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Decomposition Techniques to Shape Analysis and
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Abstract—The binary tree, quadtree, and octree decomposition tech-
niques are widely used in computer graphics and image processing
problems. Here, the techniques are reexamined for pattern recognition
and shape analysis applications. It has been shown that the quadtree
and octree techniques can be used to find the shape hull of a set of
points in space while their n-dimensional generalization can be used for
divisive hierarchical clustering. Similarly, an n-dimensional binary tree
decomposition of feature space can be used for efficient pattern classi-
fier design. Illustrative examples are presented to show the usefulness
and efficiency of these hierarchical decomposition techniques.

Index Terms—Binary tree, clustering, octree, pattern classification,
quadtree.

I. INTRODUCTION

HE quadtree, octree, and binary tree decomposition

methods [1]-[5] are widely used in two- and three-
dimensional image processing and computer graphics
problems. Some of the application areas involve the image
data structure [2]-[5], region representation and picture
segmentation [6], [7], genus evaluation and component la-
beling [8], [9], image smoothing and enhancement [10],
[11], data compression [12], [13], and medial axis trans-
formation [14]. The techniques are generalized in higher
dimensions for applications that involve the search of point
data [15], [16]. Applications of these hierarchical tech-
niques in geographic information systems are also re-
ported [17]. In general, the tree structures are based on
the simple principle of divide and conquer, and they may
be implemented conveniently in software and hardware. It
is the purpose of this paper to explore the applications of
these powerful techniques to other areas such as pattern
recognition and shape analysis. In particular, the present
paper deals with the problems of clustering, classifier de-
sign, and the shape hull of a point set in space.

Consider a set of S and N points or dots in n-dimensional
Euclidean space [". In pattern recognition problems, S
may define a set of sample patterns from one or more
classes and the problem is to cluster them into a specified
or unspecified number of clusters. Again, in computer
graphics and image processing problems, S may represent
a set of pixels in two or three dimensions, and the problem
is to find the perceptual shape of S.
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It is convenient to describe the perceptual shape if the
border of § in the form of a polygon (for n = 2) or poly-
hedron (for n = 3) is known. Apart from carrying impor-
tant shape information, the border is useful in normal-
ization, set estimation, intrinsic dimensionality detection,
and other related problems [18]. The convex hull polygon
(polyhedron) containing S is a unique polygon (polyhe-
dron) that may be used for the purpose. However, it does
not always represent the perceptual border of a given S.
The perceptual border is the border perceived because of
the relative locations of the dots in S and for a fairly
densely and uniformly distributed pattern, any human ob-
server is quick to see it without much ambiguity. If the
point pattern is perceived to have concavities, then the
convex hull does not represent the shape hull properly.
However, Jervis [19] presents several algorithms for a
shape hull which are based either on taking the union of
convex hulls of subsets of S or on the shared nearest neigh-
borhood tests. Fairfield [20] proposed a method which
starts out with finding the closest point Voronoi diagram
and the Delaunay triangulation [21]. A more generalized
method is given by Edelsbrunner et al. [22]. Forn = 2,
the complexity of the algorithm is essentially O(N log N).
No work is known to be reported for n = 3, but the com-
plexity is expected to be greater since finding Voronoi dia-
grams in three dimensions requires more computation than
O(N log N).

A simple hierarchical method of finding the shape hull
of a point set S is given in Section II that is based on the
quadtree and octree partitioning of space. In this method,
a unique square (or cube) S, is defined to contain S. By
partitioning S,, smaller squares (or cubes), called cells,
are formed. A cell is called nonempty if it contains a
member of S. At a given level of partitioning, the border
is defined as the border of the connected components of
nonempty cells. The method can be executed in O(N)
complexity at any finite level of hierarchy for both n = 2
and n = 3.

A given S in R" can be clustered either hierarchically
or nonhierarchically into N. < N clusters. If N, is fixed
and known a priori, the nonhierarchical methods appear
suitable for clustering. For a variable N, ranging between
1 and N, the hierarchical techniques are commonly used.
A hierarchical technique may be divisive or agglomerative
depending on whether N, is nondecreasing with an in-
crease in the level of hierarchy or not [23]. The divisive
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techniques are less popular because of their computer
complexity.

In Section III, a computationally attractive divisive
clustering technique is proposed. It is based on the mul-
tidimensional generalization of partitioning methods de-
scribed in Section II. The basic idea is to treat each con-
nected component of cells as a cluster at the given level of
hierarchy. The technique can be executed in O(N) com-
plexity for a finite n.

