966

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

An Adaptive Differential Evolution Algorithm for
Global Optimization in Dynamic Environments

Swagatam Das, Senior Member, IEEE, Ankush Mandal, and Rohan Mukherjee

Abstract—This article proposes a multipopulation-based adap-
tive differential evolution (DE) algorithm to solve dynamic
optimization problems (DOPs) in an efficient way. The algorithm
uses Brownian and adaptive quantum individuals in conjunction
with the DE individuals to maintain the diversity and exploration
ability of the population. This algorithm, denoted as dynamic
DE with Brownian and quantum individuals (DDEBQ), uses
a neighborhood-driven double mutation strategy to control the
perturbation and thereby prevents the algorithm from converging
too quickly. In addition, an exclusion rule is used to spread
the subpopulations over a larger portion of the search space
as this enhances the optima tracking ability of the algorithm.
Furthermore, an aging mechanism is incorporated to prevent
the algorithm from stagnating at any local optimum. The
performance of DDEBQ is compared with several state-of-the-
art evolutionary algorithms using a suite of benchmarks from
the generalized dynamic benchmark generator (GDBG) system
used in the competition on evolutionary computation in dynamic
and uncertain environments, held under the 2009 IEEE Congress
on Evolutionary Computation (CEC). The simulation results
indicate that DDEBQ outperforms other algorithms for most of
the tested DOP instances in a statistically meaningful way.

Index Terms—Differential evolution, diversity, double mutation
strategy, dynamic optimization problems.

I. INTRODUCTION

IFFERENTIAL evolution (DE) [1], [2] has emerged
as one of the most powerful real-parameter optimizers
currently in use. DE implements similar computational steps
to that of standard evolutionary algorithms (EAs). How-
ever, unlike traditional EAs, DE-variants perturb the current-
generation population members with the scaled differences of

Manuscript received July 30, 2012; revised July 11, 2013; accepted July 27,
2013. Date of publication August 28, 2013; date of current version May 13,
2014. This paper was recommended by Associate Editor Y. Tan.

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors. The Supplementary
document contains additional experimental and empirical evidences to validate
the various algorithmic components of the proposed DDEBQ algorithm.
It also provides empirical justification for the graded diversity preserving
mechanisms induced by the quantum, Brownian, and Differential Evolution
individuals. A complete pseudo-code of the algorithm has also been provided
in this document. Moreover the choices of various control parameters of
DDEBQ have been justified on the basis of extensive experimental results.
This includes a PDF file, This material is 207 kB (0.2 MB) in size.

S. Das is with the Electronics and Communication Sciences Unit
(ECSU), Indian Statistical Institute (ISI), Kolkata 700108, India (e-mail-
swagatam.das @isical.ac.in).

A. Mandal and R. Mukherjee are with the Department of Electronics and
Telecommunication Engineering, Jadavpur University, Kolkata 700108, India
(e-mail: ankushmandall9 @gmail.com; rohan.mukherjii @ gmail.com).

This paper has supplementary downloadable material available at
http://ieeexplore.ieee.org, provided by the authors.

Digital Object Identifier 10.1109/TCYB.2013.2278188

randomly selected and distinct population members. There-
fore, no separate probability distribution (like the Gaussian
distributions used in evolutionary programming (EP) and evo-
lution strategies (ES) or the Cauchy distributions used in case
of the fast EPs) is used to generate offspring.

Several optimization problems in the real world are dynamic
in nature. For these dynamic optimization problems (DOPs),
the function landscape changes with time, i.e., optima of the
problem to be solved change their locations over time and,
thus, the optimizer should be able to track the optima continu-
ally by responding to the dynamic environment [3], [4]. Practi-
cal examples of such situations are price fluctuations, financial
variations, stochastic arrival of new tasks in a scheduling
problem, machine breakdown, or maintenance. Under dynamic
environments, converging tendency of a conventional EA
(implying the tendency of the population members of an EA
to concentrate within a small basin of the search space as the
iterations progress) imposes severe limitations on performance
of the EA. If the population members of the EA converge
rapidly, they will be unable to effectively respond to the
environmental changes. Therefore, in case of DOPs the main
challenge is to maintain a diverse population and at the same
time to produce high quality solutions by tracking the moving
optima. At this point, we would like to mention that there are
also DOP instances where the optimal solution does not need
to be tracked. For example, Allmendinger and Knowles [5]
investigate DOPs where the constraints [ephemeral resource
constraints (ERCs)] change over time but not the landscape
and thus, also not the optimal solutions. In this paper, we
focus on the real parameter-bound constrained DOPs where
the objective function landscape explicitly changes with time
and not on the problems with ERCs.

Classical DE faces difficulties when applied to DOPs due
to two main factors. Firstly, DE individuals have a tendency
to converge prematurely into small basins of attraction sur-
rounding the local and global optima as the search progresses
[6]. Thereafter, if any change occurs in the position of the
optima, DE starts lacking sufficient explorative power to track
down the new optima due to the individuals being similar
and the consequently small perturbations. Secondly, DE may
occasionally stop proceeding toward the global optimum even
though the population has not converged to a local optimum
or any other point [2], [6]. Researchers have made some
attempts to introduce suitable algorithmic modifications in DE
for enabling it to continually track changing optima under

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS 967

dynamic conditions. A brief account of such approaches is
presented in Section II-B.

This article proposes a multipopulation-based adaptive DE
with Brownian and Quantum individuals (DDEBQ) to address
DOPs. In each subpopulation, one individual is an adaptive
quantum individual, analogous to particles following the laws
of quantum mechanics and one individual is a Brownian
individual, whose trajectory is similar to the trajectory of any
particle in Brownian motion. Other individuals in the subpop-
ulation evolve in the DE framework with a neighborhood-
based double mutation strategy. As quantum and Brownian
individuals do not follow the same DE rules as others, they
help in controlling the diversity of the population and thereby,
in enhancing the search efficiency of the algorithm. A double
mutation strategy is developed under the DE-framework to
prevent the algorithm from converging quickly. In order to
circumvent the problem of stagnation, an aging mechanism
is integrated within DE. Also an exclusion scheme is used
so that subpopulations may distribute themselves evenly over
the entire search space. This increases the explorative power
and the ability of the algorithm to track the global optimum.
The performance of the proposed algorithm is primarily tested
on a suite of DOPs generated by the generalized dynamic
benchmark generator (GDBG) that was proposed for the spe-
cial session and competition on “Evolutionary Computation in
Dynamic and Uncertain Environments,” held under the IEEE
Congress on Evolutionary Computation (CEC) 2009 [7]. A
comparison of DDEBQ with several state-of-the-art dynamic
evolutionary optimizers reflects the statistical superiority of
the algorithm over a wide variety of real-parameter DOPs. A
list of terminologies used to describe DDEBQ can be found
in Table IV of the appendix.

The rest of the paper is organized as follows. Section II
provides a brief description of classical DE and also presents
a compact survey of the different modified DE schemes
previously used for solving DOPs. Section III describes the
proposed DDEBQ algorithm with all its salient features in
sufficient detail. Section IV describes the benchmarks used
and explains the simulation strategies used for undertaking
the experiments reported in the subsequent sections. Results
of comparing DDEBQ with several state-of-the-art EAs are
presented and discussed in Section V. Finally, conclusions are
drawn in Section VI.

II. BACKGROUND
A. Classical DE

A generation of the classical DE algorithm consists of four
basic steps—initialization, mutation, crossover, and selection,
of which, only last three steps are employed into DE genera-
tions. The generations continue till some termination criterion
(such as exhaustion of maximum functional evaluations) is
satisfied.

1) Initialization of Population:: DE searches for a global
optimum within a continuous search space of dimensionality
D. It begins with an initial population of target vectors
X; = [x!,x2,...,xP], where i=1, 2, 3Np (Np is the
population size). The individuals of the initial population

are randomly generated from a uniform distribution within
the search-space. The search-space has maximum and min-
imum bounds in each dimension and the bounds can be
expressed as

i(maxz[xl X2, xl } and Xpin = [xl X2, xl }

max’ “‘max’ ***? ““max min® “*min’ min
The jth component of the ith individual is initialized in the
following way:

Xl =xli +rand] (0, 1) - (¢l —xhi), i €(1,2,..., D} (1)

max

where randij (0, 1) is a uniformly distributed random number
in (0, 1) and it is instantiated independently for each jth
component of the ith individual.

2) Mutation: After initialization, DE creates a donor
vector \7,36 corresponding to each population member or target
vector;(i,gin the current generation through mutation. The
three most frequently referred mutation strategies for DE are
listed below as

DE/rand/1:Vig =X, 6+ F- X6~ Xi0) (@)
DE/best/1 : ‘7i,c = Xbest,G +F- (S(rq,c - S(r;,G) 3)

DE/current—to—best/1:
Vic=XicHF - Xpesr.a—Xi,c)HF - (X, 6 — X,i 6)- (4)

The indices ri, r5, and r} are mutually exclusive integers
randomly chosen from the range {1, 2, ..., Np}, and all are
different from the base index i. These indices are randomly
generated anew for each donor vector. The scaling factor
F is a positive control parameter for scaling the difference
vectors. }q(bm,g is the best individual vector with the best
fitness (i.e., having the highest objective function value for
a maximization problem) in the population at generation G.
The general convention used for naming the various offspring
generation strategies of DE is DE/x/y/z, where x represents a
string denoting the vector to be perturbed and y is the number
of difference vectors considered for perturbation of x. z stands
for the type of crossover being used (exp: exponential; bin:
binomial).

3) Crossover: The donor vector mixes its components
with the target vector X i, under the crossover operation to
form a trial vector of the same index denoted as U, =
[u} G, u G, ..., uP;]. The DE family of algorithms primarily
uses two kinds of crossover schemes— exponential (or two-
point modulo) and binomial (or uniform) [2]. The binomial
crossover scheme is briefly explained below since it is used
in the proposed algorithm. Under this scheme the trial vector
is created as follows:

&)

Uic =9\

i {v-{c if rand’(0, NSCR of j= juana
XiG

otherwise

where Cr is a user-specified parameter (crossover rate) in
the range [0, 1) and juue € {1,2,...., D} is a randomly
chosen index, which ensures that the trial vector 17,;(; differs
from its corresponding target vector 3(,;0 by at least one
component.

