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Abstract In this work, we consider semiparametric estimation of quality
adjusted lifetime (QAL) distribution using Cox proportional hazards model
for the sojourn time in each health state. The regression coefficients are
estimated by maximizing the corresponding partial likelihood and the baseline
cumulative hazards are estimated by using the method of Breslow (Biometrics
30:89-99, 1974). The estimate of QAL distribution is obtained by using these
estimates in the theoretical expression of QAL distribution. The asymptotic
normality of the proposed estimator is established. The performance of the
proposed estimator is studied using Monte Carlo simulation. A real data exam-
ple of the Stanford Heart Transplant Program is used to illustrate the proposed
method. Extension to a general model is also discussed and illustrated with an
analysis of International Breast Cancer Study Group (IBCSG) Trial V data.
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1 Introduction

Quality adjusted lifetime is a composite measure, which incorporates both
quality and duration of life. This composite measure introduced by Goldhirsch
et al. (1989), is used as an end point in many clinical trials when a patient
passes through different health states, each of which is associated with a utility
coelficient ranging from zero to one. The utility coefficient corresponding to
a state reflects the quality of life in this state, which assumes the value 1 in
the perfectly healthy state while taking value O in the absorbing state death.
This leads to a utility function over time which takes the value of the utility
coefficient of the state occupied at that time. Then, quality adjusted lifetime
(QAL) is defined as the integration of the utility function over the survival
duration. The number of health state is usually finite. Then, the QAL reduces
to a weighted sum of the time spent in each health state.

There have been a number of works developing methods for estimating
either mean QAL (Hwang et al. 1996; Huang and Louis 1999; Zhao and
Tsiatis 2000) or the distribution of QAL (Korn 1993; Zhao and Tsiatis 1997,
1999; Huang and Louis 1998; van der Laan and Hubbard 1999; Pradhan et al.
2010; Pradhan and Dewanji 2009a, b, 2010). In contrast, regression analysis of
QAL data has not received much attention. Cole et al. (1993) have considered
a Cox-type parametric regression model to estimate mean QAL using the
bootstrap method to obtain the variance estimate. Wang and Zhao (2007)
have considered the problem of estimating the mean QAL in the presence
of covariates. They have considered a regression model for the mean QAL
and used the idea of inverse probability weighting to construct a simple
weighted estimating equation for the regression parameters of the model.
These parameter estimates are then used to estimate the mean QAL. See also
Tunes-da-Silva et al. (2009) for a similar regression analysis to estimate mean
QAL for semi-Markov multistate non-progressive processes. Pradhan et al.
(2010) have considered parametric regression analysis to estimate the QAL
distribution for a given covariate value. In this work, we propose a semi-
parametric approach to estimate the QAL distribution using proportional
hazards model under semi-Markov assumption. Although we develop the
methodology for a simple three-state illness—death model, this can be gen-
eralized to other progressive illness—death models. In addition to estimating
the QAL distributions, an additional objective is to assess the covariate
effects.

In our approach, we write down the theoretical expression for the QAL
distribution in terms of the sojourn time distributions in cach health state.
Hazard rates for these sojourn times are modeled using Cox’s proportional
hazards regression (Cox 1972). The semi-Markov assumption leading to in-
dependence between different sojourn times allows construction of partial
likelihood for each transition type. This gives maximum partial likelihood esti-
mates of the regression parameters and, then, the baseline cumulative hazards
are estimated using the method of Breslow (1974). Therefore, as in Pradhan
et al. (2010) and Pradhan and Dewanji (2010), the baseline sojourn time
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distributions in different states and the regression parameters are estimated
by using the standard techniques of survival analysis. These estimates are then
substituted in the theoretical expression for the QAL distribution, for a given
covariate value, to obtain the corresponding estimate. By construction, this
method gives a monotonic estimate of the QAL distribution. Since this method
explicitly uses the information on the interrelationship between the different
health states, the corresponding estimates are efficient, but less robust against
misspecification of such information.

The simple three-state illness—death model is discussed in Section 2. Esti-
mation of the regression parameters and the QAL distribution for a given
covariate value is considered in Section 3 and the asymptotic properties are
also discussed. A simulation study is carried out in Section 4. We illustrate the
methodology by means of an example of heart transplant data in Section 5.
Extension to more general model is considered in Section 6 and the method is
illustrated by means of an example of IBCSG Trial V data. Section 7 ends with
some concluding remarks.

2 The model

In the simple three-state illness—death model, as shown in Fig. 1, one starts in
a normal healthy state 0 from which the possible transitions are to the illness
state 1 followed by transition to death (state 2), the absorbing state, or directly
from state 0 to state 2. Let T be the sojourn time in state 0, that is the time
to illness (transition to state 1) or death without illness (transition to state 2),
whichever occurs first. Also, let §; be the failure type indicator, which takes the
values 1 and 2 for illness and death without illness, respectively. Also, let 77,
denote the sojourn time in state 1 before moving to state 2. Then, the QAL is
defined by

0=

woly +wi Ty ifé=1

where wy and w; are the utility coefficients in state 0 and 1, respectively.