The tree decomposition technique can also be applied
to the problem of pattern classification. In a pattern clas-
sification problem, the n-dimensional pattern feature space
is partitioned by decision boundaries into decision regions
corresponding to the pattern classes. A decision function
for each region or a discriminant function for the bound-
ary between each pair of classes is found. The functions
are evaluated on the feature vector of an unknown pattern
to decide for its class status.

This strategy is convenient and computationally attrac-
tive if the discriminant is either a linear or a quadratic
function. However, many practical problems demand
higher order polynomial discriminants and, correspond-
ingly, the technique becomes very expensive both at the
training as well as the recognition phase. The situation
becomes more complicated if a class contains more than
one component of decision region and a component is
topologically multiply connected. A typical example is
given in Fig. 9 of Section IV where it may be more con-
venient to map the decision space in an efficiently coded
form so that an unknown pattern can be quickly classified
using the codebook. It is shown in Section IV that a general-
ization of the binary tree decomposition technique is very
useful in mapping the feature space. Subsequently, the
mapped feature space can be used for computationally ef-
ficient pattern recognition.

II. HIERARCHICAL PARTITIONING AND SHAPE
HuLL DETERMINATION

A. Partitioning Method

The partitioning method starts out with defining the
smallest hypercube S, containing all points of S. Let x;
denote the kth coordinate and x;(max) and x,(min) denote,
respectively, the maximum and minimum of x; values of
the data points along kth coordinate. Then, a hypercube
with sides parallel to the coordinate axes and sidelength
L > Sup;|xi(max) — xi(min)| may be constructed for S,,.
The hypercube S, may be assumed to be a closed space
set.

The hierarchical partitioning process is such that at any
level of hierarchy, each hypercube is partitioned into 2"
smaller hypercubes of equal size by hyperplanes perpen-
dicular to the axes. In two and three dimensions, it is
equivalent to the quadtree and octree decomposition tech-
niques, respectively.

For a partitioning factor of 2", the original hypercube S,
of side L is decomposed into 2" equal hypercubes (or ith
level cells) so that at any i > o level, an n-dimensional
array of 2" cells are formed. Let an element of the array

653

be denoted by (aj, a, *** , a, **+, a,) where a; may
range from 1 to 2' for any k.

Definition 2.1: 1If a cell contains at least one point of S,
then it is a nonempty cell. Otherwise, a cell is empty.

If a point falls on the partitioning hyperplane or on the
intersection of two or more partitioning hyperplanes, then
the tie is broken arbitrarily. Also, it is assumed that the
cells outside S, are all empty at any level of hierarchy.

It is clear that any empty cell of ith level is partitioned
into empty cells at all subsequent levels, but a nonempty
cell may be partitioned into nonempty cells or a mixture
of empty and nonempty cells.

Definition 2.2: Any two cells are p; neighbors if they
meet at a point, a line, a plane, or a hyperplane of k di-
mensions where 3 < k < n — 1. Any two cells are p,
neighbors if they meet only at a hyperplane of n — 2 di-
mensions. Two nonempty cells are ¢ neighbors if they are
p, neighbors. Two empty cells are ¢ neighbors if they are
D» neighbors.

The p, and p, neighborhoods are similar to the 8 and 4
neighborhoods, respectively, in a two-tone image [24].

Definition 2.3: Two nonempty (empty) cells ¢, and ¢,
are connected by a path of nonempty (empty) cells given
by a sequence, say, ¢, ¢3, * * *, ¢; * * *, ¢, s0 that ¢y is
a g neighbor of ¢; forany 2 < j < r.

Definition 2.4: A maximally connected nonempty
(empty) region is a subset of nonempty (empty) cells so
that each cell is connected by a path to all of the rest of
the cells of the subset only.

The process of hierarchical decomposition is illustrated
in two dimensions for i = 2 in Fig. 1 where the cells are
numbered as 1, 2, - - -, 16. Here the cells 1, 5, 6, 9, and
13 are empty. The rest are nonempty cells. There is only
one maximally connected region at i = 2 consisting of all
the nonempty cells.

For any type of data set S, there exists only one region
at the lowest levels i = 0, 1 of the hierarchy. Usually, the
number of regions grows with i. For example, cell 2 of
Fig. 1 is partitioned into 16 cells at i = 4, leading to three
nonempty regions each consisting of one nonempty cell.
In fact, given any data set, the number of regions is N for
a sufficiently large i.