968

4) Selection: The next step of the algorithm calls for
selection to determine which of the target or the trial vectors
survives to the next generation, i.e., at G = G + 1. For
a maximization problem, if the objective function value of
the trial vector is not less than that of the corresponding
target vector, then the trial vector is selected for the next
generation; otherwise the target vector is selected for the
next generation. Obviously, for a minimization problem the
condition for selection is just the opposite.

B. Dynamic Optimization With DE—Brief Overview

Since the late 1990s, DE started to receive attention from
DOP researchers. Mendes and Mohais presented DynDE [8],
a multipopulation DE algorithm, developed specifically to
optimize slowly time-varying objective functions. In DynDE,
the diversity of the population is maintained in two ways:
first, by reinitializing a population if the best individual of
the population moves too close to the best individual of
another population and secondly, by randomization of one
or more population vectors by adding a random deviation to
the components. The authors showed that DynDE is capable
of solving the Moving Peaks Benchmark (MPB) problems
efficiently. Brest et al. [9] investigated a self-adaptive DE
algorithm (jDE), where the control parameters F and Cr are
self-adapted and a multipopulation method with an aging
mechanism is used to improve performance on DOPs. This
algorithm ranked first in the competition on “Evolutionary
Computation in Dynamic and Uncertain Environments” under
IEEE CEC, 2009. Some other interesting research efforts on
modifying DE for optimizing in dynamic environments can
be found in [10]-[13]. Recently, Halder et al. [14] proposed
a multipopulation DE for solving DOPs. In this proposal, the
entire population is partitioned into several clusters according
to the spatial locations of the trial solutions. The clusters are
evolved separately using a standard DE algorithm. The number
of clusters is an adaptive parameter and its value is updated
after a certain number of iterations.

Various niching strategies [15] have been proposed by the
EA researchers to adapt an EA for detecting and maintain-
ing multiple optima over a multimodal functional landscape.
Niching also helps in preserving the population diversity in
the course of an EA and track moving peaks in dynamic
optimization. DE has been modified to induce efficient niching
behavior on multimodal landscapes in some prominent works,
such as bi-objective DE with mean distance-based selection
[16], crowding-based DE [17], and DE-based multimodal
optimization using the principle of locality [18]. Parrott and Li
[19] used the speciation technique to track multiple peaks in
a dynamic environment. Subsequently in 2006, Li et al. [20]
used speciation-based particle swarm optimization (SPSO) to
tackle DOPs by using detection and response. The method
is designed for solving problems with primarily unknown
numbers of peaks. Lung and Dumitrescu [21] used crowd-
ing DE to maintain diversity and combined it with PSO,
called collaborative evolutionary-swarm optimization (CESO)
to solve dynamic optimization problems. In 2009, Lung and
Dumitrescu [22] further improved and extended their work
by introducing one more crowing DE population that acted

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

as a memory for the main population. However, most of the
dynamic niching techniques necessitate the use of niching
parameters, such as the niching radius or the crowding factor,
which in turn require prior knowledge about the functional
landscape for proper tuning [15]. This may lead to poor
performance on complicated dynamic functions like those
designed with the GDBG system.

III. DDEBQ ALGORITHM
A. Dynamic DE Scheme

In order to maintain diversity of the population to a larger
extent, DDEBQ introduces adaptive quantum and Brownian
individuals along with the DE individuals in the population.
These quantum and Brownian individuals do not follow the
same rule as the DE individuals. Actually, within a subpopula-
tion, two individuals are randomly chosen at each generation.
The quantum individual generation rules are applied to one
of them and the Brownian individual generation rules to
the other. If one of the chosen individuals happens to be
the best individual of that subpopulation, then the choice
is discarded and another individual is randomly picked for
subjecting it to the Brownian or quantum individual generation
processes.

1) Quantum Individuals: In quantum mechanics, due to
the uncertainty in position measurement, the position of a
particle is probabilistically defined. This idea is used here
to generate individuals within a specific region around the
local best position. The steps for stochastically generating an
individual, whose position is inside a hyper-sphere of radius
R and centered at the local best position Lb can be outlined
as follows.

1) Generate a radial distance randomly from a uniform
distribution within the range (0, R) as:r ~ U(0, R). This
implies 0<r<R.

2) Generate a vector with each component being sampled at
random from a normal distribution having zero mean and
unity variance: X = [x1, x2, ..., xp]; xg = N(O, 1), where
1<d <D and N(u, o) denotes the normal distribution
with mean p and standard deviation o.

3) Compute the distance of the vector from the origin
[X[| = /322 a7

4) The new quantum individual’s position will be

- > r >
' (HXH)

In DDEBQ, the radius R within which the quantum in-
dividuals are generated is adaptive in nature, i.e., the ra-
dius is automatically updated according to certain conditions
and with the progress of the search. The adaptation of R
is explained in Section III-E as it depends on the control
parameter C.

2) Brownian Individuals: Brownian motion is used to
describe the random movement of particles suspended in a
fluid. In mathematics, Brownian motion is described by the
Wiener process (a continuous-time stochastic process named

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS 969

in honor of Norbert Wiener). The Wiener process W;is char-
acterized by the following three facts: 1)W, = 0; 2) is almost
surely continuous; and 3) W;has independent increments with
distribution, i.e., W, — Wy ~ N(O, t — 5). for 0<s<t. DDEBQ
employs a very simple method to simulate the Brownian
motion. New individuals are generated within a Gaussian
hyper-ellipsoid centered at the local best position. If the local
best position is zb, then, the new Brownian individual’s
position will be

5(3=Zb+& (7N

where the Gaussian perturbation vector A= [Ay, As, ..., Ap];

= N(0,0), with 1 < d<D and o is the standard devia-
tion of the multivariate normal distribution from which each
component of the perturbation is randomly sampled. Here, the
value o0 = 0.2 is used following [8] and considering the fact
that this value gave the best results for most of the tested
benchmark instances.

We would like to mention here that Wong et al. [23]
proposed a niching algorithm where, in the species-specific
exploration stage, random individuals are generated to main-
tain the diversity of the population for detecting multiple
peaks on a static landscape. However, the proposed Brownian
and quantum individual generation schemes are considerably
different from what was done in [23].

3) DE Individuals: These individuals evolve following
the standard DE algorithm. The donor vectors are gen-
erated following a new mutation scheme that is detailed
below. However, these individuals follow the same bino-
mial crossover and selection process as that of the standard
DE algorithm.

B. Double Mutation Strategy

In a dynamic environment, if the population is concentrated
around the global optimum, then the individuals will lose
their ability to detect the global optimum again when the
position of the latter changes. Thus, here the idea is to control
the perturbation to slow down the searching process and
make the subpopulations evenly distributed over the entire
search space. An exclusion rule is employed to meet the
second objective and the rule is discussed in Subsection III-C.
For the first objective, DDEBQ follows a double mutation
scheme, which is conceptually motivated by the work of Das
et al. [24] in a different context. Under this scheme, first a
mutant vector is generated according to a neighborhood-based
mutation scheme and then the final donor vector is produced
as a linear combination of the mutant vector with the local best
vector (of the corresponding subpopulation) formed through a
constant weight factor.

1) Neighborhood-Based Mutation Strategy: In order to
overcome the limitations of the fast but less reliable con-
vergence characteristics of DE/current-to-best/1/bin, some
changes are introduced in the process of generating the dif-
ference vectors. For the first difference vector, the original
scheme uses the difference between the global best individual
and the current individual; however, in the modified scheme,
the difference between the nearest memory individual and

the current individual is considered. The memory archive
contains a collection of the best individuals from the previ-
ous subpopulations. This modification is done to control the
convergence of the population toward global optima and to
encourage the subpopulations to explore the vicinity of the
corresponding local best positions. For the second differential
vector, instead of taking the difference between two randomly
chosen individuals, DDEBQ uses the difference between the
best individual in the neighborhood and the worst individual
in the neighborhood with respect to the current individual.
This modification is likely to guide the mutant vector to
explore the neighborhood of the current individual within the
subpopulation.

Note that the concept of neighborhood in [24] is solely
based on the index graph of the DE vectors and two given
vectors are neighbors if they have adjacent indices, albeit they
may not be adjacent geographically or according to fitness
values. In this paper, the neighborhoods bear a completely
different meaning as will be evident from the following
discussion. The first mutation can be expressed as
Uj

; j
mut,G Fmem (mem,G)C G)+Fhw (xn _best,G xn worstG)

®)

where je{l,2,..., D} and x," ¢ 1s the jth component of X G
that is the current vector. Similarly x/ best,18 the jth compo-
nent of Xn _best,G that is the best vector in the neighborhood
with respect to the current vector. It is the vector within
the corresponding subpopulation for which —]}(();k G)) 1)
(k=1,2, ..., m, where m = number of 1nd1V1dua1§ lnlfhe sub-
population and k # i) is maximum. Here, rj is the Euclidean
distance between the vectors X;c and X KG- X worst. denotes
the jth component of Xn worst,G» Which is the worst vector
in the neighborhood withirespect to the current vector. For

this vector, L (1 J;((f(“) (k= ., mand k # i) is

>
maximum arﬁong all individuals w1th1n the subpopulation.
X)em.; denotes jth component of the nearest memory individ-
ual (memory individuals are the best individuals from the pre-
vious subpopulations) to X ;¢ in terms of Euclidean distance.
During the process of generating the mutant vector, for each
dimension of each difference vector, the respective scaling
factors are randomly generated from a uniform distribution
within a range and this range is varied inversely with the
magnitude of the differential vector along the corresponding
dimension. DDEBQ generates the scaling factors for each jth
component in the following way:

ITl em

=03+0.7- rand [0,1]~ 1-—
ISR

xinem,G - xl{G') (921)

j j |h 1,G x, Gl
F} =03+0.7-rand’[0,1]- [1 — —berG__worstGL) - (g
b /[0, 1] (o1 (90)
where |SR/| is the search range corresponding to the jth
dimension. Clearly, as the difference increases, i.e., ap-
proaches |SR/|, the value of the scaling factor reduces to

970

0.3. Zaharie [25] suggested that the values of F, which satisfy
the equation, 2Fr — 2/m + Cr /m = 0 can be considered
to be critical. Here, m is the number of individuals in a
subpopulation. In case of a single population algorithm, m
should be replaced by Np. In DDEBQ, Cr is kept constant
at 0.9 and m is six. Putting these values in the equation,
the critical value for the scaling factor F' becomes 0.285.
Therefore, the lowest value of the scaling factor is set to
0.3 for convenience. However, the above equation can be
used only for the DE/rand/1/bin scheme (2). For the DE-
variants involving best individuals, the expression describing
the influence of F and Cr becomes more complicated. The
above equation is used here only to provide an indication of
the actual critical value of F; it is not meant to give a precise
estimate.

