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Generation of Directed Circuits in a Directed Graph
PRADIP K. SRIMANI

Abstract—A new matrix algorithm has been presented to generate all
directed circuits in a given directed graph. The method is based on
multiplication of the modified adjacency matrix of the graph by itself
according to some modified rules of matrix multiplication.

I. INTRODUCTION

Enumeration of all possible directed circuits in a given directed graph
constitutes an important problem in the broad arena of linear graph
theory, and this information of all circuits becomes quite essential in
various other applications. This problem has already been discussed by
various authors [1]-[7]. In the present letter, we propose a new ma-
trix algorithm to enumerate all the directed circuits in a diagraph by
doing a single matrix multiplication where the rules of matrix multipli-
cation are slightly modified. The proposed algorithm is, in principle,
similar to the revised matrix algorithm [8] to enumerate the shortest
paths in a digraph, and it appears to enjoy some computational advan-
tage over the existing algorithms, We define a modified adjacency ma-
trix (MAM) of a directed graph G with n vertices to be a n by n matrix
A :], where the @7, j)th entry is vj iff the vertex v; is connected to ver-
tex vj by a directed edge from v; to vj and zero otherwise. For conve-
nience of description we say that a vertex v; is less than a vertex vy ifi <
j. The directed circuits are generated as closed vertex strings at differ-
ent diagonal entries of the product matrix obtained by multiplying the
MAM of the given graph G with itself according to the modified rules of
multiplication.

IL. THE ALGORITHM AND ITS PROOF

We describe the algorithm in steps as below.

Step 1. The vertices of the given graph G are arbitrarily named as v,
v2, "', vy and the modified adjacency matrix |4;] of the graph G is
constructed.

Step 2: The MAM |Ay] is then multiplied by itself to generate the
matrix [Cyj| according to the following modified rules of matrix
multiplication.

i) The (i, j)th entry of the product matrix [Cy] is calculated, as usual,
by multiplying the ith row with the jth column of the matrix |4 ils
using the relation Cy = X; (4y; * k) + Ajx, where @ denotes product
operation. Evidently the entnes o(' the matrix |Cj;| are, in general, in
the sum of products form where the product of two vertices v; and vy is
defined to be their concatenation v;u;. During the formation of the
product terms, the entry belonging to the multiplicand row should pre-
cede that in the multiplier column, since such ordering in the concatena-
tion process is necessary for proper generation of the circuits. The ele-
ment 0 as an entry of the matrix |A;;| has the property that 0 + Py =
Py and QPg = 0, for any Py where Py stands for, in general, any sum of
products of vertices.

ii) An entry of the product matrix, once calculated, immediately re-
places the corresponding entry in the two matrices |4;;] which are be-
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1 b 2
Fig. 1. The graph G.

ing multiplied to form the product matrix before the next entry of the
product matrix is calculated. Evidently, in such a process, the order of
calculation plays a very significant role as the entry calculated last uses
entries calculated earlier. Here the product matrix is calculated starting
from the top row and from left to right along a row.

iii) To calculate the off diagonal entries of the product matrix, if a
vertex string is generated such that a particular vertex v, occurs twice in
the string, the vertex string is compressed by deleting the vertices oc-
curing between two v,’s and also one of the v,’s. This is done to elimi-
nate the presence of directed circuits in the off diagonal entries. If in
any entry of the product matrix, identical product terms are generated
more than once, only one is retained eliminating the duplicates.

Step 3: All the vertex strings (product terms) generated in the diago-
nal entries of the resulting product matrix are listed eliminating any
duplicates that may be present and this gives the list of all directed cir-
cuits of G.

We now state and prove two theorems to establigsh that the aforemen-
tioned algorithm actually generates all the directed circuits of the given
graph G.

Theorem 1: The diagonal entries Cy3, Ca2, - + , Cxg together of the
product matrix |Cj;] for k =1, 2,-- -, n contain atleast all the directed
circuits constltuteci’ of only the vertices less than or equal to vy.

Proof: The theorem is obviously true for k = 1, since if there is a
self-loop with the vertex vy, it is indicated by the presence of the entry
vy in the MAM [Ay] and the (1, 1) entry in the product matrix will
also contain v;, of course, along with other vertex strings. Let k = 2.
The number of possible directed circuits with only two vertices vy and
vy is one and that is represented by (2-1-2). The entry C5, is calcu-
lated by multiplying the second row and second column of modified
[A;] (since before calculation of C,3, C12 and Cz; were calculated
and they sequentially replaced 4,2 and 43, in [4;;] as and when calcu-
lated). The second row contains the information (1-2), i.c., whether
vertex vy can reach vertex v, and the second column contains the infor-
mation (2-1), i.e., whether vertex v, can reach vy. It should be empha-
sized that the concerned row and column contain other informations as
well, but we are concerned with the informations about vertices less
than or equal to vg. Thus C3; must contain the circuit (2-1-2) if it at
all exists in the graph G. Thus the theorem is proved for k = 2. Letk =
3. Before calculation of the entry Ci3, the entries Cyz, Cy3, Ca1, Ca3,
C3y, C3z of the product matrix will be generated (and will replace the
corresponding entries of |4;7)) and they will contain the information
about the possible mteroonnecnons of the vertices vy, v5, v3 as follows,
along with other informations which are omitted here, Cj; = (1-2);
Ci3 ~ (1-3) + (1-2-3); Cyy ~ (2-1); Ca3 > (2-3) + (2-1-3); C3;~
(3-1) + (3-2-1); C33 —~ (3-2) + (3-1-2). Hence C33 will contain the
informations as Ci3 — (3-1-3) + (3-2-3) + (3-1-2-3) + (3-2-1-3) +
other informations. Thus C33 along with Cy, contain all possible cir-
cuits only with the vertices less than or equal to v3, if at all they are
present in G. Hence the theorem is proved for & = 3. This reasoning can
be extended in a strajghtforward way for all other values of and let us
assume that the theorem is true for k =m. To prove it fork=m+1,
we note that the entries Cyy ;m+1 and ey 1, Cma1,25° s Cme1,m
of the product matrix will be computed before Cm+1,m+1, and they
will use the previously computed entries (with row and column specifi-
cations < m) of the matrix. Thus Cjy41,m+y Will necessarily contain
information about the circuits oontammg vm+1 and vertices less than
um+1 together with other possible informations. That is the diagonal
entries {Cu, 1<i<m+ 1} together contain information about circuits
with vertices less than or equal to v,, +;. Hence the theorem.