B. Shape Hull Determination

The border of nonempty regions and their holes consti-
tutes the shape outline of S at the given level of hierarchy.
Informally speaking, a hole is an empty region surrounded
by a nonempty region. The border of the regions and their
holes can be found by identifying the border cells defined
below.

Definition 2.5: A nonempty cell is a border cell if it is
the p, neighbor of at least one empty cell. A nonempty
cell is an interior cell if it is not a border cell.

It is understood that the shape hull is meaningful mainly
in two and three dimensions. A border cell contains border
sides and border surfaces in two and three dimensions,
respectively. Let the cells be closed subsets in space.

Definition 2.6: A border side is the intersection of a



654

s |0 | 1 |1

B "4 |15 |16

Fig. 1. The quadrant partitioning technique.

border cell with one of its neighboring empty cells in two
dimensions. Similarly, a border surface is the intersection
of a border cell with one of its neighboring empty cells in
three dimensions. The union of all the border sides (sur-
faces) of a maximally connected region is called its
border.

It is clear that a border cell may have at most four border
sides in two dimensions and six border surfaces in three
dimensions.

Since the nonempty cells are assumed to be closed sub-
sets in space, each maximally connected nonempty region
is also a closed subset in space. The union of all such
nonempty regions that contains all the points of S may be
termed as the shape hull of S. The shape hull may be de-
scribed in terms of the borders of the nonempty regions.

The maximally connected nonempty regions, together
with their border, specify the shape hull of the point set.
Apart from the determination of the shape hull, the pres-
ent method can be used to describe the shape topologi-
cally. In fact, the holes and nonempty connected regions
can be conveniently counted and the Euler number may be
derived [8], [9]. Also, the borders of a nonempty region
may be distinguished as exterior and interior borders (bor-
ders of the holes).

C. Computer Algorithms and Complexity

For simplicity and convenience, we consider n = 2 in
describing our algorithms.

Partitioning at any level i from i — 1 can be conve-
niently done by defining a two-dimensional array, say, 4;,
for the ith level. Let a cell of A4; be designated at (j, k)
where j denotes the row and k denotes the column of the
array. The partitioning algorithm contains the following
steps.

Step 1): Redesignate each cell (j, k); _, of level i — 1
as four cells (2j — 1, 2k);, (2j — 1, 2k — 1);, (2,
2k — 1); and (2], 2k); at level i.

Step 2): If the cell (j, k); _, is nonempty, test which of
these four cells contain at least one point of S. Redesignate
them as nonempty and the rest as empty.

Step 3): Increase i by 1 and go to step 1.

There are many border following algorithms available
in the literature [5]. Most algorithms find the set of border
cells rather than a string of border sides and surfaces. An
interesting method of finding a boundary from the quad-
tree representation is given in [6]. In the following, an
algorithm is described where the quadtree structure is not
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Fig. 2. The method of border following (a) three neighboring directions of
a side. (b) Part of the followed border is S|, S,, - - -, Se.
specifically utilized. Also, the border is found in the form
of a string of border sides so that the crack-coded repre-
sentation of the border is possible. For brevity, let the bor-
der cell and interior cell be called as the B cell and I cell,

respectively.

1) Test the neighborhood in A4; and label the B cells and
their border sides using definition 2.5 and 2.6, respec-
tivefy. ,

2) Specify the first B cell encountered in horizontal
scanning and take its border side as the initial side s, of a
border.

3) For each s;, see which of its three neighboring direc-
tions contain border sides. Choose s; | by the “rule of
border side following’ given below unless s, is encoun-
tered again. Let s,, be the side encountered just before s,.
The sequence sy, s,, * * *, §,, denotes a border.

4) Delete sy, s,, * * * , s,, from the corresponding B cells
and convert the B cells having no border side into I cells.
Choose any B cells left and take any of its border side, as
s, for a new border. Go to step 3.

The ‘“‘rule of border side following™ 1is illustrated
through Fig. 2. A border side s; may be considered as a
vector which has three neighboring directions d,, d,, ds
for border following. If there exists a border side along
each of the directions d,, d,, and d;, which makes 90°
with s; and does not belong to the B cell to which s; be-
longs, it is taken for s; , .

In three dimensions, partitioning can be done by defin-
ing a three-dimensional array and redesignating each cell
of the i — 1th level as eight cells at the i level. The cells
are labeled as empty and nonempty in a similar manner as
above. The border surface of each cell is a square, and
each side of this square may be connected to another bor-
der surface in one of the seven orientations rather than
three of Fig. 2. Instead of sequentially following the bor-
der sides as in a two-dimensional case, it is convenient to
grow the border surface in all directions, in which case, a
stack algorithm may be employed.