2) Second Stage Mutation: A linear combination of the
mutant vector from the 1st stage of mutation to the local best
vector is formed by using a weight factor. This way the local
best vector is perturbed in a controlled manner. The second
mutation can be expressed as

Vina,c = (1 —@) - Ly + @ Viurg (10)
where Zb,G is the local best vector, i.e., the best vector
of the corresponding subpopulation, \7,,,,4,,(; is the mutant
vector generated from 1st stage mutation and w is the weight
factor.

C. Exclusion Rule

In DDEBQ, an exclusion rule is employed to ensure that
different subpopulations are located around different basins
of attraction. However, this rule is slightly different from the
existing one [8] as it uses a new empirical formula to calculate
the marginal distance between two subpopulations. Here, the
strategy is to calculate the Euclidean distance between the
best individuals from two different subpopulations at each
generation. If the distance between the best individuals of
any two subpopulations falls below a marginal value, then the
subpopulation having the best individual of lower objective
function value (i.e., worse fitness for a maximization problem)
between the two is marked for reinitialization. The marginal
value of the distance is calculated according to the following
rule:

If there are D dimensions with search ranges SR and there
are Nsub subpopulations, then the marginal value for the
distance is

Dis _marginal = SR/(Nsub - D). (11)

Here, the idea is to partition the search space almost equally
among the Nsub subpopulations. Note that the DyneDE [8]
algorithm uses the linear diameter of the basin of attraction
as an indicator for this exclusion radius. Unlike DyneDE’s
exclusion scheme [(1) of [8]], the formula given in (12)
does not make implicit assumption that the peaks are evenly
distributed in the search space. It also eliminates the need
for knowing the number of peaks of the objective function
beforehand.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

Algorithm 1 Algorithm for Aging Mechanism: (Considering jth
individual of the ith subpopulation)

1. if the ith subpopulation contains the global best individual,
then do not perform aging mechanism on the subpopulation.

2.else if the j-th individual is the best individual in the i-th
subpopulation,
then Age_best(i, j) = Age_best(i, j) + 1.
if Age_best(i, j) > 30, then reinitialize the i-th subpop-
ulation and reset Age_best(i,) and Age_worst(i,:) entries
to 0.

3.else if j-th individual is the worst individual in the i-th
subpopulation, then Age_worst(i, j) = Age_worst(i, j) + 1.
if Age_worst(i, j) > 20, then reinitialize the individual and
reset Age_worst(i, j) entries to 0 leaving other members of
the subpopulation intact.

4.else the Age_worst(i, j) and Age_best(i, j) of the j-th
individual are reset to 0.

D. Aging Mechanism

DDEBQ employs a simple aging mechanism to get rid of
the individuals stagnating at some local optimum. Algorithm 1
shows a schematic procedure to implement the aging mech-
anism. Age_best and Age_worst are two matrices with di-
mensions (Nsub, m), m being the number of individuals per
subpopulation. The (i, j)th entry of Age_best matrix represents
how many times consecutively the jth individual of ith subpop-
ulation has been the best individual of the ith subpopulation.
In the same way, the (i, j)th entry of Age_worst matrix
represents how many times consecutively the jth individual
of ith subpopulation has been the worst individual of the ith
subpopulation. If an individual is reinitialized owing to its
consistently bad performance then the corresponding entry of
the Age_worst matrix is reset to 0 but the Age_best matrix
remains unaltered. If a subpopulation is reinitialized due to
stagnating at any local optimum, then the corresponding row
entries of the Age_best and Age_worst matrices are all reset
to 0. The reinitialization is done randomly covering the entire
search space.

Aging is a heuristic method and its objective is to reinitialize
the individuals that may be trapped at some local optimum.
Except for the experimental results, it is difficult to justify the
choice for the thresholds. They should be set in such a fashion
that the reinitialization may occur only when stagnation is
heuristically sensed. In DDEBQ, the aging thresholds are set to
30 and 20 for Age_best and Age_worst, respectively, through
a series of experiments carried on the available benchmarks.
A lower aging threshold will mean more reinitializations that
might be unnecessary whereas a high aging threshold will
mean more wastage of FEs to achieve the same level of
accuracy.

E. Adaptation of Control Parameter and Radius of Generating
Quantum Individuals

In order to actuate the diversity within the subpopulations,
a control parameter is introduced in DDEBQ. Depending
on the conditions, this parameter can take any value among
0, 1, and 2. This parameter, denoted by C, helps the search

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS 971

process to achieve better convergence characteristics. If C
becomes one, then, the quantum individuals are not gener-
ated; if C becomes two, then, the Brownian individuals are
not generated, and if C becomes O then the search process
progresses in normal way, i.e., with quantum, Brownian, and
DE individuals.

As mentioned previously, when C is 0, the algorithm
generates all the individuals (DE, Brownian, and quan-
tum) to maintain the diversity at a higher level. When the
population concentrates around a global best position before
the occurrence of a dynamic change, as determined by the
control parameter C, the diversity should be reduced separately
within each of the subpopulations to ensure high precision in
locating the global optima. If the diversity of the individuals
in each of the subpopulations is reduced separately, then
irrespective of the whole population’s diversity, the subpop-
ulation containing the global best individual converges to the
global best position and the algorithm is likely to achieve a
high degree of accuracy. In this way, while preserving the
population diversity as a whole, DDEBQ can also obtain high
quality solutions. This is possible because the subpopulations
are located at different regions of the search space due to
the exclusion rule, which is described earlier. In DDEBQ,
the diversity is reduced in two steps, first by stopping the
generation of quantum individuals and then by stopping the
generation of Brownian individuals and starting the generation
of quantum individuals. As quantum individuals are likely to
possess less diversity than Brownian individuals [26], after the
second step, the diversity is expected to decrease more.

The value of C is chosen in the following way. First, the
difference of the global best objective function values before
and after the first update interval (UI) generations is defined
as PR. From this point onward, if the global best objective
function values over Ul generations have a difference greater
than PR, then the current value of PR is replaced by this
new value. If the difference becomes less than (PR /10) but
greater than (PR /50), then C is set to one. If the difference
is less than (PR /50), then C is set to two. A value too
low as indicated by (PR /50), indicates that the algorithm
has not experienced severe explorations in last UI generations
and it can be concluded to be incisively searching around a
possible optima. A higher value, even greater than (PR /10),
can be referred to be in its explorative phase. A moderate
value within these extremes can indicate an algorithm in
its balanced explorative and exploitative phase. With respect
to these values the control parameter C can be determined,
which wheels the dynamics of the search process in DDEBQ
by controlling the generation of the Brownian and quantum
individuals. The strategy for adapting control parameter C is
presented as Algorithm 2.

Note that the adaptation of C depends on monitoring of
the progress of search (in terms of the frequency of variation
of the globally best individual) at regular intervals and this
bears some conceptual resemblance with the cooling schedules
used in adaptive simulated annealing (SA) algorithms [27].
For example, the cooling schedule in hide-and-seek SA [28]
depends on the best objective function values obtained up to
a certain number of generations and an estimation of the un-

Algorithm 2 Algorithm for Control Parameter (C) Adaptation
1. [Initialize generation counter G =0 and calculate
initial Gbest _fity = f(Xpest.0), C = 0.

X best,c1S the globally best solution at
generation G and f (.) is the function under test.
Initialize counter k= 1.

Start Loop

Carry out the optimization steps of DDEBQ

if mod (Gen, UI) ==

Calculate new Gbest _fity = f (;(best.G)-

Calculate PRjas: PRy = |Gbest _ fity — Gbest _ fity_|
if PRk > PRk,1

. Update PR.

10. if (PRk - PRk,l) < PRk,l/SO, Cc=2

11. else if PR;_;/50 < (PRy — PR;_1) < PR;_1/10,C =

OO N LR W

12. else C =0.
13. k=k+1.
14. G=G+1

15. if termination condition satisfies break Loop, else
return to Step 4.

known global optimum after the same number of generations.
The performance is monitored after a specific UI (defined in
the terminology list of the appendix). Based on the rate of
change of the globally best solution during the intervals of
the UI number of generations, the diversity is controlled by
generating either Brownian or adaptive quantum or both kinds
of individuals. Hence, selecting a proper value for frequency of
update is decisive to performance of the algorithm. If the test
is conducted too frequently, i.e., Ul is very low, the search
agents may not get enough scope to thoroughly explore the
space. On the other hand, if UI is relatively high with respect
to the frequency of occurrence of the dynamical changes, the
detection of proper stages of optimization may be hampered.
For GDBG problems, where E is 100000 FEs, Ul =20 gives
optimal performance. In fact, the performance of the algorithm
is not sensitive to Ul values lying in the range of 15 to 35 and
remains more or less consistent on different benchmarks from
the GDBG suite. Our simulation experiments (not reported in
the paper for space economy) indicate that a lower value of
Ul is suitable for lower change intervals while a higher value
of Ul is suited to higher change intervals. From our detailed
empirical study, a value of UI=20 can provide optimized
performance over a wide range of functions. It can be noted
that UI of 20 is in same range as aging thresholds age_best
and age_worst. In the experimentation part, Ul is fixed to 20
for all benchmark instances and no problem specific tunings
were allowed.

