /50), indicates that the algorithm

has not experienced severe explorations in last UI generations

and it can be concluded to be incisively searching around a

possible optima. A higher value, even greater than (PR /10),

can be referred to be in its explorative phase. A moderate

value within these extremes can indicate an algorithm in

its balanced explorative and exploitative phase. With respect

to these values the control parameter C can be determined,

which wheels the dynamics of the search process in DDEBQ

by controlling the generation of the Brownian and quantum

individuals. The strategy for adapting control parameter C is

presented as Algorithm 2.

Note that the adaptation of C depends on monitoring of

the progress of search (in terms of the frequency of variation

of the globally best individual) at regular intervals and this

bears some conceptual resemblance with the cooling schedules

used in adaptive simulated annealing (SA) algorithms [27].

For example, the cooling schedule in hide-and-seek SA [28]

depends on the best objective function values obtained up to

a certain number of generations and an estimation of the un-

Algorithm 2 Algorithm for Control Parameter (C) Adaptation

1. Initialize generation counter G = 0 and calculate

initial Gbest fit0 = f ( �Xbest,0), C = 0.

// �Xbest,Gis the globally best solution at

generation G and f (.) is the function under test.

2. Initialize counter k = 1.

3. Start Loop

4. Carry out the optimization steps of DDEBQ

5. if mod (Gen, UI) == 0

6. Calculate new Gbest fitk = f ( �Xbest,G).

7. Calculate PRkas:PRk = |Gbest fitk − Gbest fitk−1|
8. if PRk > PRk−1

9. Update PR.

10. if (PRk − PRk−1) < PRk−1/50, C = 2

11. else if PRk−1/50 < (PRk − PRk−1) < PRk−1/10, C =

1

12. else C = 0.

13. k = k + 1.

14. G=G+1

15. if termination condition satisfies break Loop, else

return to Step 4.

known global optimum after the same number of generations.

The performance is monitored after a specific UI (defined in

the terminology list of the appendix). Based on the rate of

change of the globally best solution during the intervals of

the UI number of generations, the diversity is controlled by

generating either Brownian or adaptive quantum or both kinds

of individuals. Hence, selecting a proper value for frequency of

update is decisive to performance of the algorithm. If the test

is conducted too frequently, i.e., UI is very low, the search

agents may not get enough scope to thoroughly explore the

space. On the other hand, if UI is relatively high with respect

to the frequency of occurrence of the dynamical changes, the

detection of proper stages of optimization may be hampered.

For GDBG problems, where E is 100000 FEs, UI = 20 gives

optimal performance. In fact, the performance of the algorithm

is not sensitive to UI values lying in the range of 15 to 35 and

remains more or less consistent on different benchmarks from

the GDBG suite. Our simulation experiments (not reported in

the paper for space economy) indicate that a lower value of

UI is suitable for lower change intervals while a higher value

of UI is suited to higher change intervals. From our detailed

empirical study, a value of UI = 20 can provide optimized

performance over a wide range of functions. It can be noted

that UI of 20 is in same range as aging thresholds age−best

and age−worst. In the experimentation part, UI is fixed to 20

for all benchmark instances and no problem specific tunings

were allowed.

Adaptation of the radius R for the generation of control

parameters depend on C. If C is 0, then R is set to one. If C is

two, then R changes according to the following rule depending

upon the difference (Diff ) of global best objective function

values before and after UI generations

R = Diff · log10

(

10 +
PR

50 · Diff

)

. (12)
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F. Dynamic Dimensional Change Addressing

In addition to changing the search landscape and thereby

changing the functional values of the individuals, some chal-

lenging benchmark problems, such as GDBG with change

type T7 [7], accompanies altering height, width, position

of the optima, varying dynamics in orientation, scalability

of the problem as well as a dimensionality contrast after a

specific number of FEs. In that case, the algorithm needs

to detect whether a dimensional change has occurred or not.

The objective function of GDBG changes the dimension by

some rules within a limit. It modifies the current solution

vector by adding or deleting dimensions of the current solution

and returns the changed dimension of the problem along

with the modified solution vector. Hence, the occurrence of

a dimensional change can be detected by examining the

test solution vector returned by the cost function in every

generation. Whenever the dimension of the new test solution

returned by the cost function does not match the dimension

of the previous one, it can be inferred that a dimensional

change has occurred in the environment. If the dimension is

increased by one, then an extra dimension is added to the

other individuals within the population. The values of extra

dimensions of the individuals are randomly sampled from a

uniform distribution within the corresponding bounds of the

search space. If the dimension is decreased by one, then the

additional dimension of other individuals within the population

is eliminated.