Fig.1 Three-state

illness—death model e 7\‘0 1 () G

A1a(.)
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Let A5;(:; -) be the rate of the & — jtransition. We assume that the transition
rates depend only on the sojourn time in the current state (a semi-Markov
model) which implies that 7, and 7, are independent. The dependence of the
transition rates on the covariates are specified via Cox’s proportional hazards
regression model (Cox 1972), as given by

Mjts Zi) = dpp O exp (BT Zyz)  for hj=01,02,12,andi=1,....n, (1)

where App(f) is the arbitrary baseline rate for the i — j transition, g =
(B1, ..., Bp) is the vector of regression coefficients and Z; is the vector of
state-specific covariates for individual i obtained from the basic covariates
Z;. It may be noted that B contains all the parameters corresponding to
different transitions, therefore, not depending on the specific transition 4j (see
Andersen et al. 1993, p. 478). In the heart transplant data (see Section 4),
for example, let Z; = (Zi(l), V4 i<2>’ Zi@))T, where Z i(l) = an indicator for pre-
vious history of surgery, Zi(z) = age at acceptance into the program and
7 = mismatch score. Note that the mismatch score is available after
heart transplantation. Hence, it has possible effect on Ty, only. The state-
specific covariate vector Zy; for individual 7 is, therefore, formed to be
a 7-variate vector by including the extra components equal to zero . We
have Zoy = (Z", 27,0,0,0,0,0), Zo = (0,0, Z”, 22, 0,0,0) and Z;» =
(0,0,0,0, 2%, 22 7z,

The survival function for a given covariate Zy, with state-specific covariate
Zy;), is given by (Pradhan and Dewanji 2010)

So(q; Zo) = S (i, Zo) + Py (i, Zo) , @
Wy wo

where So(:L; Zo) = exp[ — Aoi (£ Zo) — Aoa(L; Zo)), the survival function

of Ty for given Zo, and Pu(wio; Zo) = fOQ/wO Su(qiw—ul)ox; Zo)So(x; Zo)dAm (x; Zo)

with Apj(x; Zy) = foxkhj(u; Zy)du, for hj=01, 02 and 12, and Si2(, Zo) =

expl—A12(; Zy)] being the survival function of T}, for given Z.

It may be noted that the semi-Markov model does not fit readily into the
multiplicative intensity framework because of its renewal nature (see Voelkel
and Crowley 1984; Shu et al. 2007). This can be dealt with by introducing time-
shifted multivariate counting process over a fixed interval, say [0, 7], given by

N@) = {Npi(x), hj=01,02,12; i =1,....n,x € [0, 7]},

where Nj;(x) counts the number of 4 — j transitions for individual i whose
transition time from state £ to state jis less than or equal to x, for ~Aj = 01, 02
and 12. Note that such formulated counting process Nj;(x) have the intensity
processes oy, (x; Z;) in the form of a multiplicative intensity model given by

ani(X; £y) = Ypi(X)hnj(x; Zy), 3)
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with Ay;(x; Z;) given by Eq. 1, where Y}, (x) is the indicator for individual i being
at risk just before sojourn time x in the state /1, for A = 0, 1. That is, Y, (x) = 1
if the sojourn time of the ith individual in state £ is larger than or equal to
x, and 0 otherwise. Under independent censoring, Ny;(x) can be uniquely
decomposed as

Nis0) = [ Yiaw exp (873 b )+ My ),
0
where Mjy;(x) are orthogonal local square-integrable martingales with pre-

dictable variation process given by (M, (x)) = [y Y ) exp (B Zpji) njo(w)du.
For convenience, we use the following notation (Shu et al. 2007):

(1)
DB, x)
S (8.x) = ZY;”(x)Zhﬁ exp (8" Zyy) and - Eij(B. x) = Séf?w 0’
)8,

for m=0,1,2 and hj= 01,02, 12, where for a column vector a, a®’ =1,

a®! = g and ¢®? = aa?.

3 Estimation and asymptotic theory

In this section, we consider the estimation of g, the cumulative baseline
hazards and the survival function Sg(-, Zy). Let C be the censoring ran-
dom variable. Define X, = min(7y, C) and let 8, = 0 indicate censoring
(i.e., Ty > C) When §,=1, let X{ =min(Ty+ 715, C) and 81 =1(Ty+T1» < C).
Define X; = X{ — Xo, when & = 1. It is clear that if 8 = 0 or 2, then Xj
(and hence X)) and 8, are not defined. For n individuals, we have the data
set {(Xol', SOi’ X1, 81;', Z01i, Z02i, Z12i)§ = 1, wn n}, where X1 = 51i=—1, when-
ever 8y = 0 or 2, to represent their non-existence. The partial likelihood (see
Andersen et al. 1993, pp. 481-482) to estimate g is given by

Nhji
L nn(exp(ﬁ Zh]») ’

S8, xum)

where noli = I(Soj = 1), no2i = I(Soj = 2) and N2 = I(Sli = 1) The Correspond—
ing information matrix is given by

528, x)

) = Z / {@) —Ehj<ﬁ,x>®2}thj<x>.

Let 8 be the estimate of 8 obtained by maximizing L(ﬁ).A Then Ehe cumulative
hazards Apj(t, Zo) are estimated as Ay;(t, Zo) = App(t, B) exp(BT Zyjp), where
Ay, ot B) is the Breslow (1974) estimator of Ay;(t), for hj = 01, 02 and 12. Also
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the survival functions for given Z,, S, (t; Zy) and S1»(t; Zo) for Ty and T1o,
respectively, are estimated by

So (t; Zo) = 1_[ {1 — dAoy (u; o) — dAoa(u; Zo)} , and €))

u<t

Sia(t; 7o) = 1_[ {1 — dAp (u; Zo)} ; &)

u<t

Then, using Eq. 2, an estimate of Sp(g; Zo) is given by

SQ(CF Zy) =5 (i; Zo) + Py, (i; Zo)
wo w

% — wyx « A
+ / S (q 0 : Zo) So(x; Zo)d Ao (x; Zo). (6)
0

w1

Note that the two product-limit estimators So (u; Zp) and 81z (u; Zp) are approx-
imately equal to the corresponding ones derived from the Breslow estimators,
given by exp [—f\m(u; 7o) — Ao (u; Zo)] and exp [—f\u(u; Zo)], respectively.
For the derivation of asymptotic results, the latter estimators of So(u; Zo)
and S12(u; Zy) are considered for some algebraic convenience. Let 6 € [0, 7).
Following Shu et al. (2007) and under the regularity conditions 1-3 therein,

we have the following theorems. The proofs of the theorems are given in
the Appendix.