Adaptation of the radius R for the generation of control
parameters depend on C. If C is O, then R is set to one. If C is
two, then R changes according to the following rule depending
upon the difference (Diff) of global best objective function
values before and after UI generations

R = Diff - log,, <10+ (12)

PR
50 - Diff) '

E. Dynamic Dimensional Change Addressing

In addition to changing the search landscape and thereby
changing the functional values of the individuals, some chal-
lenging benchmark problems, such as GDBG with change
type T7 [7], accompanies altering height, width, position
of the optima, varying dynamics in orientation, scalability
of the problem as well as a dimensionality contrast after a
specific number of FEs. In that case, the algorithm needs
to detect whether a dimensional change has occurred or not.
The objective function of GDBG changes the dimension by
some rules within a limit. It modifies the current solution
vector by adding or deleting dimensions of the current solution
and returns the changed dimension of the problem along
with the modified solution vector. Hence, the occurrence of
a dimensional change can be detected by examining the
test solution vector returned by the cost function in every
generation. Whenever the dimension of the new test solution
returned by the cost function does not match the dimension
of the previous one, it can be inferred that a dimensional
change has occurred in the environment. If the dimension is
increased by one, then an extra dimension is added to the
other individuals within the population. The values of extra
dimensions of the individuals are randomly sampled from a
uniform distribution within the corresponding bounds of the
search space. If the dimension is decreased by one, then the
additional dimension of other individuals within the population
is eliminated.

G. Complexity Issues—Empirical Discussion

Apart from the computational burdens of evaluating the
objective function (measured in terms of the number of FEs),
another aspect of complexity of the algorithm can arise from
the calculations of Euclidian distances between the current
individual and the memory individuals during construction
of the mutant vector for the current individual. This is
because computing the Euclidean distances can demand a
considerable amount of processor time. If each subpopulation
contains m number of individuals and the total population
size is denoted by Np then the number of subpopulations
is Ngp = (Np/m)). As the memory archive contains the
best individuals from each subpopulation, the number of
memory individuals is also(Np/m). Hence, the total number
of evaluations of Euclidian distances in one generation is
total population size x number of evaluations of Euclidian
distances for each individual. Therefore, the total number
of evaluations of Euclidian distances in one generation is
(Np?/m). As can be observed, if the number of individuals
in each subpopulation is increased, i.e., as the multipopulation
scheme approaches to a single-population scheme, part of
the complexity of the algorithm decreases but it also loses
the effectiveness of having multiple subpopulations. On the
other hand, if the number of subpopulations is increased, the
number of individuals in each subpopulation decreases and
the complexity of the algorithm increases (the complexity
gradually approachesO(Np?)), but the effectiveness of the
multipopulation scheme increases. Note that, according to

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

Yang and Li [29], the timing complexity of the clustering
operation in the clustering PSO algorithm that also uses
Euclidean distance calculations heavily is O(Np?), Np being
the initial population size.

H. Repairing Rule

For every newly generated individual (whether it is a DE,
Brownian, or adaptive quantum individual), the algorithm
checks whether any component of the new individual is outside
the bounds. If any component is outside the bound, then it is
randomly reinitialized by sampling from a uniform distribution
within the bounds as per (1).

IV. EXPERIMENTAL SETTINGS
A. Benchmark Problems

CEC 2009 benchmark problems for dynamic optimization
were generated by using the GDBG system proposed in
[7], which constructs dynamic environments for the location,
height, and width of peaks. Li et al. [7] introduced a rotation
method instead of shifting the positions of peaks as done in
the MPB [30] problems. The GDBG system poses greater
challenges for optimization than the MPB problems due to
the rotation method, larger number of local optima, and higher
dimensionalities. There are seven change types for each test
functions in the GDBG system, which are small step change,
large step change, random change, chaotic change, recurrent
change, recurrent change with noise, and dimensional change.

The test functions in real space instance are as follows:

F1: rotation peak function,

F2: composition of sphere functions,

F3: composition of Rastrigin’s functions,

F4: composition of Griewank’s functions,

F5: composition of Ackley’s functions and

F6: hybrid composition functions. Only F1 is a maximiza-
tion problem and others are minimization problems. In
F1, there are two tests, one using 10 peaks and another
using 50 peaks.

B. Simulation Strategies

Simulation environment (hardware and software) used for
carrying out the experiments described in the subsequent
sections can be summarized as CPU: 3.2 GHz Intel Core i5,
RAM: 2 GB DDR3, and MATLAB 2009b edition. The perfor-
mance of DDEBQ is measured in terms of the mean error [7]
and the adaptability metric [31] obtained in 20 independent
runs. The mean error is calculated according to the following
expression [7]:

1 runs numichange last

Emean = (runs * num __change) Ziﬂ ZF‘ Ei"i .
B 13)
Here, runs is the total number of runs, num_change is the
number of dynamic changes that occur during each inde-
pendent run, and Ef”j’ is the error recorded before the jth
dynamic change of ith independent run. Note that the error
E'*' corresponds to the absolute fitness difference between
the best solution found by an EA (before a landscape change)
and the known best solution (for that landscape), i.e., E'*/(f) =

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS 973

TABLE 1
EXPERIMENTALLY DETERMINED BEST PARAMETRIC SETTINGS
FOR DDEBQ
Parameters Values
Population size, Np 60
Number of subpopulations, Nsub 10
Update Interval Ul 20

Depending on the condition it becomes 0,
1or2.
IfC=0,thenR=1
If C =2, then R varies according to (8)

Control parameter C

Radius within which quantum individuals
are generated, R
Marginal value of the distance between the
best individuals of the subpopulations
Dis_marginal
Crossover Probability Cr 0.9
Weight factor for double mutation strategy 0.1

If C =0, then Dis_marginal = 0.08
If C =1 or 2, then Dis_marginal = 0.03

| f(f(best(t)) — f(f(* (t))‘. In all result tables, the best results
are marked in boldface.

The adaptability metric measures a difference between the
value of the current best individual of each generation and
the optimum value averaged over the entire run and can be
expressed as

num_change

_ T—1
Z %Zerr,’,j

i=1 Jj=0

1

Ada = ———
num__change

(14)

where t is the number of generations between changes when
the environment remains static. err; ; denotes the absolute
difference between the fitness values of the current best indi-
vidual in the population of the jth generation and after the last
change and the optimum value for the fitness landscape after
the ith change. Evidently for both mean error and adaptability,
the smaller the measured values are, the better the result is.

For results of the comparative studies, a nonparametric
statistical test, called the Wilcoxon’s rank sum test for in-
dependent samples [32], is conducted at the 5% significance
level, in order to judge the statistical significance of the best
results obtained in each experimental scenario. The statistical
test results are indicated within parentheses throughout all the
result tables as “+”, “- 7, or “~”, when the result of DDEBQ is
statistically significantly better than, worse than, or statistically
equivalent to the corresponding result, respectively. The rank
sum test is conducted between the results of DDEBQ and the
other dynamic EAs considered.

C. Parameter Settings

Table 1 lists the parametric values that keep the perfor-
mance of DDEBQ considerably good over a wide range of
benchmarks. Please refer to the supplementary document for a
detailed account of the simulation experiments that empirically
validate these values. Also once set, the same parameter
values are used for DDEBQ on all the benchmark instances
of GDBG in Section V, where performance of the algorithm
is compared with some of the best-known evolutionary DOP
solvers. No function-dependent tuning of the parameters is
allowed anywhere for DDEBQ.

V. RESULTS AND DISCUSSIONS

This section presents a comparative study of the perfor-
mance of DDEBQ with several other state-of-the-art evolu-
tionary dynamic optimizers on the GDBG benchmarks. The
performance of DDEBQ is compared with the following seven
algorithms by using the benchmark suite of the GDBG system:
Differential Ant-Stigmergy Algorithm (DASA) [33], jDE [9],
[33], DynDE [9], dopt-aiNET [34], CPSO [28], CESO [21],
and PSO with Composite particles (PSO-CP) [35]. DASA
is based on the classical ant colony optimization methods.
CPSO uses a hierarchical clustering method to locate and track
multiple peaks. In addition, CPSO incorporates a fast local
search method to search for optimal solutions in a promising
subregion found by the clustering method. PSO-CP uses the
idea of composite particles from physics to maintain the
diversity of the population through a scattering operator. Dopt-
aiNet introduces a set of complementary mutation operators
and a better mechanism to maintain the diversity of solutions
in the original opt-aiNet [36] algorithm, which was meant for
solving static and multimodal function optimization problems

For the competitor algorithms, the best parametric setup
is employed in accordance with their respective literatures.
An identical experimental condition guided by the technical
report of [7] is maintained for all the algorithms compared.
Tables II and III provide the simulation results obtained over
all the test cases mentioned in [7] by using DDEBQ and seven
other algorithms in terms of the mean best-of the-run error
values and the adaptability metric values achieved over 20
independent runs. The tables also show the average runtime (in
seconds) consumed by all the algorithms compared. Sample
convergence graphs are provided for functions F1 (number
of peaks=10), F2, F3, F4, F5, and F6 with change type T7
over 300,000 FEs in Fig. 1. In this case, dimension of the
search space changes when the dynamic change occurs. This
change type is similar to T3 (random change) except for the
dimensional change. The y-axis of these plots contains the
relative value r(¢) that is calculated as f(Xpes(1))/f(X*(2))
for function F1 (as it is a maximization problem) and for
other functions as f (i*(t))/ f (ibes,(t)). The highest possible
value of r(¢) is one. As can be observed from the convergence
graphs, the relative value is lowest in case of function F3
and it is highest in case of function F1. The convergence
characteristics also indicate that as each dynamic change
occurs, the relative value r(¢) attains a sharp downfall.