G. Complexity Issues—Empirical Discussion

Apart from the computational burdens of evaluating the

objective function (measured in terms of the number of FEs),

another aspect of complexity of the algorithm can arise from

the calculations of Euclidian distances between the current

individual and the memory individuals during construction

of the mutant vector for the current individual. This is

because computing the Euclidean distances can demand a

considerable amount of processor time. If each subpopulation

contains m number of individuals and the total population

size is denoted by Np then the number of subpopulations

is Nsub = (Np/m)). As the memory archive contains the

best individuals from each subpopulation, the number of

memory individuals is also(Np/m). Hence, the total number

of evaluations of Euclidian distances in one generation is

total population size × number of evaluations of Euclidian

distances for each individual. Therefore, the total number

of evaluations of Euclidian distances in one generation is
(

Np2
/

m
)

. As can be observed, if the number of individuals

in each subpopulation is increased, i.e., as the multipopulation

scheme approaches to a single-population scheme, part of

the complexity of the algorithm decreases but it also loses

the effectiveness of having multiple subpopulations. On the

other hand, if the number of subpopulations is increased, the

number of individuals in each subpopulation decreases and

the complexity of the algorithm increases (the complexity

gradually approachesO(Np2)), but the effectiveness of the

multipopulation scheme increases. Note that, according to

Yang and Li [29], the timing complexity of the clustering

operation in the clustering PSO algorithm that also uses

Euclidean distance calculations heavily is O(Np2), Np being

the initial population size.

H. Repairing Rule

For every newly generated individual (whether it is a DE,

Brownian, or adaptive quantum individual), the algorithm

checks whether any component of the new individual is outside

the bounds. If any component is outside the bound, then it is

randomly reinitialized by sampling from a uniform distribution

within the bounds as per (1).

IV. Experimental Settings

A. Benchmark Problems

CEC 2009 benchmark problems for dynamic optimization

were generated by using the GDBG system proposed in

[7], which constructs dynamic environments for the location,

height, and width of peaks. Li et al. [7] introduced a rotation

method instead of shifting the positions of peaks as done in

the MPB [30] problems. The GDBG system poses greater

challenges for optimization than the MPB problems due to

the rotation method, larger number of local optima, and higher

dimensionalities. There are seven change types for each test

functions in the GDBG system, which are small step change,

large step change, random change, chaotic change, recurrent

change, recurrent change with noise, and dimensional change.

The test functions in real space instance are as follows:

F1: rotation peak function,

F2: composition of sphere functions,

F3: composition of Rastrigin’s functions,

F4: composition of Griewank’s functions,

F5: composition of Ackley’s functions and

F6: hybrid composition functions. Only F1 is a maximiza-

tion problem and others are minimization problems. In

F1, there are two tests, one using 10 peaks and another

using 50 peaks.

B. Simulation Strategies

Simulation environment (hardware and software) used for

carrying out the experiments described in the subsequent

sections can be summarized as CPU: 3.2 GHz Intel Core i5,

RAM: 2 GB DDR3, and MATLAB 2009b edition. The perfor-

mance of DDEBQ is measured in terms of the mean error [7]

and the adaptability metric [31] obtained in 20 independent

runs. The mean error is calculated according to the following

expression [7]:

Emean =
1

(runs ∗ num change)

∑runs

i=1

∑num change

j=1
Elast

i,j .

(13)

Here, runs is the total number of runs, num−change is the

number of dynamic changes that occur during each inde-

pendent run, and Elast
i,j is the error recorded before the jth

dynamic change of ith independent run. Note that the error

Elast corresponds to the absolute fitness difference between

the best solution found by an EA (before a landscape change)

and the known best solution (for that landscape), i.e., Elast(t) =
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TABLE I

Experimentally Determined Best Parametric Settings

for DDEBQ

∣

∣f ( �Xbest(t)) − f ( �X ∗ (t))
∣

∣. In all result tables, the best results

are marked in boldface.

The adaptability metric measures a difference between the

value of the current best individual of each generation and

the optimum value averaged over the entire run and can be

expressed as

Ada =
1

num change

num change
∑

i=1





1

τ

τ−1
∑

j=0

erri,j



 (14)

where τ is the number of generations between changes when

the environment remains static. erri, j denotes the absolute

difference between the fitness values of the current best indi-

vidual in the population of the jth generation and after the last

change and the optimum value for the fitness landscape after

the ith change. Evidently for both mean error and adaptability,

the smaller the measured values are, the better the result is.