Theorem 1 The random vector Ja(B — B) converges weakly to a multivariate
normal with mean zero and a covariance matrix which can be consistently
estimated by nT(B)~!.

Theorem 2 The process /n [So(~, 7o) — So(-, Zo)] converges weakly on [0, 6]

to a zero-mean Gaussian process whose variance at q/wy can be estimated
uniformly consistently by

GO (i; Zo) By (i 3) nIB) QO (1,3)
wy w) wo
= 2/w_qo dAow(u, B)
V/ —
{ ( )} fowd ] [ et

. 2 (w5 dA , B
)} eXP(ﬁTzozo)}/o % @)
02 (B,

M)

S|>Q

M)

S|>Q
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where
QO (i’ 3) =—8 (i, Z0)|: W_O{Zmo — Eo1 (B, w)} exp(BT Zyyo)dAgio(u, B)
wy wo 0
+ /0 Lo — Evs (B, wlexp(B Zuno)dAoao B)} ;

Theorem 3 The process ﬁ[ﬁ12(~, 7o) — Pio(., Zo)] converges weakly on [0, 0]
to a zero-mean Gaussian process whose variance at q/wy can be estimated

uniformly consistently by A (wio; Zo)

— W (i’ 3)Tn1(3)1§<12> (i’ 3)
wo w
+ n/% |:So(u; Z)S1 (q wou’ Zo)
0

x exp(BT Zoi0)dAoio(x, .3)” exp TZ010)}

/ {So(x ZO)SIZ( 0x§ ZO)

2 dAoo(u, B)
Sor (B, w)

q q 2
wy wy A A — X ~ ~ ~
+ fl/ {/ So(x; Zo)S12 (q wwo ;Zo) eXP(ﬁTZmo)dAow(X,ﬁ)}
0 u 1

o) et

q Ui

+ n/W {/ v So(x; Zo)Su(
0 0

«fown () e ®

q — wWoX
2

2
Zo) exp(BT Zo10)d Aoio (x, f})}

g (w—o ) / Sou; Zo)S12( Ou;Zo)

X |:{Z010 - E01(f§’u)} = /0” {Z010 = E01(f§,x)}

x exp(BT Zaoro)dAoro(x, B)
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— /Ou {Zozo — En(8, x)} exp (,3TZ020) dAoy(x, B)

= /qulou {Zuo — En(B. x)} exp (3TZ120) dA1n(x, B):|
X exp (3TZ010) dAoro (u 3) .

Theorem 4 /n [S‘Q(q; Zy) — So(g; Zo)] converges weakly to a mean zero

Gaussian process in [0, 0,,], where 0,, < twy is a constant, with a variance at
g which can be estimated uniformly consistently by

V(g o) = ¢ (i; Zo) + U2 (i; Zo)
Wy Wy

+200V{fSo (— Zo) VP (— Zo)} ©)

where

cov {\/_So (i ) \/ﬁf’u (i, Zo)}
w Wo
Wy W
/ow_ {So(u 7,)S1, ( 0u|Zo)—/W_0 So(t; Z)S15 (q —wtluox; Zo)

. . | dAoio(u, B
x exp(BT Zoi0)d Aoy (x, .3)} B8molth £

SG1 (B, w)
+ nS, (— Zo) {exp (3TZ020)}2

X /% {/% So(x; Z) S5 (q —wtluox; Zo) exp(B Zoo)dAoio(x, 3)}
0 u

dAgo(u, B)
SS B

X

(10)

4 Simulation study

In this section we investigate finite sample properties of the proposed semi-
parametric estimator of the QAL distribution by simulation. In particular,
we study the bias and precision of the proposed estimator, given by Eq. 6,
for a number of QAL values. In our simulation study, we consider only one
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covariate effect, say, Z. It is assumed that the sojourn times 7, Ty, and 77,
are independent. The hazard rates of the sojourn times are modelled by

it Zi) = rnjexp (BT Zyj), forhj=01,02,12andi=1,...,n,

where B= (o1, Bu, P12), Lo1i=(Z;, 0,0), Zp;= (0, Z;,0) and Z12,=(0, 0, Z;).

The censoring variable C is assumed to be independent of sojourn time
variables and follow exponential distribution with parameter 1.. We consider
two sets of parameter values for the simulation study. In parameter set 1,
we take Apr= 0.04, Aoy = 0.05, A1p = 0.08, By = 1.5, By = 0.5, B1» = 0.8 and
Ao = 0.035. Here we generate covariate Z from N(0, 1). The survival prob-
abilities Sp(g; Zo) are computed for Zy = 0.5 by taking wo =1 and w; =
0.5 for different g-values. In parameter set 2, we choose Ao = 0.04, Apy =
0.05, x12 = 0.06, Ao = 0.03, Boy = 1, Boo = 0, B12 = 0.5. We generate covariate
Z from a Bernoulli distribution with probability of success p = 0.5. The
survival probabilities Sp(q; Zo) are computed for Z, =1 by taking wo =1
and w; = 0.6 for different g-values. The two sets of parameters depict different
scenarios with respect to covariates, regression coefficients and censoring per-
centage. The censoring percentages corresponding to two sets are 56 and 33,
respectively.