Let us now ascertain the computational effort necessary
for the procedure discussed above. The change in position
coordinate of the points requires an O(N) complexity. Each
level of the partitioning process can also be completed in
O(N) time. This is because 2" — 1 comparisons are nec-
essary to decide which cell contains a point at the current
partition, and one point is tested only once. Finally, the
determination of border involves the nonempty cells and
each nonempty cell is accounted for a finite number of
times. At any arbitrary level i, the number of nonempty
cells is less than or equal to N. Hence, border finding es-
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Fig. 3. The hierarchical shape of a point pattern.

border,
(c) fori = 4, and (d) fori = 5.

[7].

Fig. 4. Border of a point pattern. Edlesbrunner et al.
- - - — the method in this paper.

sentially involves O(N) complexity. For a finite number of
levels, therefore, the above technique can be run in O(N)
time.

D. Experimental Results and Discussion

In order to test the efficiency of the present technique,
some perceptually meaningful dot patterns were taken.
Two of them are shown in Figs. 3(a) and 4, respectively.
The first dot pattern outlines the shape of a chromosome
while the second pattern denotes the letter ““A’ in the
English alphabet.

In order to get a better approximation of the shape of
the dot pattern, a border refinement technique is utilized.
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- unrefined

refined border. (a) The point patten, (b) fori = 3.

To refine the border at a given level i = i,, we distinguish
four types of border (B) cells. We call those having only
one border side type 1 B cells, those having two border
side type 2 B cells, and so on.

For type 1 cells, the refinement is done by translating
the border side toward the cell, so long as all the points
belonging to the cell remain inside it. For a type 2 cell,
both border sides are translated as in type 1 cells if the
sides are adjacent or if there are more than one point in-
side the cell having their x and y coordinates distinct. Oth-
erwise, only one side is translated. The side whose trans-
lation maximally reduces the area of the cell is chosen for
the purpose. For a type 3 cell, again, all the border sides
are translated if the cell contains more than one point hav-
ing distinct x and y coordinates. Otherwise, only one side
is translated. The choice of side, again, is guided by the
maximal reduction of cell area. The situations are illus-
trated in Fig. 5(a)-(c).

The case of type 4 cells is a little complicated. At first,
the corners of the cell which are common to the corners
of the other cells are labeled as connecting corners. The
rest of the corners are called free corners. There may be
one, two, three, or four connecting corners in a type 4
cell. For a cell with four connecting corners, no refine-
ment is done. For three connecting corners, the refine-
ment is done at the free corner by curving out a rectangle
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Fig. 5. The method of border refinement. - - ® — — border side before re-
finement. - - - - border side after refinement.

of maximum area as in Fig. 5(d,). For two connecting cor-
ners, the two free corners are chosen. For a cell with one
connecting corner, the diagonally opposite free corner is
chosen to reduce the area of the cell by curving our rect-
angle of maximum area as shown in Fig. 5(d,). The results
of using the present technique in Fig. 3(a) are shown in
Fig. 3(b), (c), and (d) for different levels of hierarchy. The
number of points in this pattern is less than 300, and we
propose i = 5 as the terminal level of maximum resolu-
tion. In fact, at i = 6 a large number of small holes ap-
pears in the figure and, at a higher level, the region starts
breaking up into smaller regions.

It is clear from the figures that a quadtree structure of
shape can be created by the empty and nonempty cells at
each level of hierarchy. The quadtree structure can be used
conveniently in shape matching problems. Let S, be nor-
malized to have unit area for any S. Then two sets of point
patterns may be said to match at ith level if their borders
match at that level.

Quite often, it is convenient to use a two-dimensional
array representation in digital processor. The nonempty
and empty cells may be conceived as black and white pels
and many digital two-tone image processing algorithms
can be used here with minor modifications. A gray tone
appearance can also be given to the nonempty cells if the
darkness of a cell is assumed to be proportional to the
number of points in the cell.

The present method is computationally cheaper than the
method due to Edelsbrunner ef al. [8]. In their method,
however, the hierarchy is continuous on a real-valued pa-
rameter « rather than on a discrete-valued i here. Also,
the borders in their method are formed by joining some
border points found from the Delaunay triangulation. On
the other hand, the border in our method has a rectangular
crack shape. The point pattern “A” and its border ob-
tained by the two methods are compared in Fig. 4.
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III. AppLICATION TO CLUSTERING
A. Clustering Properties

The above technique may be viewed as that of a divisive
hierarchical clustering if we accept the following defini-
tion.