For results of the comparative studies, a nonparametric

statistical test, called the Wilcoxon’s rank sum test for in-

dependent samples [32], is conducted at the 5% significance

level, in order to judge the statistical significance of the best

results obtained in each experimental scenario. The statistical

test results are indicated within parentheses throughout all the

result tables as “+”, “ - ”, or “≈”, when the result of DDEBQ is

statistically significantly better than, worse than, or statistically

equivalent to the corresponding result, respectively. The rank

sum test is conducted between the results of DDEBQ and the

other dynamic EAs considered.

C. Parameter Settings

Table 1 lists the parametric values that keep the perfor-

mance of DDEBQ considerably good over a wide range of

benchmarks. Please refer to the supplementary document for a

detailed account of the simulation experiments that empirically

validate these values. Also once set, the same parameter

values are used for DDEBQ on all the benchmark instances

of GDBG in Section V, where performance of the algorithm

is compared with some of the best-known evolutionary DOP

solvers. No function-dependent tuning of the parameters is

allowed anywhere for DDEBQ.

V. Results and Discussions

This section presents a comparative study of the perfor-

mance of DDEBQ with several other state-of-the-art evolu-

tionary dynamic optimizers on the GDBG benchmarks. The

performance of DDEBQ is compared with the following seven

algorithms by using the benchmark suite of the GDBG system:

Differential Ant-Stigmergy Algorithm (DASA) [33], jDE [9],

[33], DynDE [9], dopt-aiNET [34], CPSO [28], CESO [21],

and PSO with Composite particles (PSO-CP) [35]. DASA

is based on the classical ant colony optimization methods.

CPSO uses a hierarchical clustering method to locate and track

multiple peaks. In addition, CPSO incorporates a fast local

search method to search for optimal solutions in a promising

subregion found by the clustering method. PSO-CP uses the

idea of composite particles from physics to maintain the

diversity of the population through a scattering operator. Dopt-

aiNet introduces a set of complementary mutation operators

and a better mechanism to maintain the diversity of solutions

in the original opt-aiNet [36] algorithm, which was meant for

solving static and multimodal function optimization problems

For the competitor algorithms, the best parametric setup

is employed in accordance with their respective literatures.

An identical experimental condition guided by the technical

report of [7] is maintained for all the algorithms compared.

Tables II and III provide the simulation results obtained over

all the test cases mentioned in [7] by using DDEBQ and seven

other algorithms in terms of the mean best-of the-run error

values and the adaptability metric values achieved over 20

independent runs. The tables also show the average runtime (in

seconds) consumed by all the algorithms compared. Sample

convergence graphs are provided for functions F1 (number

of peaks = 10), F2, F3, F4, F5, and F6 with change type T7

over 300,000 FEs in Fig. 1. In this case, dimension of the

search space changes when the dynamic change occurs. This

change type is similar to T3 (random change) except for the

dimensional change. The y-axis of these plots contains the

relative value r(t) that is calculated as f ( �Xbest(t))/f ( �X∗(t))

for function F1 (as it is a maximization problem) and for

other functions as f ( �X∗(t))/f ( �Xbest(t)). The highest possible

value of r(t) is one. As can be observed from the convergence

graphs, the relative value is lowest in case of function F3

and it is highest in case of function F1. The convergence

characteristics also indicate that as each dynamic change

occurs, the relative value r(t) attains a sharp downfall.

A close scrutiny of Tables II and III reveals that DDEBQ

outperforms all the seven evolutionary dynamic optimizers in

a statistically significant fashion over 36 out of the 49 test

instances. It yielded statistically inferior results compared to

any one of the competitor algorithms in four test instances

and statistically equivalent results with one or two competitors

over the rest nine instances. For function F3, the jDE algorithm

could attain lower best error values than DDEBQ over change

types T2, T4, and T6. However, results of the Wilcoxon’s rank

sum test reveals that for change types T1, T3, T5, and T7, the

differences between the results of jDE and DDEBQ are not

statistically significant. Also DDEBQ exhibited a statistically

better performance than the other six EAs for all the change
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TABLE II

Mean Error Values, Ada Metric Values, and Average Runtime (in Seconds) Achieved by the Algorithms Compared for

Test Functions F1-F3 of the GDBG System. Wilcoxon’s Rank Sum Test Results of Comparing DDEBQ With the

Contender Algorithms Indicated in Parentheses.
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TABLE III

Mean Error Values and Standard Deviations Achieved by DDEBQ and Other Algorithms for Test Functions F4-F6 of GDBG