For each set of simulated data, we generate n observations of the form as
in the beginning of Section 3 and calculate the proposed semi-parametric esti-
mate of the QAL distribution using Eq. 6 for some ¢ values. The standard error
is calculated using Eq. 9. The simulation is repeated 1,000 times for sample size
n =100 and 200. Based on 1,000 estimates of Sp(g; Zo), we compute average
bias and sample standard error (SSE). The standard errors for the estimated
survival probabilities, obtained by using Eq. 9 for the proposed estimator, are
averaged over the 1,000 simulations. These are similar to the corresponding
SSE values and, hence, not reported. The simulation results are reported in
Table 1. As expected, both bias and standard error decrease with sample size.

Table 1 The average bias (AB) and sample standard error (SSE) in parentheses of the regression
coefficients and survival probabilities for two sets of parameter values with sample sizes n = 100
and 200

Parameter n Regression coefficients Survival probability

set B AB (SSE) q 20 So(q; Zo)  AB(SSE)

1 100 o1 =15 0.038 (0.263) 1.5 05 0895 0.002 (0.032)
200 0.011 (0.163) 0.000 (0.022)
100 o2 =05 0.007 (0.216) 7 0.508 0.004 (0.060)
200 —0.003 (0.158) 0.003 (0.042)
100 p12 =08 0.031 (0299) 16 0.159 0.013 (0.050)
200 0.013 (0.193) 0.008 (0.036)

2 100 o1 =1 0.024 (0.324) 1.7 1 0.904 0.000 (0.030)
200 0.022 (0.232) 0.000 (0.021)
100 B2 =0 —0.013 (0.371) 8.2 0.509 0.003 (0.062)
200 0.008 (0.262) 0.001 (0.046)
100 p12 =05 0.021 (0.413) 19 0.145 0.009 (0.048)

200 0.011 (0.284) 0.004 (0.036)
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The asymptotic normality of the proposed estimators is checked by QQ plot
based on 1,000 estimates. The QQ plots, not presented here, gives evidence in
favour of asymptotic normality.

5 Analysis of heart transplant data

We use the Stanford Heart Transplant data (Crowley and Hu 1977) to illustrate
the proposed estimate of QAL distribution with covariate effect. Patients have
been admitted to the heart transplant program, from September 1967 to March
1974. Here we are interested in the quality adjusted life of heart patients.
There have been 103 patients altogether. Out of the 103 patients, 69 patients
have received heart transplantation, 30 patients have died before getting a
suitable heart transplantation and four patients have been lost to follow up
before transplantation. Out of the 69 patients with heart transplantation, 24
have been alive when last seen and the remaining 45 have been dead. For each
patient, the date of acceptance into the Stanford program and the date seen
last are available along with the date of transplantation, if carried out. We view
this as an illness—death model by equating the event of heart transplantation
with the incidence of illness. Here Tj is the time, since acceptance into the
program, of heart transplantation or death before transplantation, whichever is
earlier, and T7; is the time till death since heart transplantation. As mentioned
in Section 2, the covariates we consider are indicator for previous history
of surgery (ZV), age at acceptance (Z @) and mismatch score (Z®). The
mismatch score is available after heart transplantation. So Z® may have
effect on Ty, only. Let 8 = (Boir, Boiz, Bozt, Pozz, Piz1s Biaz, Pras) be the vector
of regression coefficients. Out of 103 patients, all the covariate values are
available for 99 patients. So the analysis is based on 99 patients. The estimates
of the regression coefficients along with standard errors and p-values are
presented in Table 2. From Table 2, it is clear that only age at acceptance (Z @)
has significant effect on the hazards of 01 and 12 transitions.

One can easily estimate the survival probabilities for QAL using Eq. 6 and
the estimates given in Table 2 for a particular value of Z. The standard error
is calculated by using Eq. 9. We take the coefficient wy for the sojourn time
Ty as 0.3 and, assuming that the heart transplantation improves the quality of

Table 2 Estimates of the
regression coefficients for the
heart transplant data

Transition  Parameters  Estimate  Standard  p-value
error

01 Bon1 0.1333 0.3224 0.680
Bo12 0.0313 0.0142 0.028
02 Bo21 —-0.4784 0.6137 0.440
Boz 0.0149 0.0183 0.410
12 B121 —0.7620 0.4858 0.120
P12z 0.0520 0.0225 0.021

P23 0.5163 0.2957 0.081
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life to some extent, take the coefficient w; for the sojourn time 77, as 0.8, as
in Pradhan et al. (2010). For example, with Z® =0, Z@ =45and Z® = 1.5,
the survival probability Sp(g) at g = 10 is estimated as 0.7819 with standard
error 0.0333.

In order to study the effect of covariate on the QAL distribution, we
compare the estimated survival probabilities for different covariate values
by graphical method. To show the effect of previous surgery, we plot the
estimated survival probabilities for Z( = 0 and ZV = 1, keeping Z® = 45
and Z® = 1.5 as fixed (see Fig. 2a). To study the effect of age, we plot the
estimated survival probabilities for Z® = 30 and Z® = 45, keeping Z1 =0
and Z®™ = 1.5 as fixed (see Fig. 2b). Similarly, to study the effect of mis-
match score, we plot the estimated survival probabilities for Z® = 0.75 and
Z® =1.5keeping ZV =0and Z® = 45 as fixed (see Fig. 2¢).