A close scrutiny of Tables II and III reveals that DDEBQ
outperforms all the seven evolutionary dynamic optimizers in
a statistically significant fashion over 36 out of the 49 test
instances. It yielded statistically inferior results compared to
any one of the competitor algorithms in four test instances
and statistically equivalent results with one or two competitors
over the rest nine instances. For function F3, the jDE algorithm
could attain lower best error values than DDEBQ over change
types T2, T4, and T6. However, results of the Wilcoxon’s rank
sum test reveals that for change types T1, T3, TS, and T7, the
differences between the results of jDE and DDEBQ are not
statistically significant. Also DDEBQ exhibited a statistically
better performance than the other six EAs for all the change

974 IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

TABLE II
MEAN ERROR VALUES, ADA METRIC VALUES, AND AVERAGE RUNTIME (IN SECONDS) ACHIEVED BY THE ALGORITHMS COMPARED FOR
TEST FUNCTIONS F1-F3 OF THE GDBG SYSTEM. WILCOXON’S RANK SUM TEST RESULTS OF COMPARING DDEBQ WITH THE
CONTENDER ALGORITHMS INDICATED IN PARENTHESES.

Func. | Algorithm | Perormance I T2 T3 T4 TS T6 T7
Mean Error 2.03E-09 1.84E-07 6.52E-09 4.42E-09 2.98E-06 2.80E-06 0.2934
DDEBQ Ada 13.1401 22.3389 3.2469 12.1296 6.5727 7.5671 3.6621
Runtime 1037.3542 1210.4513 1174.2241 1319.3932 1417.7332 1214.2819 1102.3617
Average 0.1864(+) 4.2017(+) 6.4126(+) 0.5003(+). 2.2173(+) 2.8562(+) 4.9502(+)
DASA Ada 19.3184 30.7419 23.1854 21.5219 15.2789 19.4518 21.4971
Runtime 1012.8291 1209.3728 1004.2781 1382.8264 1302.8281 1028.3512 991.2617
Average 0.0342(+) 3.6019(+) 3.1058(+) 0.0214(+) 2.3256(+) 1.2411(+) 3.4162(+)
jDE Ada 15.2875 26.3854 8.3048 14.3189 18.3751 14.3215 15.3654
Runtime 972.3728 1202.3512 1096.3676 1292.6271 1301.2716 992.1822 962.7366
F1 Average 0.0792(+) 2.5813(+) 5.5624(+) 0.1186(+) 1.4674(+) 1.6761(+) 4.3809(+)
(No. of DynDE Ada 18.9748 26.3517 15.4168 18.2148 18.4804 19.3047 25.3405
peaks: Runtime 986.3627 1008.6351 1020.6353 1437.2873 1302.9787 1128.6737 909.3916
10) Average 0.1721(+) 4.5714(+) 5.0291(+) 6.3438(+) 5.8372(+) 10.2713(+) 3.9298 (+)
dopt-aiNET Ada 19.3487 30.3150 31.9102 30.9294 27.5648 30.8912 23.5948
Runtime 1129.3671 1198.3627 1203.5362 1300.6718 1387.9092 1189.3625 1072.9837
Average 0.0478(+) 2.4785(+) 4.6915(+) 0.0648(+) 1.3892(+) 1.3362(+) 3.7823(+)
CPSO Ada 17.3654 29.3487 19.3578 17.3258 17.5684 20.3945 27.3589
Runtime 1318.2713 1376.3619 1298.2617 1450.3526 1615.7632 1432.6378 1201.5362
Average 0.0768 (+) 2.4536(+) 5.6436(+) 0.0975 (+) 1.6124 (+) 1.0342(+) 3.7903(+)
CESO Ada 15.3947 31.3680 25.0248 18.3697 19.3891 15.3594 28.0590
Runtime 1152.6371 1162.5363 1024.6374 1043.5243 997.5361 1143.5209 993.0925
Average 0.0419(+) 2.7014(+) 4.6873(+) 0.0521(+) 1.5861(+) 1.5281(+) 3.9369(+)
PSO-CP Ada 15.3018 28.2874 8.3599 15.9877 18.3515 21.0121 26.3897
Runtime 1242.6358 1297.5358 1182.4426 1393.6259 1497.5361 1143.5209 1193.0925
Mean Error 6.44E-09 5.53E-08 0.8546 7.53E-09 2.64E-06 2.94E-06 0.5083
DDEBQ Ada 13.0701 21.8257 9.5465 5.5604 5.1634 10.148 14.536
Runtime 1564.2252 1632.2544 1506.3034 1501.2597 1702.1570 1584.1892 1496.1785
Mean Error 0.3862(+) 3.9034(+) 7.3182(+) 0.3165(+) 1.1026(+) 3.0105(+) 6.3349(+)
DASA Ada 20.1547 25.1466 25.2587 22.6846 14.1986 21.5958 23.1587
F1 Runtime 1382.6473 1592.3672 1516.7469 1414.4637 1763.7482 1452.7361 1413.5463
(No. of . Mean Error 0.1958(+) 4.1662(+) 4.4473(+) 0.0957(+) 1.0022(+) 1.8836(+) 4.3892(+)
peaks: JDE Ada 18.2654 28.3689 17.6984 21.3691 13.2501 18.7458 25.6841
Runtime 1423.6354 1588.5609 1502.5434 1478.5408 1683.0963 1503.9805 1532.8625
50) Mean Error 0.3352(+) 4.7542(+) 6.1538(+) 0.2108(+) 1.1036(+) 0.9372(+) 6.8359(+)
DynDE Ada 24.2587 29.5478 25.2845 25.9547 10.4801 15.5864 28.6541
Runtime 1402.5421 1574.6523 1507.4324 1490.5879 1628.7013 1597.1109 1489.4428
Mean Error 0.4535(+) 4.1429(+) 4.9847(+) 3.0872(+) 3.2754(+) 5.9397(+) 4.1208(+)
dOpt—aiNET Ada 25.3521 25.6584 26.8745 30.9784 28.6597 23.9548 30.2897
Runtime 1582.6539 1662.5476 1597.7879 1513.4352 1709.4352 1529.5409 1485.7839
CPSO Mean Error 0.3738(+) 4.1642(+) 4.8370(+) 0.3129(+) 2.0927(+) 1.6323(+) 3.7722(+)
Ada 26.3257 31.4547 29.3547 24.1875 17.6520 18.3951 23.5487
Runtime 1692.4767 1773.9283 1798.5608 1643.3241 1812.4352 1779.6376 1798.2314
Mean Error 0.4536 (+) 4.7367 (+) 6.8375 (+) 0.1763 (+) 1.0372 (+) 0.9257 (+) 5.8693 (+)
CESO Ada 26.8107 28.6742 29.2145 22.3648 13.6987 18.6008 26.9016
Runtime 1482.3524 1598.8843 1562.452 1530.2921 1622.4627 1601.7381 1417.9086
Mean Error 0.9456(+) 3.4686(+) 3.9523(+) 0.1077(+) 1.1282(+) 0.9699(+) 5.4468(+)
PSO-CP Ada 19.1267 29.6512 17.9856 25.6847 21.6845 22.3245 35.8945
Runtime 1584.7526 1634.7782 1729.3781 1672.3679 1642.9681 1487.6479 1476.2898
Mean Error 0.6679 4.4666 3.7863 0.3042 11.33 0.7194 0.8355
DDEBQ Ada 45.5085 44.1915 38.5298 55.8153 46.7502 39.8567 25.701
Runtime 2156.8751 2155.8693 2079.3692 2154.2303 1888.0309 1400.4820 1859.1188
Mean Error 2.6794(+) 23.8215(+) 16.8836(+) 1.7829(+) 51.7035(+) 2.2710(+) 3.1327(+)
DASA Ada 74.5879 121.6487 94.9658 76.5897 133.9871 68.0459 45.3871
Runtime 2083.6721 2018.7731 1966.0392 2081.2209 1786.9807 1346.3425 1812.7462
Mean Error 0.9873(+) 42.1125(+) 52.2487(+) 0.7659(+) 65.5274(+) 3.4558(+) 12.8369(+)
jDE Ada 50.4792 167.3025 129.3547 58.9784 128.3674 47.9871 68.9987
Runtime 1802.5362 2108.5463 1983.6558 1949.4342 1793.2271 1318.4315 1793.6574
Mean Error 1.3627 (+) 14.6783 (+) 12.7537 (+) 0.7928 (+) 21.5784 (+) 2.6940 (+) 2.9836 (+)
DynDE Ada 67.1587 78.3525 84.1279 60.3148 78.3247 55.3158 59.3974
F2 Runtime 1883.6525 1942.6573 1993.5463 1934.6578 1719.4355 1216.7684 1707.6572
Mean Error 0.837(+) 10.7653(+) 20.1653(+) 1.8582(+) 98.6526(+) 5.9871(+) 4.1873(+)
dopt-aiNET Ada 47.3645 95.7654 98.3574 79.3654 137.9614 69.2179 63.3489
Runtime 1567.7683 1902.3629 1846.9705 1673.5908 1675.0692 1458.5462 1892.5462
Mean Error 1.1728(+) 12.4367(+) 8.5362(+) 0.6046(+) 23.6722(+) 1.6903(+) 4.1226(+)
CPSO Ada 71.3057 90.5657 48.6587 67.4978 79.3654 48.4792 50.7456
Runtime 2295.6471 2285.6832 2179.5431 2298.9428 1903.0461 1679.5162 2037.4432
Mean Error 1.4672 (+) 13.4575 (+) 12.6472(+) 0.7637(+) 23.6502(+) 2.1636(+) 2.4782(+)
CESO Ada 78.6512 101.2544 88.2401 70.9845 78.8742 58.6848 67.6984
Runtime 2198.3728 2102.6453 2118.5678 2092.1928 1963.8796 1216.2948 1608.3871
Mean Error 0.9563(+) 9.2044(+) 10.2548(+) 4.4855(+) 19.4729(+) 1.8689(+) 3.9687(+)
PSO-CP Ada 56.7456 62.1456 56.6412 74.1258 78.5718 50.3248 69.4578
Runtime 2196.4893 2263.0951 2219.9172 2275.1817 1881.7683 1517.3827 1732.2472
Mean Error 12.7332 750.1274 568.0162 96.1268 487.2735 339.1475 151.9471
DDEBQ Ada 93.655 987.5773 670.2121 344.1393 622.0945 499.876 258.3248
Runtime 2061.5036 2068.3955 2068.0575 1930.9352 2381.8595 1510.0609 2674.7382
Mean Error | 16.3416(+) | 809.4177(+) | 676.1128(+) | 443.3980(+) | 701.1427(+) | 618.4158(+) | 426.0946(+)
DASA Ada 110.4169 994.1596 898.3154 569.4279 880.6501 752.3594 674.3548
Runtime 1983.6571 2094.8724 1928.8942 1921.7683 2285.7382 1562.7684 2669.4971
Mean Error 13.6735(=) | 563.7835(-) 582.6456(=) 68.2357 (-) 491.2671(=) | 240.4814(-) 162.2456(=)
jDE Ada 95.4894 693.4479 701.2874 208.7854 650.0107 398.4297 264.3028
Runtime 1952.6472 1934.4574 1995.1473 1925.4631 2377.0946 1608.9784 2693.1837
Mean Error 21.8460(+) 794.4378(+) 643.4592(+) 336.5654(+) 763.8548(+) 512.4632(+) 424.9346(+)
DynDE Ada 115.9474 1021.8971 770.8324 571.3698 1134.3571 712.5489 689.3801
F3 Runtime 2018.5342 2108.6452 2002.6657 1984.0892 2399.7613 1528.5461 2613.6524
Mean Error 764.897(+) 1011.762(+) 1002.653(+) 1103.675(+) 1035.798(+) 1291.357(+) 1108.432(+)
dopl-aiNET Ada 990.6510 1230.3158 1105.3597 1251.3694 1125.3694 1390.3548 1298.3954
Runtime 2139.7683 2105.7980 2098.4814 1981.6074 2405.7684 1533.2108 2635.0794
Mean Error 124.575(+) 803.6472(+) 784.5447(+) 455.7382(+) 836.4890(+) 769.7464(+) 596.7684(+)
CPSO Ada 190.3695 1047.3598 984.3981 691.3847 1250.6980 996.6584 975.6848
Runtime 2203.7583 2296.9382 2275.9705 2103.1752 2506.4631 1802.7584 2846.9956
Mean Error | 20.546 (+) | 795.7266(+) | 646.0372(+) | 350.6273(+) | 752.7006(+) | 505.872(+) | 420.657(+)
CESO Ada 130.3258 1160.3486 805.6981 584.3641 892.1764 743.0591 678.0486
Runtime 1894.7583 2104.7682 2092.9887 1975.2281 2319.5462 1603.7584 2609.8322
Mean Error 15.7312(+) 774.1627(+) 625.3457(+). 319.5279(+). 736.5267(+) 501.1201(+) 401.9820(+)
PSO-CP Ada 115.3058 1067.2587 894.1459 597.3249 914.2574 786.6581 654.2589
Runtime 2164.8824 2198.5362 2137.4623 2004.6302 2435.7582 1726.8320 2764.8391