Definition 3.1: The points belonging to each maximally
connected nonempty region at a given level form a cluster
of that level.

The divisive technique may be modified to the case when
the number N, of clusters to be obtained is fixed a priori,
as in the nonhierarchical techniques. The idea is to go up
to the level when the number of clusters obtained is greater
than or equal to N.. If it is greater, most similar pairs may
be merged unless the number becomes N.. We are inter-
ested here in hierarchical techniques only.

Let us investigate the properties of this clustering
method. At any level i, the size of a cell is [} where [; =
L/2'. The diagonal of the cell is I,; = (n})"?. Let Cy
and C,; be any two of the clusters formed at level i, and
let d(x, y) denote the Euclidean distance between any two
data points x and y. Let D(Cy;, C};) = Inf[d(x, y), x € Cy;,
y € Cy,] be the distance between the clusters C,; and Cy;.
Also, let S, and S, be any two sets of data points in the n-
dimensional space.

Property 3.1: At any level i, we have D(Cy;, Cy;) > I,.

Property 3.2: If § = S,US, and D(S,, S,) > 2, ;, then
no cluster is formed at level i that contains points from
both S, and S,.

The property 3.2 tells that if the distance between two
sets of points is greater than 2/, ;, then they are clustered
in separate clusters at level i. The number of separate
clusters may be more than two.

According to the definition 3.1, a cluster is formed be-
cause of connectivity of the nonempty cells. Instead of
using the cell connectivity defined in Section II-A, let us
examine the behavior of the clustering in terms of r con-
nectivity of the data where r is a real number [25].

Definition 3.2: A point x is r connected to the point y
in X if there exists a sequence of points Z,, Z,, Z,, * - -,
Zs Ziv1s Zo, =X, 2k =¥, 20, 2y, ¢ 0, Zy € X such
that d(Z;, Z; . ;) =< r for all j. The points of a set X are r
connected if all x, y € X are r connected and there exists
at least one point in X whose nearest neighbor in X is r
distance away.

Property 3.3: The points of any cluster Cy, are, at most,
21, ; connected.

Property 3.4: Any set of data points S = S, will form
a single cluster at level i if all x € S, are [/ connected
where Il = [, —¢;0 < ¢; < I.

Property 3.5: A cluster obtained at level i will not be
partitioned into more clusters at level { + 1 if it is
(l; — e;)/2 connected while it will be partitioned into more
clusters if it is » connected where 2/, ;,, < r < 2/, and
liivt = (nl7i4)"”.

For partitioning at level i + 1 from level i, the range of
connectivity between ([; — ¢;)/2 and 2/, ; . | is unpredict-
able.
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Fig. 7. A cluster enclosed by a cluster.

It is clear from the algorithms in Section II-C that the
clustering can be obtained in O(N) time at any level of
hierarchy. Practically, the number of meaningful clusters
is much less than the number of data points. Also, there
should be a smooth transition in the number of clusters
with increasing i. In the present technique, this is true up
to a certain value of i. The process should be stopped at
a level where the number of clusters grows abruptly.

B. Experimental Results and Discussion

The procedure has been tested successfully on different
multidimensional data sets. As an example, Ruspini’s [26]
artificial data set is illustrated in Fig. 6. The data are par-
titioned into three clusters C;, C,, and Cj at level i = 3.
At level i = 4, the cluster C, is partitioned further into
three clusters C,;, C),, and C}5. Fori = 5, the number of
clusters starts growing abruptly and, ati = 7, the number
of clusters becomes 75 which is equal to the number of
data points.

Other typical data, such as the visually perceptible clus-
ter inside a cluster as shown in Fig. 7, can also be dis-
criminated at a level if the distance between the clusters
at that level exceeds 2/, ;. Thus, the two clusters shown in
Fig. 7 are clearly separated at i = 5. However, it is pos-
sible to generate data so that the number of clusters at any
level is either greater than or less than two, although there
are perceptually two clusters in the data set. There are two
possible reasons for such a situation. The primary reason
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Fig. 8. Two touching clusters of variable density.