Theorem 2: The algorithm generates all the directed circuits of the
given graph.
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Proof: By Theorem 1, we get that for k = n, where n is the number
of vertices in graph G, the diagonal entries Cy1, C23, * * - , Cppy together
of the product matrix developed through the execution of the algo-
rithm must contain all possible circuits with the vertices of the graph
less than or equal to v,. Since there is no vertex in the graph greater
than vy, the theorem is proved.

Obviously the computational complexity of the proposed algorithm
is expected to be exponential in nature since in each of the entries of
the product matrix (in the form of sum of product terms) the length of
a product term will be 7 and number of such terms will be larger than n
in the worst case and each entry uses in its computation the previously
computed entries of the matrix.

We will now illustrate the algorithm by considering an example graph
G as shown in Fig. 1. The graph G has § vertices designated as 1, 2, 3,
4, 5 and seven edges designated asa, b, c,d, ¢, f, 8. The MAM [A4;;] of
the graph G is shown in the adjoining diagram. This matrix is multiplied
by itself according to the modified rules of Step 2. The final product
matrix lCii | is generated as shown. .

12345
1fo 2000
200 0340
[471=3{0 0 0 4 0
sloooos
sl12000
Collecting all the product terms in the diagonal entries of [Cii], we
get
[Cyl =
1 2 3 4 5
1[0 2 23 (24+234)  (245+2345) |
2{0 0 3 4 +34) (45 + 345)
3lo 0 0 4 5
4|51 (512+52) (5123 +523) (5124 +51234 5
+524 + 5234)
511 (12+2) (123+23)  (124+1234 (1245 + 12345
+24+234) 4245 +2345) |
the four directed circuits of G as {(12451), (123451), (2452), (23452)}

or in terms of the edges of the graph as {bega, bcedga, egf, cdgf‘}
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A Note on Sorting Sparse Matrices
F.L. ALVARADO

Abstract—The problem of sorting all the rows of a sparse matrix
according to increasing or decreasing column indices is considered. An
algorithm for doing the sort in order r operations (where 7is the number
of nonzeroes in the matrix) is given.
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CI Column index
F Value of the element
NE | Next element pointer

cegjele] ---

1B R

S BESER
Sa=5a

(2)

CALL RSORT (N,RP,CP,CI,NE)
CALL RSORT (N,CP,RP,CI,NE)

.

()

SUBROUTINE RSORT (N,H1,B2,CI,NE)
IMPLICIT INTEGER(A-2)
DIMENSION H1(1),H2(1),CI(1),NE(1l)
DO 18 I=],N
18 B2(I)=8
I=N
28 Pl=H1(I)
30 IF(P1.EQ.8) GO TO 46
P2=NE (P1)
J=CI(Pl)
CI(Pl)=I
NE(P1)=H2(J)
H2(J)=P1
Pl=P2
GO TO 34
40 I=I-1
IF(I.GT.8) GO TO 20
RETURN
END

©

Fig. 1. A Fortran algorithm for simultaneous radix sort of a space
matrix stored by row linked lists. (a) The data structure. (b) The
calling statements. Notice differences in parameter lists. (c) The
subroutine RSORT.

Sparse matrices arising in connection with electrical networks are
usually stored by means of row singly linked lists [1], [2]. There is
often a need for sorting these linked lists according to column indices.
This is frequently desirable for output purposes. Certain sparse matrix
algorithms also require that the row linked lists be sorted according
to increasing or decreasing column indices. Furthermore, the renum-
bering of rows and columns for sparsity preservation purposes [1]
often forces a resorting of the rows. It has generally been accepted that
an insertion sort is most desirable. Let 7; be the number of nonzeroes
in the ith row. Assume a random initial permutation of the ith row.
The expected number of comparisons req_zuued to sort the ith row by
insertion sort is known to be of order n° [3]. For small numbers,
the actual value is quite small, but it increases rapidly with 7;:

r |1|2|3|4ls|10|100]1000

comparisons ' 0 | 1 ' 2.67 l 4.92 l 7.39 l 29.6 | 2570 | 2.5% 10°

Let 7 be the number of nonzeroes in the sparse matrix, that is:

n
=3
i=1

A matrix can be said to be sparse if the number of nonzeroes is less
than n2. To be more specific, a class of matrices can be said to be
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