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS

TABLE III
MEAN ERROR VALUES AND STANDARD DEVIATIONS ACHIEVED BY DDEBQ AND OTHER ALGORITHMS FOR TEST FUNCTIONS F4-F6 OF GDBG
SYSTEM. WILCOXON’S RANK SUM TEST RESULTS OF COMPARING DDEBQ WITH CONTENDER ALGORITHMS INDICATED IN PARENTHESES.

Func. | Algorithm | Srormance T1 T2 T3 T4 T5 T6 T7
easures
Mean Error 0.8611 18.7268 13.2794 0.7061 31.1387 1.3693 6.6937
DDEBQ Ada 22.1463 30.0743 27.6785 36.4655 31.878 44.5907 64.8446
Runtime 2151.2107 2279.6941 2372.4617 2054.7873 1882.2359 1544.6890 1881.1184
Mean Error 4.5287(+) 67.2895(+) 49.3902(+) 2.9127(+) 115.4713(+) 3.1026(+) 28.2715(+)
DASA Ada 59.3458 97.6540 73.9748 49.3517 169.1578 58.1950 87.1258
Runtime 2089.6473 2281.8321 2365.7462 2001.4233 1902.0573 1527.7482 1798.2834
Mean Error 1.6398(+) 54.8754(+) 46.9674(+) 1.7583(+) 67.7002(+) 3.0376(+) 14.3352(+)
jDE Ada 27.9072 67.5412 45.3186 38.1057 88.3501 56.9184 79.3254
F4 Runtime 2188.9322 2241.8742 2493.1728 2192.7421 1784.6623 1619.9783 1784.5532
Mean Error 1.8846(+) 41.6474(+) 24.8453(+) 0.8836(+) 46.4667(+) 1.7637(+) 6.5458(=)
DynDE Ada 34.3657 67.0158 36.2541 43,1489 91.2548 54.8127 70.3584
Runtime 2098.6752 2253.8103 2463.2516 2098.4627 1973.6271 1523.7381 1798.5361
Mean Error 1.0928(+) 134.8593(+) 86.8337(+) 5.7732(+) 300.7371(+) 15.8747(+) 55.9398(+)
dopt—aiNET Ada 32.1954 215.9817 158.1974 59.5674 412.8219 79.1843 98.0176
Runtime 2131.9885 2261.1332 2317.9283 2096.6321 1914.9702 1519.7263 1982.8273
Mean Error 2.8718(+) 34.7409(+) 32.6271(+) 0.7846(+) 61.4873(+) 5.2781(+) 10.7583(+)
CPSO Ada 40.1807 67.1598 77.5489 47.3259 99.0187 60.1578 88.2549
Runtime 2539.6174 2563.7721 2817.4627 2209.7583 2210.7583 1835.0694 2218.9972
CESO Mean Error 1.9124(+) 30.0192(+) 24.8673(+) 0.8639 (+) 48.6454 (+) 1.5624(=) 6.9270 (+)
Ada 40.6508 65.1987 90.4588 50.6478 78.6879 59.3514 78.3597
Runtime 2019.7647 2281.6529 2209.1728 2100.6512 1902.6473 1811.0293 1982.9301
Mean Error 1.9743(+) 30.5689(+) 21.6393(+) 0.9958(+) 41.3289(+) 1.7541(+) 5.4312(-)
PSO-CP Ada 43.3548 60.6897 87.4598 55.3154 78.3471 65.7418 56.9748
Runtime 2451.8291 2372.6374 2618.8787 2198.4352 2159.5362 1794.7382 2093.827
Mean Error 0.0611 0.1627 0.2982 0.0319 0.0927 0.0398 0.1132
DDEBQ Ada 59.8381 39.0564 17.2733 79.1614 34.5024 43.6089 36.2352
Runtime 1911.6563 2136.6694 1975.5724 2514.2102 1893.2672 1888.1726 1856.3941
Mean Error | 1.1026(+) 1.0049(+) 1.1358(+) 0.3722(+) 2.4679(+) 0.4129(+) 1L1714(+)
DASA Ada 68.3254 45.9874 48.6589 88.2145 39.5478 47.3598 40.2874
Runtime 1862.6342 2089.8273 1882.7921 2327.4891 1873.8472 1772.9029 1828.2371
Mean Error 0.1602(+) 0.3251(+) 0.3628(+) 0.1057(+) 0.4637(+) 0.3260(+) 0.4481(+)
jDE Ada 59.9148 45.5841 47.2956 82.3647 45.9774 46.6587 38.2547
Runtime 1782.7483 2097.5463 1927.8329 2496.8071 1673.8837 1792.5614 1802.0932
Mean Error 3.1726(+) 3.2748(+) 2.8562(+) 1.7611(+) 9.3453(+) 2.5837(+) 3.6537(+)
DynDE Ada 68.6912 72.5894 54.3579 88.6512 67.9801 74.6421 487.5482
F5 Runtime 1873.1172 2109.8678 1982.6635 2448.4231 1857.0291 1903.8672 1811.7348
Mean Error | 35.8392(+) | 36.7382(+) 30.8875(+) 116.5646(+) 1008.647(+) | 456.8390(+) | 234.546(+)
dopt—aiNET Ada 101.6579 104.3698 61.2743 215.2358 1254.2064 547.3594 335.8756
Runtime 1925.8795 2172.6657 1962.8364 2674.9847 1794.9801 1974.8372 1904.5412
Mean Error 2.1647(+) 2.6460(+) 4.0372(+) 1.1218(+) 8.1649(+) 5.7387(+) 5.8913(+)
CPSO Ada 79.3547 76.2549 87.6548 94.3560 91.2548 88.6107 61.2401
Runtime 2385.7002 2451.6273 2097.5361 2766.4109 2279.1982 2107.4351 2173.0928
Mean Error 2.9397(+) 2.5724(+) 3.2617(+) 1.6243 (+) 8.5453 (+) 2.1690(+) 3.7732 (+)
CESO Ada 88.6510 79.6597 89.5647 97.5427 99.6512 85.1954 94.5419
Runtime 2093.6192 2198.1253 1997.4253 2609.5342 1992.5042 1922.9381 1923.5193
Mean Error 1.9730(+) 2.8051(+) 2.8879(+) 0.9068(+) 7.3517(+) 2.2074(+) 3.4678(+)
PSO-CP Ada 79.6514 81.6548 59.3549 89.6149 94.2195 87.6497 98.2569
Runtime 2308.4312 2271.4122 1991.4152 2533.9348 2160.4192 1853.4421 2082.6370
Mean Error 5.3914 9.5653 10.2539 5.7937 13.9586 7.1033 8.0366
DDEBQ Ada 56.2489 52.2535 49.0431 91.7976 69.7187 51.0232 41.9599
Runtime 1971.8619 1765.8937 2051.5664 1991.7595 1413.4759 1632.9108 1584.4324
Mean Error 9.1137(+) 35.5782(+) 28.3789(+) 8.9961(+) 39.4678(+) 11.6279(+) 13.0281(+)
DASA Ada 85.3412 142.2154 88.2541 93.3755 128.3845 75.7619 71.2149
Runtime 1874.8237 1726.5362 1896.1341 1874.7265 1386.5413 1611.0291 1539.4352
Mean Error 7.3728(+) 13.7403 (=) 12.5831 () 8.8376 (+) 14.2024 (+) 8.1184 (=) 9.8471(+)
jDE Ada 57.2168 62.5154 47.3121 90.3548 75.9467 60.1560 45.2579
Runtime 1912.4350 1673.8928 2016.4351 1983.0921 1372.0937 1592.5091 1471.3094
Mean Error | 7.2464(+) | 22.5635(+) 20.8464(+) 9.2635(+) 41.6367(+) 13.6379(+) 17.2167(+)
DynDE Ada 74.3878 71.2648 81.4589 106.2196 156.3894 60.3248 51.2649
F6 Runtime 1987.5463 1721.1362 2087.5110 2008.7192 1389.0212 1618.4251 1452.8827
Mean Error 23.6572(+) 347.6759(+) 428.6572(+) 86.7548(+) 873.6868(+) 526.7384(+) 361.6976(+)
dopt—aiNET Ada 100.1252 480.3266 554.5946 255.2648 1215.4631 945.6548 454.5954
Runtime 2019.1112 1982.5163 2047.4352 1876.1523 1519.4352 1656.9281 1499.4312
Mean Error 7.9309(+) 24.7235(+) 28.6496(+) 7.5365(+) 67.8734(+) 26.8274(+) 34.7615(+)
CPSO Ada 62.5124 114.7594 73.5481 98.3599 139.2453 89.6521 82.3193
Runtime 2277.5361 2081.8291 2309.5361 2471.5261 1692.4132 1922.4215 1724.7612
Mean Error 5.9357(=) 24.3468(+) 21.7559(+) 8.2136(+) 42.8745(+) 12.8678(+) 14.5743(+)
CESO Ada 62.5293 116.2519 131.0301 103.6249 120.2597 96.7821 80.3259
Runtime 1971.4090 1774.3002 2109.1162 1982.4413 1438.5463 1720.1361 1613.0951
Mean Error | 5.9931(%) 15.1217(+) 16.6627(+) 7.5235(+) 40.2989(+) 3.1346(+) 3.7361(+)
PSO-CP Ada 66.9878 79.6412 67.8945 95.3549 115.6982 64.2519 52.2147
Runtime 2210.7821 1913.4531 2189.1351 1999.4412 1510.5461 1879.5091 1773.5131