is that the cell size reduction, with the increase in level,
is logarithmic rather than linear, and the average density
of data points may fall in between the cell density of data
of any two consecutive levels. Hence, the hierarchical par-
titioning may not follow up the data clustering structure
properly. A secondary reason is that a hypercube is not
rotationally symmetric around the center and the diagonal
length is much larger than the side length. It is possible to
modify the procedure to eliminate both the drawbacks to
a limited extent. To get a slow rate of cell size reduction
at level i, one may go back to level i — 2 and partition
each cell into 3" equal cells by three hyperplanes perpen-
dicular to each of the n axes. If this is called the modified
ith level i,,.4, then the ratio of the cell size in the two cases
will be (3)". Instead of i — 2, one may go down toi — 3
and define i,y by partitioning each cell into 3", 5", or 7"
cells. In those cases, the slow down rates of (3)", ()", and
(3)" are possible. However, the program complexity in-
creases by this modification. The difficulty of the nonsym-
metric nature of cell size is eliminated to some extent if
the axes are rotated along the diagonal in each plane and
results of clusterings are observed. The best result may
be hypothesized as the one where the minimum number of
clusters is obtained at a given level. We found this hy-
pothesis to be helpful for some data sets.

Another structure that may not be disclosed directly by
the present technique is the touching clusters with vari-
able density as shown in Fig. 8. When definition 3.1 is
directly applied to the data of Fig. 8, one gets a single
cluster up to level 3, while at level 4, the number of clus-
ters becomes quite large. To overcome the problem, we
take the cell density histogram and use a threshold to dis-
tinguish two types of nonempty cells of different density.
The density of the cell is defined as the number of points
inside it. Now, instead of ““‘maximally connected region of
nonempty cell,” the ““maximally connected region of non-
empty cells of a given density’” is defined as a cluster. At
level 2 of Fig. 8, the cell density histogram produces two
sharp peaks around the densities 4 and 12. The two types
of nonempty cells are distinguished by a threshold at den-
sity equal to 8 and the two touching clusters are found at
level 2.

It is clear that the above modification is equivalent to
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viewing the problem as that of finding maximally con-
nected regions in a gray-level image while the original
technique is its bilevel version.

IV. BINARY TREE DECOMPOSITION IN
PATTERN CLASSIFICATION

A. Partitioning and Mapping Technique

Consider the recognition problem of M classes in an n-
dimensional feature space. Any point in the space may be
represented in terms of the coordinates labeled x,
Xy, * **, X,. Let the decision region of the mth class C,,
contain m, components represented by S,, ;; i = 1, m,.
Consider S,,; as closed subsets in [{". Let V, =
uM ymr S,..; be the domain of the feature space in which
all the patterns must lie. In general, V" may take any
shape. We assume that V" is topologically simply con-
nected and its boundary consists of hyperplanes perpen-
dicular to the coordinate axes only. The boundary between
the ith component of C,, and the jth component of C, is
givenby Q,, «i i = S, N S ;. Then, the decision bound-
ary of the region of C,, may be expressed as

M my kr

On = LkJ U th O k.ij- (1)

The above definition permits the decision boundary to
have finite thickness if necessary. In a conventional pat-
tern recognizer, the thickness of the decision boundary is
assumed to be zero. As described later in this section, the
boundary having finite thickness is a more realistic as-
sumption in certain problems.

Let V" be partitioned into equal halves by a hyperplane
perpendicular to x;. Any of the halves lying entirely within
the decision region of any class is left untouched. The
mapping of this decision region is done by associating the
class in which it lies. On the other hand, if the decision
boundary lies within any half, it is partitioned again into
equal halves by a hyperplane perpendicular to x,. Mapping
of the halves is done if possible. Otherwise, they are par-
titioned to halves by a hyperplane perpendicular to x;. The
process may be repeated for ¢ stages so that at the ith stage,
the partitioning is done perpendicular to the coordinate x,
where k = i modulo n.

As an example, the class C; in Fig. 9 is partitioned for
t = 12 using the above technique. The largest square in
C, of Fig. 9 is generated at the 4th level of partitioning.
This square is not partitioned further since it lies entirely
within C,. This is true for all the squares except some of
the smallest ones which are not partitioned further since
they are produced at the terminal level of partitioning.

Consider again the largest square in C,. Any pattern
falling in this square can be classified at the 4th level. It
requires four comparisons to know if the coordinates of a
pattern lie within this square or not. Once this is done, a
tree look down will clarify its class status.