Although ZV has no effect on the hazards of different transitions, the
estimated survival curves indicate some difference. The age at acceptance
has significant effect on hazards of different transitions and the two QAL

(@) Effect of previous surgery (b) Effect of age
1 1
gy 7O_y5 7O g 7@_30 7O
5.8 ZH=1, ZH=43, Z7=1.5 0.9 77=0, 2*7=30, Z"’=15
> 084 e 7020, 72245, 70215 5084 - ZW=0, 7P=45, 79=1.5
= 07 {4 £ 07
@ ©
2 06 a 06
3 °
a 05 a 05
S 04 T 04
=
2 03 2 03
® 02 ? 02
0.1 0.1
0 0
0 100 200 300 400 500 600 700 800 900 0 100 200 300 400 500 600 700 800 900
q q

(¢) Effect of Mismatch score

———7W=1, 7P=45, 79=0.75

................... 7MW 7P=45 7®=15

Survival Probability
S oo oco0oo0o0
N Wk OO N ®©® O© a

<o
o =

0 100 200 300 400 500 600 700 800 900
q

Fig. 2 Effect of covariates on the QAL distribution for the heart transplant data
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distributions corresponding to age 30 and 45 also show the difference. The
mismatch score has no significant effect on the hazard and the two QAL
distributions corresponding to mismatch score 0.75 and 1.50 seem to have
no difference. In order to compare two survival curves corresponding to two
different values of a particular covariate, we have looked at 95% confidence
intervals for the corresponding survival probabilities at several g values. For
all the three comparisons, as shown in Fig. 2, all the intervals are found to be
overlapping. This indicates that there is no significant difference on the QAL
distribution for the choices of covariate values, even though age at acceptance
has significant effect on the hazards of 01 and 12 transitions. A more objective
test in this regard is necessary.

6 Extension to progressive illness—death model

In this section, we consider estimation of QAL distribution with covariate
effect for the progressive illness—death model as described in Fig. 3. Let Th 541
denote the conceptual sojourn time in state 4 before moving to the illness state
h+ 1 and T}, x4+ denote the same before moving directly to the absorbing state
k+1,for h=0,1,...,k—1. Also, let Ty 11 denote the sojourn time in the
penultimate state &k before moving to the next state k£ + 1. Then, the QAL is
m—1
givenby Q = > w,Thpe1 + win T xs1, When transition to death k + 1 occurs
h=0
from the state m, form =1,..., k. For m=0, Q = w1, r+1. Note that, with
m(> 1) fixed, we have Ty 11 < Thpp, forh=0,1,....m—1,and Ty mi1 >
Tinier1 (except for m = k). Withm =0, To1 > Tog11.

We estimate the QAL distribution under the assumption that the different
sojourn times are independently distributed. It may be noted that the transition
from state 4 to either state A + 1 or tostate k+ 1, forh=0,1,...,k— 1, con-
stitutes a competing risks framework with 73 5.1 and Tj 41 denoting the two
corresponding conceptual sojourn times. Let Ay, 511 (xp; Z) and Ay g11(xp; Z) be

@ 1 Mt 1) Me k()

Mg ()
Bagaal) k+1
Mer, k()

Aoge()

A 4

\ 4

Fig. 3 Progressive illness—death model
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the cause specific hazards for the two possible transitions to state A+ 1 or
k + 1, respectively, at time x;, for an individual with covariate vector Z. Note
that, for A =k, T} ;1 and T} 4 are the same random variable representing
the actual sojourn time in state k& before death with ordinary hazard rate
Ak g1 (Xg; Z) at time xg. The distribution of Q, for the given covariate Z, is
then given by

k
FRqZo)=PQ<q) =) Py, (11
m=0
where the expressions for Py, P, and Py are as follows (see Pradhan and
Dewanji 2009a):

q

Py = /wo Aoger1 (6 Zo)e*(l\m(x;Zo)+Ao,k+1(x;Zo))dx
f ;

= /wo So(x; Zo)d Ao gy1 (x; Zo),
0

-1
g—wgXg Q*Zﬁo wiki

4q
P, :/ 0/ : / " S Ccms o)A N k1 (X o)
0 Jo 0

X Smo1Xm—1; Lo)AdAm—1, m(Xm—1; Lo)

x So(xo0: Zo)dAo1 (xo; Zo),

form=1,...,k—1,and

k-2
a 4—wpXg 4> g Wi k—1
wo w1 g1 q— Zizo Wi X;
pom [F [ [T (1T,
0 0 0 Wi

X Sk (k—15 Zo)d A1 x (Xk—15 Zo)

x So(xo0; Zo)dAo1 (xo; Zo),

where S;(x; Zo)=exp [— A1 (6 Zo)— Anppr (% Zo) |, for h=0,1,..., k—1,
X
A (x) = / A jydu and Fy g1 (-) is the distribution function of 7%z 1.
0
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6.1 Estimation

The observations for progressive illness—death model are described as follows.
1. Forh=0,1,...,k, write

0, if censoring takes place in state A

h+1, if transition takes place from A to h + 1
8p = (thatis, Thps1 < Thirr. C— Y00 Trir)

k+ 1, if transition takes place fromh to k + 1
(thatis, T 1 < Tt C — Yreg Tran)-

Note that for h = 0, Z;:Ol 1111 is treated to be 0.
2. Write XQ = min(TOl, TO,k+1’ C)
3. Forh=1,...,k—1,if 8,_1 = h,write

Bt
X = min (Th,hﬂ, Thpt1, C— E Tl,l+1> .
=0

and, if 8,1 = k, write

=0

k-1
X =min (Tk,k+1, G — Z Tz,z+1> .

4. Forh=1,...,k whenever 8;,_; = 0or k + 1, the hth state and the subse-
quent states A+ 1, ..., k are not attained. We then write X; = § = —1 for
[=hh+1,.. k.

For n individuals, the data set is then given by
{0 s Zad s =0, Ly o ap Bl d = 1 st}
where (xz;, 35;) denotes the observed value of (X}, 8,) for the ith individual and

i |Gt D (kD) forh=0.1,... k~1
T=1lhh+1) for h = k.