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

976

s 2 A R
£ 2 2
E o8 2 08 £ os
:; 0.6 g 06 g 0.6
é 04, E 04 g 04
= E E
5 92 Zo2 Zo2
g 2 3

0 05 1 15 2 25 3 (-4 0 o 0

FES 0 05 1 15 2 25 3 0 05 1 15 2 25 3
x 10 FES % 10° FES i
(b) ©
s 1 R s 1
é 08 £ 08 g 08
E 06 § 06 é 06
E £ 2
o2 5o2 S 02
< l]0 05 1 15 2 25 3 & 00 05 1 15 2 25 3 = Uo 0.5
FES x10° FES x10°
(d (e
Fig. 1. Sample convergence graphs for DDEBQ algorithm. (a) For F1 with T7. (b) For F2 with T7. (c) For F3 with T7. (d) For F4 with T7. (e) For F5 with

T7. (f) For F6 with T7.

types of F3. For all the change types of the functions F1,
F2, F4, and F5, and for change types T1, T4, TS, T7 of
F6, DDEBQ yielded statistically superior performance to jDE,
which was the winner of 2009 IEEE CEC Competition on
Evolutionary Dynamic Optimizers.

DDEBQ performed statistically better than CPSO in all test
cases. There are two test instances where DDEBQ performed
statistically similar to CESO (F4 with T6, F6 with T1).
DDEBQ performed worse than PSO-CP and comparable to
DynDE in only one instance: F4 with change type T7. In 43
out of the 49 tested instances, DDEBQ achieved the lowest
values of the adaptability metric. This indicates that for ma-
jority of the tested instances the best individual in the DDEBQ
population remained closer the optimum for all generations,
i.e., the optimum was better tracked by the proposed algorithm.
For function F3 with change types T2, T4, and T6, jDE yielded
the best adaptability metric values while DDEBQ attained the
second best values. For function F6 with change types T3
and T4, despite yielding the lowest mean errors, DDEBQ was
marginally surpassed by jDE in terms of the adaptability val-
ues. Note that for the instances where DDEBQ is statistically
outperformed by any one of the seven contender algorithms, it
ranked second best outperforming the other six algorithms. No
other evolutionary DOP solver considered in this article could
keep such a consistent performance on the wide variety of the
tested DOP instances. As the double mutation strategy prevents
the population from converging too quickly and the aging
mechanism helps the population to get rid of local optima,
DDEBAQ is able to perform very well over such highly complex
and multimodal functions. Extremely good performances over
the sphere function (F2), the Ackley’s function (F5), and the
composition function (F6) have resulted from the incorporation
of the dynamic DE scheme and exclusion principle. As the
dynamic DE scheme maintains a good diversity level of the
population, DDEBAQ is able to locate the global optimum after
any dynamic change more efficiently than other algorithms.
The exclusion rule also helps the algorithm to explore much
greater portion of the search space—a feature that leads to

high success rate in locating the global optimum. Also, a high
degree of precision in locating the global optimum observed
in rotation peak function (F1 with number of peaks= 10,
50) is a consequence of introducing the control parameter
C that has an important role in controlling the diversity
of the population and adaptively changing the radius within
which the quantum individuals are to be generated. From
the average runtimes listed in Tables II and III, it is evident
that the runtime of DDEBQ is in several cases comparable
to DyneDE, dopt-aiNet, and CESO. However, CPSO takes
higher average runtime on most of the functions due to the
incurrence of several Euclidean distance calculations. PSO-
CP also involves various computational overheads and in
general is slower or comparable to DDEBQ in majority of
the cases. DASA and jDE appear to be marginally faster
than DDEBQ. However, when the accuracy appears to be
the major bottleneck, DDEBQ has several advantages to
offer.

VI. CONCLUSION

In this paper, a variant of the DE algorithm referred to as
DDEBQ is proposed to solve DOPs in a statistically efficient
manner. The proposed algorithm uses a dynamic DE scheme
that obviously shares the traditional DE framework. In addition
to DE individuals, it uses adaptive quantum and Brownian
individuals to increase the diversity and exploration ability
of the search process. A control parameter is introduced
to control the diversity as necessary. The algorithm also
employs an aging mechanism to get rid of stagnation. The
DE individuals produce the donor vectors according to a
neighborhood-based double mutation strategy to control the
perturbation. An exclusion scheme is used so that the sub-
populations become evenly distributed over the entire search
space.

The statistical summary of the simulation results indicates
that DDEBQ can provide consistently superior performance
as compared to the other state-of-the-art evolutionary dynamic

DAS et al.: ADAPTIVE DIFFERENTIAL EVOLUTION ALGORITHM FOR GLOBAL OPTIMIZATION IN DYNAMIC ENVIRONMENTS 971

optimizers in terms of average level of accuracy. Future work
may focus on introducing more co-operation and information
exchange among the subpopulations in DDEBQ. It can also
be fruitful to make the crossover probability adaptive to the
condition of the fitness landscape. Algorithmic components
of DDEBQ can be integrated with some of the adaptive DE
variants ([37], [38]) to improve their performance on dynamic
landscapes as well.

APPENDIX

TABLE IV

LIST OF TERMINOLOGY USED IN DDEBQ

A matrix that keeps track of the number of times a
particular individual within a subpopulation is consecutively

Age_best being the best member. This can subsequently be a check for
stagnation and helps aging process.
A matrix that keeps track of the number of times a
Age_worst particular individual within a subpopulation is consecutively
being the worst member. This can effectively verify whether
a subpopulation is stagnant and guides aging mechanism.
. . Mechanism that prevents stagnation of individuals at local
Aging Mechanism N
optima.
Brownian Individuals that follow Brownian motion and act like local
individuals explorers within subpopulations.
The control parameter C identifies the different stages of
optimization that helps the search process by maintaining
Control p : Gy R .
diversity within the subpopulation. Depending on the
Parameter

conditions, this parameter can take any value among 0, 1,
and 2.

Double Mutation

A modified mutation scheme that involves a neighborhood
scheme followed by a linear combination of mutant vector
and local best solutions.

Dis Marginal

The marginal distance between two subpopulations less than
which the subpopulations are considered to be searching the
same locality.

Exclusion Rule

Rule to prevent subpopulations concentrate their search to
same locations in the search space and diversify their search
to different optima.

Locally best The best solutions of each subpopulation are termed locally
individuals best individuals.

Individuals with probabilistically determined positions
Quantum dlocal b lore the neighborhood of local opti
Individuals around local best explore the neighborhood of local optima

while maintaining diversity.

Repairing Rule

A rule that confines the population members within bounds,
as specified by the problem.

Update Interval
()

The fixed number of generations after which the change in
the global fitness is monitored for adapting the control
parameter C

Weight factor

Used in the second stage of double mutation strategy to form
a linear combination of the mutant vector from the 1%t stage
of mutation to the local best vector.

Search Range
(SR)

The bounds as defined by the algorithm within which the
algorithmic search process operates.

Subpopulations

The whole population is partitioned into smaller groups
called subpopulations.

REFERENCES

[1] R. Storn and K. Price, “Differential evolution: A simple and efficient
heuristic for global optimization over continuous spaces,” J. Global
Optimization, vol. 11, no. 4, pp. 341-359, 1997.

[2] S. Das and P. N. Suganthan, “Differential evolution: A survey of the
state-of-the-art,” IEEE Trans. Evol. Comput., vol. 15, no. 1, pp. 4-31,
Feb. 2011.

[3] Y. Jin and J. Branke, “Evolutionary optimization in uncertain environ-
ments: A survey,” IEEE Trans. Evol. Comput., vol. 9, no. 3, pp. 303-317,
Jun. 2005.

[4] K. Trojanowski and Z. Michalewicz, “Evolutionary optimization in
nonstationary environments,” J. Comput. Sci. Technol., vol. 1, no. 2,
pp. 93-124, 2000.