In Fig. 10, the tree structure of the partitioned space of
C, of Fig. 9 is shown up to the 8th level. In two dimen-
sions, a rectangular space may be partitioned into left and
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Fig. 9. Decision regions of five pattern classes in two-dimensional feature
space.

right or upper and lower halves which are represented in
Fig. 10as L, R, U, and D, respectively. When one of these
symbols stands alone at a node of the tree, it is not a ter-
minal or leaf node. A leaf node is a decision node if C, or
C, is associated. Here, C, signifies that the corresponding
partitioned region is entirely within the decision region of
class C, while C, signifies that it is entirely outside the
decision region of C,. The decision node corresponding
to the largest square in C; of Fig. 9 is marked by a circle
in Fig. 10.

Before discussing Cj, let us see how the tree look down
can be understood as an efficient decision technique. Let
each decision node be represented by a unique binary
code. The lower the node is in the tree structure, the larger
is the code length. Thus, the node marked by a circle in
Fig. 10 can be represented by a 4-bit codeword, while the
terminal level of the tree may be represented by an 8-bit
codeword. Since a larger partitioned rectangle of a deci-
sion region 1is represented by a smaller codeword, it is an
efficient feature space coding technique. Now, for uni-
formly distributed data it leads to a computationally effi-
cient pattern classification. It should be noted that the de-
cision node with a symbol such as C, does not occur in a
complete tree structure.

In the actual method of classification, the binary tree
structure is stored in the coded form along with the class
codes to which the decision nodes belong. Now, the binary
decomposition method is used on the position coordinates
of a pattern to be classified so that a binary code is gen-
erated corresponding to the square in which the patten be-
longs. Comparing this pattern code bit by bit to the stored
coded tree structure, the class status of the pattern is au-
tomatically found.

Cj signifies that the corresponding partitioned rectangle
lies partly within and partly outside the decision region of
C,. In other words, the decision boundary of C, and some
other class falls within this rectangle. It is to be noted that
C| appears at the terminal level i, beyond which no space
partitioning is allowed. Actually, the smallest squares of
Fig. 9 obtained at the 12th level and containing parts of
the border of C; are candidates for C;. Fig. 10 depicts the
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Fig. 10. A binary tree for class C, of Fig. 1.
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Fig. 11. A square containing decision regions of two or more pattern
classes. (a) Linear boundary between two classes. (b) Piecewise linear
boundary between two classes. (¢) Piecewise linear boundary between
three classes.

is which are produced if the space partitioning is ter-
minated at the 8th level. Some heuristic must be used to
decide for the pattern falling in C, so that the tree decision
codebook is completed.

One simple heuristic may be an arbitrary tie-breaking
rule so that any rectangle labeled Cj that contains a bound-
ary of ¢ classes is attributed to any of these ¢ classes. An
alternative may be to classify the patterns among ¢ classes
with equal frequency. Yet another method is to attribute a
pattern to the class whose decision region within the
square is largest. It becomes easier to compute the deci-
sion region if the boundary is linear as in Fig. 11.

The presence of rectangles labeled C} may be viewed as
the decision boundary of C, having finite thickness as if
formed due to overlap of the decision regions of other
classes with that of C;. Such a boundary broadening is
not an impractical case in many situations. For example,
if the number of samples at the training phase is not suf-
ficiently large, then the decision parameters may not be
obtained with sufficient confidence. It may be more ade-
quate to express the parameters lying within a range,
rather than having a single value. Then the decision re-
gions of the classes will overlap to broaden the decision
boundary. A similar situation may occur due to impreci-
sion and noise in the feature measurement system. In fact,
any measuring system has finite resolution and the tele-
metric data are usually prone to noise and distortion. Also,
in some applications, the pattern classification is con-
ducted on data taken over a long period and the charac-
teristics of the pattern can change slowly with time. One
may cope with the situation by broadening the decision
boundary of the pattern recognizer. If the boundary is very
thick, a fuzzy set theoretic recognition model appears more
appropriate than others. The topic will be treated else-
where in detail.

Whatever might be the recognition heuristic, the effect

of decision boundary broadening is to increase the mis-
classification rate. Let n be a factor of the number of ter-
minal levels i, so that the broadened boundary is formed
by hypercubes, each having diagonal length d,. Let s,, de-
note the decision hypersurface for the mth class 1 <
m < M. Then the hypervolume covered due to decision
boundary broadening has the upperbound

m
!
v<d 2 S ds,,.
Sm

m=1

2)

If the feature domain V" occupies a hypervolume v,, then
v/v, is the fraction of space over which a heuristic decision
is to be made. If the patterns are evenly distributed, then
v/v, is the fraction of patterns on which additional mis-
classification is encountered. It is possible to reduce the
additional misclassification arbitrarily by increasing i, and
hence reducing v. But an increase in /, leads to a large tree
structure.