Define npj= 18, = pif j=h+1ork+1,forh=0,1,.... k—1and ngx =
1(6x = k+ 1). Also, np; denotes the value of ny; for the ith individual. The
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estimate of regression parameters 8 is obtained by maximizing the partial
likelihood (see Andersen et al. 1993, pp. 481-482)

Nhiji
Fisae nn(exp(ﬁ Zh]») ’

S\ SO, X

where S;S.) (B, x), for different Aj, are defined at the end of Section 2.
Then, the Breslow (1974) estimator for App () = fot Apjpo(u) 18 given by

2 2 /169
Api I, = —,\dN i A
h]o( ,3) A S;S) (‘3 ’ x) hj (-x)

where Nhj(l‘)zzz-zzl I( Xy <t, 8pi= ]'), for j=h+1, k+1, Yh(l‘)zzzzzl I( Xy >1)
and J, (1) = I(Yr@) > 0), for h=0,1, ..., k. Then, Si(t; Zy) and Fix+1(t; Zo)
are estimated by

$ut:20) = [T{1 - dhnini@ Zo) — dhnen s 200}, (12)

u<t

forh=0,1,...,k— 1, and

Frpnt Zo) =1— l_[ {1 — dAg W Zo)} 3 (13)

u<t

respectively. Then, using Eq. 11, an estimate of Fg) (g; Zy) is obtained by
substituting S,(-)’s, Appt1()’S, Apk+1(-)’s and Fy x4+1(-) by the corresponding
estimates.

Note that F g) (q; Zy) can be written as

a
P @ 20 = [ Sun ZodAos 6 2
0

=4

4 / "D (g — wove: Zo)So(0d Ao (x; Zo),
0

where Q" is defined in the same way as () but starting {from state 1 instead of
state 0. The corresponding survival function given by

S(k) (q: Zo) = So ( Zo) / S(k V(g — wox; Zo) Sy (x; Zo)d Ao (x; Zo),

having the similar form as in Eq. 2 with S(é‘,f 1>(~) in place of S12(-). Hence,
following the proofs of Theorems 2-4 and using method of induction, one

can prove weak convergence of /n [Sg) (q; o) — Sg) (q; Zo)] to a mean zero
Gaussian process with a covariance function that can be estimated, where
Sg) (q; Zy) denotes the estimate of Sg) (q; Z), as described above.
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6.2 Analysis of IBCSG data

We illustrate our methodology for the progressive illness—death model using
data from International Breast Cancer Study Group (IBCSG) Trial V in
which 1,229 patients have been randomized to receive either short duration
chemotherapy (one month) or long duration chemotherapy (six or seven
months) with 413 and 816 patients, respectively. This randomized clinical
trial compares two adjuvant chemotherapy schedules for node-positive breast
cancer. For each patient, the observation consists of time till (1) the end of
treatment toxicity (TOX), (2) relapse (disease-free survival time) (DFS), and
(3) death from any cause (overall survival) (OS) along with censoring indicator
and covariates. There are 3 health states, namely, (1) toxic side effect of
chemotherapy, (2) no symptoms of disease and toxicity of treatments and (3)
disease relapsed. The sojourn times in these health states are denoted by TOX
(Toxicity period), TWiST (Time without symptoms of disease and toxicity of
treatment) = DFS — TOX and REL (Relapsed) = OS — DEFS, respectively.
In our notation, 7y; = TOX, Ty, = TWiST and 753 = REL, and they are
measured in months. Quality adjusted lifetime (QAL) is then defined by

Q =wy x Ty +wy x Ty + wy x T,

where w; is the utility coefficient corresponding to the ith health state,
i=0,1,2.

Note that there is no direct death from health states 0 and 1; therefore, the
appropriate model for IBCSG data is a special case of the progressive illness—
death model of Fig. 3. We consider five covariates recorded from each patient
upon enrollment in the clinical trial as given below.

7Y treatment group (0: short duration and 1: long duration),
7@ agein years at the time of enrollment,

Z®  menopausal status (0: pre- and 1: post-),

Z®  tumor size, and

7™ nodal group (0: 1 to 3 nodes and 1: 4 or more nodes).

The state-specific covariate vectors are
Zy = (2, Z29, 29, 29, 29 .0,0,0,0,0,0,0,0,0,0).
Zyy = (0,0,0,0,0,Zz9, z9, W, z¥W 7D 0,0,0,0,0.
Z» = (0,0,0,0,0,0,0,0,0,0,Z1, Zz®, 23, z® ZOY.
The state-specific hazard rate is modeled as
Mt ) = (D exp (BT Zy;) . for hj = 01, 12, 23,

where B8 = (Boi1, Poi2, Boias Pora» Pois, Pra1, B2z, P12z, Pizas Pios, P31, Baaos Posz,
Bosa, Boss) is the vector of regression coefficients. Then, from Eq. 11, the
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Table 3 Estimates of the

' - Transition Parameters Estimate  Standard p-value
regression coefficients for the

€101

IBCSG data
01 Bor1 —2.7599 0.1043 0.000
Bo12 —0.0039 0.0049 0.440
Bo13 0.0371 0.0937 0.690
Boia —0.0009 0.0018 0.620
Bois 0.0739 0.0601 0.220
12 B121 —-0.4776 0.0797 0.000
Prz —0.0281 0.0069 0.000
P23 0.4281 0.1297 0.001
BProa 0.0066 0.0022 0.003
Bros 0.8523 0.0810 0.000
23 B231 0.3071 0.0929 0.001
P32 —0.0005 0.0079 0.950
B33 —0.1725 0.1535 0.260
B3 0.0040 0.0026 0.130
Ba3s 0.2099 0.0942 0.026

distribution function of Q for given covariate Z, is given by (see also Pradhan
and Dewanji 2009a)

4—woXo

q
o w — WpXp — W11 X
Folq: Zo))Z/ 0/ ' Fp (—q Oul = 1;Zo) S1(x1; Zoyd Ao (%15 Zo)
o Jo

x So(x0; Zo)d Ao (x0; Zo), (14)

where So (15 Zo) =exp{—Ao1(t; Zo)}, S1(t; Zo) =exp{—A1n(t; Zo)} and I3 (-5 Zy))
is the distribution function of 7.