System. Wilcoxon’s Rank Sum Test Results of Comparing DDEBQ With Contender Algorithms Indicated in Parentheses.
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Fig. 1. Sample convergence graphs for DDEBQ algorithm. (a) For F1 with T7. (b) For F2 with T7. (c) For F3 with T7. (d) For F4 with T7. (e) For F5 with
T7. (f) For F6 with T7.

types of F3. For all the change types of the functions F1,

F2, F4, and F5, and for change types T1, T4, T5, T7 of

F6, DDEBQ yielded statistically superior performance to jDE,

which was the winner of 2009 IEEE CEC Competition on

Evolutionary Dynamic Optimizers.

DDEBQ performed statistically better than CPSO in all test

cases. There are two test instances where DDEBQ performed

statistically similar to CESO (F4 with T6, F6 with T1).

DDEBQ performed worse than PSO-CP and comparable to

DynDE in only one instance: F4 with change type T7. In 43

out of the 49 tested instances, DDEBQ achieved the lowest

values of the adaptability metric. This indicates that for ma-

jority of the tested instances the best individual in the DDEBQ

population remained closer the optimum for all generations,

i.e., the optimum was better tracked by the proposed algorithm.

For function F3 with change types T2, T4, and T6, jDE yielded

the best adaptability metric values while DDEBQ attained the

second best values. For function F6 with change types T3

and T4, despite yielding the lowest mean errors, DDEBQ was

marginally surpassed by jDE in terms of the adaptability val-

ues. Note that for the instances where DDEBQ is statistically

outperformed by any one of the seven contender algorithms, it

ranked second best outperforming the other six algorithms. No

other evolutionary DOP solver considered in this article could

keep such a consistent performance on the wide variety of the

tested DOP instances. As the double mutation strategy prevents

the population from converging too quickly and the aging

mechanism helps the population to get rid of local optima,

DDEBQ is able to perform very well over such highly complex

and multimodal functions. Extremely good performances over

the sphere function (F2), the Ackley’s function (F5), and the

composition function (F6) have resulted from the incorporation

of the dynamic DE scheme and exclusion principle. As the

dynamic DE scheme maintains a good diversity level of the

population, DDEBQ is able to locate the global optimum after

any dynamic change more efficiently than other algorithms.

The exclusion rule also helps the algorithm to explore much

greater portion of the search space—a feature that leads to

high success rate in locating the global optimum. Also, a high

degree of precision in locating the global optimum observed

in rotation peak function (F1 with number of peaks = 10,

50) is a consequence of introducing the control parameter

C that has an important role in controlling the diversity

of the population and adaptively changing the radius within

which the quantum individuals are to be generated. From

the average runtimes listed in Tables II and III, it is evident

that the runtime of DDEBQ is in several cases comparable

to DyneDE, dopt-aiNet, and CESO. However, CPSO takes

higher average runtime on most of the functions due to the

incurrence of several Euclidean distance calculations. PSO-

CP also involves various computational overheads and in

general is slower or comparable to DDEBQ in majority of

the cases. DASA and jDE appear to be marginally faster

than DDEBQ. However, when the accuracy appears to be

the major bottleneck, DDEBQ has several advantages to

offer.

VI. Conclusion

In this paper, a variant of the DE algorithm referred to as

DDEBQ is proposed to solve DOPs in a statistically efficient

manner. The proposed algorithm uses a dynamic DE scheme

that obviously shares the traditional DE framework. In addition

to DE individuals, it uses adaptive quantum and Brownian

individuals to increase the diversity and exploration ability

of the search process. A control parameter is introduced

to control the diversity as necessary. The algorithm also

employs an aging mechanism to get rid of stagnation. The

DE individuals produce the donor vectors according to a

neighborhood-based double mutation strategy to control the

perturbation. An exclusion scheme is used so that the sub-

populations become evenly distributed over the entire search

space.

The statistical summary of the simulation results indicates

that DDEBQ can provide consistently superior performance

as compared to the other state-of-the-art evolutionary dynamic
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optimizers in terms of average level of accuracy. Future work

may focus on introducing more co-operation and information

exchange among the subpopulations in DDEBQ. It can also

be fruitful to make the crossover probability adaptive to the

condition of the fitness landscape. Algorithmic components

of DDEBQ can be integrated with some of the adaptive DE

variants ([37], [38]) to improve their performance on dynamic

landscapes as well.

Appendix

TABLE IV

List of Terminology Used in DDEBQ
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