From Fig. 9 it is clear that rectangles of different sizes
are formed at different levels of partitioning. They may be
called as cells in n dimensions. Let n; be the number of i-
level cells formed by the partitioning process and let the
hypervolume of an i-level cell be v;. If 6 is the average
density of the data to be classified to the jth of the i-level
cells, then v; X | 6; is the number of data falling in the i-
level cells. The total number of data to be classified is
N = Li_, v; | §;. Then, the expected number of levels
of partitioning necessary to classify a datum is

L= 3
The average number of comparisons necessary to ensure
class status of a datum is 2i,,. Since comparison of num-
bers is only involved, it is computationally very attractive.

There is an interesting similarity between the present
technique and Wald’s sequential decision technique [27].
In the Wald’s techniques, the pattern features are tested
sequentially until a decision is made. This test is equiva-
lent to observing the pattern sequentially with respect to
the coordinates x|, x5, - - -, x,. Similarly, in the present
case, the space is partitioned with respect to the coordi-
nates x;, x,, - * -, x, until a decision about the class con-
tainment can be made. It is, therefore, expected that the
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cost effectiveness of Wald’s technique will be reflected in
the present technique.

B. Results and Discussion

To understand the computational advantage of the pres-
ent method, let us take a simple example of nearest neigh-
bor (nn) classifier for five classes with 20 prototypes for
each class in two dimensions. For the 1-nn classifier, it
requires 100 distance computations and 100 comparisons
to classify a pattern by this method. Simulated study has
shown that a terminal level of i, = 25 is good enough for
a feature space with quite complicated (i.e., zig-zag) de-
cision boundary and the decision region of each class hav-
ing at least two components. In that case, only 50 com-
parisons are enough even if the decision for each pattern
is made at the terminal level. However, the storage re-
quirement is always higher for the present technique.

We considered Fig. 9 as one of the typical cases of sim-
ulated two-dimensional feature space with a decision
boundary of five classes. The whole space was partitioned
and labeled as in class C; shown in the figure and the re-
sultant tree structure was stored in a coded form. The ter-
minal level was chosen as ¢ = 12. This resulted in the
decision boundary broadening that covered 6.37 percent
of the decision space. Two-dimensional random numbers
with uniform density over the space were used as patterns
to be classified. The boundary broadening effect made a
0.35 percent degradation in recognition score for arbitrary
tie-breaking heuristic and 0.22 percent for maximum area
heuristic. The average number of levels required to rec-
ognize an unknown pattern was 7.356. It required 710 lo-
cations to store the tree code book.

As a practical example, the recognition of vowels from
human speech sound was considered. The vowel data were
collected from about 350 commonly used multisyllabic
Telugu (a major Indian language) words spoken by five
adult male informants. The recordings were made inside
an empty auditorium with an AKAI 1710 recorder on TDK
tapes and the spectrographic analysis was done on a KAY
sonagraph model 7029-A. The first two formant frequen-
cies F, and F, were chosen as two features. In feature
space, the decision boundary of the five vowels a, e, i, o,
and u is shown in Fig. 12. The boundary was obtained by
equating the potential functions of the neighboring classes.
To reduce excessive variation, the actual boundary was
smoothed out to take the present form. Using the present
decision space mapping technique, the recognition score
was 79.3 percent. The reported recognition score of the
same data on other techniques lies around 80 percent [28].
The average number of levels required to recognize a pat-
tern was 6.453. The corresponding computational effort is
less than that in the Bayes’ rule, even if the features are
assumed to be multivariate and normally distributed over
each of the vowel classes.

In general, the technique is quite useful if the decision
boundary of classes does not consist of simple hyperplanes
and if there are more than one decision regions for the
classes. The binary tree is found to be a good database
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Fig. 12. Decision regions of five Telugu vowels in F-F, feature plane.

structure for two-tone images. This property can be used
advantageously in modifying the decision space, when-
ever necessary, in a pattern recognizer.

V. CoNCLUSION

The purpose of this paper is to examine the general-
ization of quadtree, octree, and binary tree decomposition
techniques to problems other than image processing and
computer graphics. Three different applications are pre-
sented in the paper. Sometimes, the problem of finding the
shape hull of a given S is conceived as the problem of
estimation of planar set in statistical geometry. The pres-
ent method of quadtree and octree partitioning may be
used for the purpose. The principal advantages of these
tree techniques are their hierarchical structure, computa-
tional economy, and ease of implementation. It is worth-
while investigating their applications in more diverse
areas.
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