[5] R. Allmendinger and J. Knowles “On-line purchasing strategies for an
evolutionary algorithm performing resource-constrained optimization,”
in Proc. PPSN XI, vol. II, LNCS 6239. 2010, pp. 161-170.

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. 6th Int. Mendel Conf. Soft Comput., Jun. 2000, pp.
76-83.

C. Li, S. Yang, T. T. Nguyen, E. L. Yu, X. Yao, Y. Jin, H.-G. Beyer,
and P. N. Suganthan, “Benchmark generator for CEC’2009 competition
on dynamic optimization,” Univ. Leicester, Univ. Birmingham, Nanyang
Technol. Univ., Tech. Rep., Sep. 2008.

R. Mendes and A. S. Mohais, “DynDE: A differential evolution for
dynamic optimization problems,” in Proc. IEEE Congr. Evol. Comput.,
vol. 2. Sep. 2005, pp. 2808-2815.

J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer,
“Dynamic optimization using self-adaptive differential evolution,” in
Proc. IEEE Congr. Evol. Comput., May 2009, pp. 415-422.

R. Angira and A. Santosh, “Optimization of dynamic systems: A
trigonometric differential evolution approach,” Comput. Chem. Eng.,
vol. 31, no. 9, pp. 1055-1063, Sep. 2007.

H.-Y. Fan and J. Lampinen, “A trigonometric mutation operation to
differential evolution,” J. Global Optimization, vol. 27, no. 1, pp.
105-129, 2003.

M. C. du Plessis and A. P. Engelbrecht, “Using competitive population
evaluation in a differential evolution algorithm for dynamic environ-
ments,” Eur. J. Oper. Res., vol. 218, no. 1, pp. 7-20, Apr. 2012.

V. Noroozi, A. B. Hashemi, and M. R. Meybodi, ’CellularDE: A cellular
based differential evolution for dynamic optimization problems,” in Proc.
ICANNGA, part I, LNCS 6593. 2011, pp. 340-349.

U. Halder, S. Das, and D. Maity, “A cluster-based differential evolution
algorithm with external archive for optimization in dynamic environ-
ments,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 881-897, Jun. 2013.
S. Das, S. Maity, B-Y Qu, and P. N. Suganthan, “Real-parameter
evolutionary multimodal optimization: A survey of the state-of-the-art,”
Swarm Evol. Comput., vol. 1, no. 2, pp. 71-88, Jun. 2011.

A. Basak, S. Das, and K. C. Tan, “Multimodal optimization using a bi-
objective differential evolution algorithm enhanced with mean distance
based selection,” IEEE Trans. Evol. Comput., vol. PP, no. 99, p. 1, Dec.
2012.

R. Thomsen, “Multimodal optimization using crowding-based differen-
tial evolution,” in Proc. IEEE Congr. Evol. Comput., Jun. 2004, pp.
1382-1389.

K.-C. Wong, C.-H. Wu, R. K. P. Mok, C. Peng, and Z. Zhang,
“Evolutionary multimodal optimization using the principle of locality,”
Inf. Sci., vol. 194, pp. 138-170, Jul. 2012.

D. Parrott and X. Li, “Locating and tracking multiple dynamic optima by
a particle swarm model using speciation,” IEEE Trans. Evol. Comput.,
vol. 10, no. 4, pp. 440-458, Aug. 2006.

X. Li, J. Branke, and T. Blackwell, “Particle swarm with speciation
and adaptation in a dynamic environment,” in Proc. GECCO, 2006, pp.
51-58.

R. Lung and D. Dumitrescu, “A collaborative model for tracking optima
in dynamic environments,” in Proc. IEEE Congr. Evol. Comput., Sep.
2007, pp. 564-567.

R. Lung and D. Dumitrescu, “Evolutionary swarm cooperative opti-
mization in dynamic environments,” Natural Comput., vol. 9, no. 1, pp.
83-94, Mar. 2010.

K.-C. Wong, K.-S. Leung, and M.-H. Wong, “An evolutionary algorithm
with species-specific explosion for multimodal optimization,” in Proc.
Genetic Evol. Comput. Conf., Jul. 2009, pp. 923-930.

S. Das, A. Abraham, U. K. Chakraborty, and A. Konar, “Differential
evolution using a neighborhood based mutation operator,” IEEE Trans.
Evol. Comput., vol. 13, no. 3, pp. 526553, Jun. 2009.

D. Zaharie, “Critical values for the control parameters of differential
evolution algorithms,” in Proc. 8th Int. Mendel Conf. Soft Comput., 2002,
pp. 62-67.

T. M. Blackwell, “Particle swarm optimization in dynamic environ-
ments,” in Evolutionary Computation in Dynamic and Uncertain Envi-
ronments, S. Yang, Y. S. Ong, and Y. Jin Eds. Berlin, Germany: Springer-
Verlag, 2007, ch. 1, pp. 29-49.

L. Ingber, “Adaptive simulated annealing (ASA): Lessons learned,”
Control Cybern., vol. 25, no. 1, pp. 33-54, 1996.

H. E. Romeijn and R. L. Smith, “Simulated annealing for constrained
global optimization,” J. Global Optimization, vol. 5, no. 2, pp. 101-126,
Sep. 1994,

S. Yang and C. Li, “A clustering particle swarm optimizer for locating
and tracking multiple optima in dynamic environments,” /EEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 959-974, Dec. 2010.

J. Branke, “Memory enhanced evolutionary algorithms for changing
optimization problems,” in Proc. Congr. Evol. Comput., vol. 3. 1999,
pp. 1875-1882.

978

[31] K. Trojanowski and Z. Michalewicz, “Searching for optima in nonsta-
tionary environments,” in Proc. IEEE Congr. Evol. Comput., 1999, pp.
1843-1850.

[32] J. Derrac, S. Garcia, D. Molina, and F. Herrera, “A practical tutorial on
the use of nonparametric statistical tests as a methodology for comparing
evolutionary and swarm intelligence algorithms,” Swarm Evol. Comput.,
vol. 1, no. 1, pp. 3-18, Mar. 2011.

[33] J. Brest, P. Koro3ec, J. S'ilc, A. Zamuda, B. Boskovi¢, and M. Sepesy
Maucec, “Differential evolution and differential antstigmergy on dy-
namic optimisation problems,” Int. J. Syst. Sci., vol. 44, no. 4, pp.
663-679, 2013.

[34] F. O. de Franca and F. J. Von Zuben, “A dynamic artificial immune
algorithm applied to challenging benchmarking problems,” in Proc.
Congr. Evol. Comput., 2009, pp. 423-430.

[35] L. Liu, D. Wang, and S. Yang, “Particle swarm optimization with
composite particles in dynamic environments,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 40, no. 6, pp. 1634-1648, Dec. 2010.

[36] L. N. de Castro and J. Timmis, “An artificial immune network for
multimodal optimization,” in Proc. Congr. Evol. Comput. Part IEEE
World Congr. Comput. Intell., May 2002, pp. 699-704.

[37] S.M.Islam, S. Das, S. Ghosh, S. Roy, and P. N. Suganthan, “An adaptive
differential evolution algorithm with novel mutation and crossover
strategies for global numerical optimization,” IEEE Trans. Syst., Man,
Cybern. B, vol. 42, no. 2, pp. 482-500, Apr. 2012.

[38] W. Gong, Z. Cai, C. X. Ling, and Hui Li, “Enhanced differential
evolution with adaptive strategies for numerical optimization,” IEEE
Trans. Syst., Man, Cybern. B, vol. 41, no. 2, pp. 397-413, Apr. 2011.

Swagatam Das (M’10-SM’12) is currently an As-
sistant Professor with the Electronics and Commu-
nication Sciences Unit, Indian Statistical Institute,
Kolkata, India. He has published one research mono-
graph, one edited volume, and over 150 research
articles in peer-reviewed journals and international
conferences. His current research interests include
evolutionary computing and pattern recognition.

Mr. Das is the Founding Co-Editor-in-Chief of
Swarm and Evolutionary Computation, an interna-
tional journal from Elsevier. He also serves as an
Associate Editor of the IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBER-
NETICS: SYSTEMS, Neurocomputing, Information Sciences, and Engineering
Applications of Artificial Intelligence. He is an Editorial Board member
of Progress in Artificial Intelligence (Springer), Mathematical Problems in
Engineering, International Journal of Artificial Intelligence and Soft Comput-
ing, and International Journal of Adaptive and Autonomous Communication
Systems. He has been associated with international program committees and
organizing committees of several regular international conferences, including
IEEE WCCI, IEEE SSCI, SEAL, GECCO, and SEMCCO. He has acted as a
Guest Editor for special issues in journals, such as the IEEE TRANSACTIONS
ON EVOLUTIONARY COMPUTATION, the ACM Transactions on Adaptive and
Autonomous Systems, and the IEEE TRANSACTIONS ON SYSTEM, MAN, AND
CYBERNETICS, PART C. He was a recipient of the 2012 Young Engineer Award
from the Indian National Academy of Engineering.

IEEE TRANSACTIONS ON CYBERNETICS, VOL. 44, NO. 6, JUNE 2014

computing.

Ankush Mandal received the B.E. degree in elec-
tronics and telecommunication engineering from Ja-
davpur University, Kolkata, India, in 2012.

He is currently working as a Control and Instru-
mentation Engineer at the Engineering and Planning
Department of the Damodar Valley Corporation,
West Bengal, India. His current research interests
include evolutionary optimization in nonstationary
environments and evolutionary design of antennas.

Rohan Mukherjee was born in West Bengal, India,
in 1992. He is currently pursuing the B.E. degree
in electronics and telecommunication engineering at
Jadavpur University, Kolkata, India.

He has published research articles in peer-reviewed
journals and international conference proceedings
under the guidance of his teacher Dr. Swagatam
Das. He has acted as a reviewer for international
conferences. His current research interests include
smart grids, game theoretic applications, power sys-
tems, wireless communications, and evolutionary

	1A.pdf
	2.pdf