Out of 1,229 patients, all the covariate values are available for 1,215 patients.
So this analysis is based on 1,215 patients. The estimates of the regression
coefficients along with standard errors and p-values are presented in Table 3.

(a) Z0=1, 22=45,73=0, 2"=35, 20=1 (b) 70=1, 7®=50, 79=1, z¥=35, 78=0
—————— 7W=0, 7@=45 7®=0, 79=35, 761 mem-m- 79, 7@=50, 7P=1, 7W=35 7O=0
1 1
0.9 0.9
£ 08 Z 08
s o7 g 07
8 06 3 06
o 05 o 05
S 04 g 04
2 2
g 03 £ 03
@ 02 2 02
0.1 0.1
0 0
0 20 40 60 80 100 120 140 160 0 20 40 60 80 100 120 140 160
q q
Fig. 4 Effect of covariates on the QAL distribution for the IBCSG data
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From the p-values in Table 3, it is clear that the treatment group (Z™) has
significant decreasing effect on the hazards of TOX and TWiST and, increasing
effect on the hazard of REL. Age (Z ), menopausal status (Z®) and tumor
size (Z¥) have significant effect only on the hazard of TWiST. Nodal group
(Z®) has significant effect on both TWiST and REL.

Next, we estimate the survival function for QAL using Eq. 14 and the
estimates in Table 3 for a given value of Z. Since the algebraic expression for
the standard error of this estimate is very complicated and difficult to obtain, it
is computed by using a bootstrap method with 500 bootstrap samples, each of
size 1,215 drawn with replacement. The utility coefficients are taken as wy =
0.5, wy = 1 and w, = 0.5. The survival probability for Z, = (1, 50, 0, 35, 1) at
g = 10 is estimated as 0.9836 with standard error 0.0030. Next we study the
effect of treatment (ZV) on the QAL distribution by graphical method, as
in Section 5. We consider two different combinations of other four covariates
reflecting two different scenarios. For the first, we plot the estimated survival
probabilities for Z(V =0and Z" = 1, keeping Z® =45, 2@ =0, Z® =35
and Z® =1 as fixed (see Fig. 4a). In the second, we plot the same keeping
Z® =50, Z® =1, Z® =35 and Z® =0 as fixed (see Fig. 4b). The two
survival curves in both the scenarios seem to be close to each other.

7 Concluding remarks

In this work, we have proposed a semi-parametric method for estimating QAL
distribution in a three-state illness—death model and a progressive illness—
death model. The estimate is easy to obtain and, by construction, monotonic.
The closed form expression for the distribution of QAL is available, when the
number of states is not too large. Otherwise, this expression involves multiple
integration which needs to be evaluated by numerical method. This, however,
needs to be done only once when the distribution of QAL is to be estimated
by substituting the different sojourn time distributions by the corresponding
estimates. Variance estimate has been obtained for three-state model. It is
difficult to write the variance expression for the general model in closed
form. One can alternatively use some resampling technique (e.g., bootstrap)
to estimate the variance of survival estimates. This estimation procedure can
be extended to some general models like, for example, the competing illness—
death model of Pradhan and Dewanji (2009b).

One can, in principle, use a Markov model in which the different baseline
transition rates depend on the time since the beginning instead of the time
spent in the current state. This represents a complicated structure of depen-
dence between the different sojourn times. This, however, readily fits into the
multiplicative intensity framework. Therefore, the results of Andersen et al.
(1993, pp. 481-482) are readily applicable for the estimation of the regres-
sion parameters, the baseline cumulative hazards, and, eventually, the QAL
distribution. The asymptotic results also follow from those of Andersen et al.
(1993, Section VIL.2) following similar techniques. In a particular dependence
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structure, a transition rate may depend on the previous sojourn time(s), say,
through a proportional hazards type modelling. The estimation through partial
likelihood can be carried out in a similar manner.

Acknowledgements The authors thank the International Breast Cancer Study Group for pro-
viding the data used in Section 6. The authors would also like to thank an anonymous referee for
helpful comments.

Appendix

Let us assume the regularity conditions 1-3 of Shu et al. (2007). Theorem 1 is
Lemma 1(ii) of their work.

Proof of Theorem 2 Using Lemmas 1 and 2 of Shu et al. (2007),

afs (&0) -5 (82

=n 23 W@+ W@+ WY@ +op0. (15)
i=1

where

T o
Wi (@) = Q¥ (wio ﬁ) Q1) /0 (Znji — Enii(B, )} d My (@),
hj
g (i’ .3) =—5 (i; Zo) |:/%{Z010 —eo1 (B, widAo (u; Zo)
Wy Wy 0

+ /Ow_o{Zozo —en (B, w}dAo(u; Zo)i| .

w5 Jo(u)d Moy (1)

W) = —nS (i; Z )ex ry. /
2 (@) 0\ 2 L0 p (8" Zowo) | TG, w

w5 Jo(u)d Moy (1)

W(q) = —nS, (L. 7, 7, /

3 (@) nSy v Lo exp (B Zo) | SO, w
Note that, for each g, the right hand side of Eq. 15 is essentially a sum of n
independent and identically distributed zero-mean random variables. Using

the arguments of Shu et al. (2007), we conclude that /i So(; Zo) — So(-; Zo)]
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converges weakly to a zero-mean Gaussian process with covariance function

at (—, —) given by

wo’ wo

o(4 4
v ()

1 - e / /
= cov{ W@ + Wi @) + W (@), W @)+ W @)+ W (@)

=1
q (2)
= QY (w—o,ﬁ) {Z / { W5 Ehj<ﬁ,u>®2}

x 8, B, u)dAhjo(u)} Q'Q® (Z—O ﬁ)

=1

q AL To(yd Aoy ()
+ nSy (— Zo) So (— Zo) {exp (,BTZ010)}2E{/0 —Sé? B }

+nSo (— Zo) So (i Zo) {exp (ﬁTZozo)}zE{/w_o ) JO(igdAOZ(u)}
9 (B, )

which, for g = ¢/, can be estimated uniformly consistently by Eq. 7 in Section 3.
O

g
=}

Proof of Theorem 3 Following the similar decomposition technique as that
used in Voelkel and Crowley (1984) and Shu et al. (2007), we have

alhs(&2) (1)

—n Y (WP @+ Wi @ + Wi @ + Wi @] + 0,1, (16)

1=l

where

T o0
Wi = Q“”( ) o1y / (Zij — Eni(B, )} d M),
0 % 0

W — wou
(12)(61) / {So(u; 70)S1» (q wwo : Zo)
0 1

o — wox
—/ So(x; Zo)S12 (q ” : ;Zo) dA01(x)},

1

Joyd M (1)

T
Z
x exp(B” Zo1o) Sé?(ﬁ,u)
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1

W o — WX
W;}Z)(q) = —’l/ {/ So(x; Zo)S12 (q wwo ; Zo) dA01(X)}
0 u

Jo()yd Moy (u)
St (B, u)

T

x exp (B Zo)

g

w [ r5 — wox
WA(L}Z)(CI) = —’l/ {/0 So(x; Zo)S12 (q o lag Zo) dAlz(X)}

0

Ji(w)yd My (u)
S5 (B u)

o (i, .3) = /WO So (u; Zo) S12 (q — A, Zo)
wo 0 w1

X [{Zow —en(Buw)} — /0 {Zo10 — e (B, x) }dAo1 (x; Zo)

x exp (B7 Z1x)

—/0 {Zo2 — e0a(B. X) }d Ao (x; Zo)

- /0 {Z120 — ens(B. x) }d Ay (x; Zo)} dAor (u; Zo).

Note that, for each g, the right hand side of Eq. 16 is essentially a sum of n
independent and identically distributed zero-mean random variables. Using

the arguments of Shu et al. (2007), we conclude that /n [1312(~) — P12(~)]
converges weakly to a zero-mean Gaussian process with covariance function

at (wio 3—0) given by

/ 1 7
y (2 (wio Z_o) = = cov | WP @) + Wi @ + Wi @ + Wi (@),
i=1

WP @)+ Wi @) + WP @) + Wi @)

_ (2 ) o

0
@

1 | 8, (B, u)
x —E / —t _ _ _E -(ﬁ,u)®2}
el e

x 83, (B, u)dAhjow)} o lQU? (Z—O ﬁ)
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Y ] :
+nkE |:/ ’ {SO(U; Zy)S1, (q wwou; Zo) —/ So(x; Zy)
0 1 u

— wox
x S12 (q ” : ;Zo) dAor (x; Zo)}
1

" — wolt
X {SO(U; Z,)S1, (q o . ;Zo)

74

& — WX
—/ So(x; Zo)S12 (q ” g Zo) dAo1 (x; Zo)}
u 1

2 dNoy (u)
X {exp(ﬁTZ010)} Jo (U)W}

Lt (
+nkE |:/ {/ So(x; Zo)S12
0 u

X (q — wox; Zo) dAo1 (x; Zo)}

w1

5_; T — woXx
X {/ So(x; Zo)S12 (q o : ;Zo) d Ay (x; Zo)}

4 Aoy (1)
X {eXP (,BTZOZO)} JO(U)W}

., 4 4wy

+nk |:/w1 b {/ v So(x; Zy)S12
0 0

X (q — wox; Zo) dAo1 (x; Zo)}

wy

¢ —wyu

. { i
0
AN (1)

/4
X {eXP (,BTZIZO)} Jl(u)m}

/

— WX
So(x; Zo)S12 (q wwo : Zo) dA01(X)}

1

which, for g = ¢/, can be estimated uniformly consistently by Eq. 8 in Section 3.
i
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Proof of Theorem 4 Note that

Vi[80 @i 7o) - So (¢: )| = v [50 (_ ZO) S (_ ZO)}

Al () (23]

Hence, by some rearrangement of terms and following the techniques used in
the proofs of Theorems 2 and 3, /i [SQ (q:Zo) — So (q; Zo)] can be written

as a sum of n independent and identically distributed zero mean random
variables. The weak convergence result follows by using similar arguments.
The covariance term in Theorem 4 is given by

| S 2 - o o e el
= LS o W@+ WY@+ W@,

=1

Wi (@) + WP (@) + Wi (@) + Wi @} + 0, (1)

Sy (B, 1)
o @) el (]
x 83 (8, u)dAhjow)} Qo™ (i/, ﬁ)
wo

—nSo (i; Zo) {eXP(,BTZmo)}2
Wy

— wou
{SO(U; 7,)S5:, (q ” . ;Zo)

1

= — dA
_/ So(x; Zo)S12 (q wox; Zo) dA01(X)} Jo(u)—(o) o) i|
’ . S5 (B, w)

g

E[/‘

+nSo ( ) {exp(BT Zono) )

s 05

which can be estimated uniformly consistently by Eq. 10 in Section 3. O

02

dA
) dAg (x)} Jo<u>7<0) o2 (4) } +o0,(1),
(B, 1)
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