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Abstract In this work, we consider semiparametric estimation of quality 
adjusted lifetime (QAL) distribution using Cox proportional hazards model 
for the sojourn time in each health state. The regression coefficients are 
estimated by maximizing the corresponding partial likelihood and the baseline 
cumulative hazards are estimated by using the method of Breslow (Biometrics 
30:89-99,1974). The estimate of QAL distribution is obtained by using these 
estimates in the theoretical expression of QAL distribution. The asymptotic 
normality of the proposed estimator is established. The performance of the 
proposed estimator is studied using Monte Carlo simulation. A real data exam
ple of the Stanford Heart Transplant Program is used to illustrate the proposed 
method. Extension to a general model is also discussed and illustrated with an 
analysis of International Breast Cancer Study Group (IBCSG) Trial V data.
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1 Introduction

Quality adjusted lifetime is a composite measure, which incorporates both 
quality and duration of life. This composite measure introduced by Goldhirsch 
et al. (1989), is used as an end point in many clinical trials when a patient 
passes through different health states, each of which is associated with a utility 
coefficient ranging from zero to one. The utility coefficient corresponding to 
a state reflects the quality of life in this state, which assumes the value 1 in 
the perfectly healthy state while taking value 0 in the absorbing state death. 
This leads to a utility function over time which takes the value of the utility 
coefficient of the state occupied at that time. Then, quality adjusted lifetime 
(QAL) is defined as the integration of the utility function over the survival 
duration. The number of health state is usually finite. Then, the QAL reduces 
to a weighted sum of the time spent in each health state.

There have been a number of works developing methods for estimating 
either mean QAL (Hwang et al. 1996; Huang and Louis 1999; Zhao and 
Tsiatis 2000) or the distribution of QAL (Korn 1993; Zhao and Tsiatis 1997, 
1999; Huang and Louis 1998; van der Laan and Hubbard 1999; Pradhan et al. 
2010; Pradhan and Dewanji 2009a, b, 2010). In contrast, regression analysis of 
QAL data has not received much attention. Cole et al. (1993) have considered 
a Cox-type parametric regression model to estimate mean QAL using the 
bootstrap method to obtain the variance estimate. Wang and Zhao (2007) 
have considered the problem of estimating the mean QAL in the presence 
of covariates. They have considered a regression model for the mean QAL 
and used the idea of inverse probability weighting to construct a simple 
weighted estimating equation for the regression parameters of the model. 
These parameter estimates are then used to estimate the mean QAL. See also 
Tunes-da-Silva et al. (2009) for a similar regression analysis to estimate mean 
QAL for semi-Markov multistate non-progressive processes. Pradhan et al. 
(2010) have considered parametric regression analysis to estimate the QAL 
distribution for a given covariate value. In this work, we propose a semi- 
parametric approach to estimate the QAL distribution using proportional 
hazards model under semi-Markov assumption. Although we develop the 
methodology for a simple three-state illness-death model, this can be gen
eralized to other progressive illness-death models. In addition to estimating 
the QAL distributions, an additional objective is to assess the covariate 
effects.

In our approach, we write down the theoretical expression for the QAL 
distribution in terms of the sojourn time distributions in each health state. 
Hazard rates for these sojourn times are modeled using Cox’s proportional 
hazards regression (Cox 1972). The semi-Markov assumption leading to in
dependence between different sojourn times allows construction of partial 
likelihood for each transition type. This gives maximum partial likelihood esti
mates of the regression parameters and, then, the baseline cumulative hazards 
are estimated using the method of Breslow (1974). Therefore, as in Pradhan 
et al. (2010) and Pradhan and Dewanji (2010), the baseline sojourn time



distributions in different states and the regression parameters are estimated 
by using the standard techniques of survival analysis. These estimates are then 
substituted in the theoretical expression for the QAL distribution, for a given 
covariate value, to obtain the corresponding estimate. By construction, this 
method gives a monotonic estimate of the QAL distribution. Since this method 
explicitly uses the information on the interrelationship between the different 
health states, the corresponding estimates are efficient, but less robust against 
misspecification of such information.

The simple three-state illness-death model is discussed in Section 2. Esti
mation of the regression parameters and the QAL distribution for a given 
covariate value is considered in Section 3 and the asymptotic properties are 
also discussed. A simulation study is carried out in Section 4. We illustrate the 
methodology by means of an example of heart transplant data in Section 5. 
Extension to more general model is considered in Section 6 and the method is 
illustrated by means of an example of IBCSG Trial V data. Section 7 ends with 
some concluding remarks.

2 The model

In the simple three-state illness-death model, as shown in Fig. 1, one starts in 
a normal healthy state 0 from which the possible transitions are to the illness 
state 1 followed by transition to death (state 2), the absorbing state, or directly 
from state 0 to state 2. Let T0 be the sojourn time in state 0, that is the time 
to illness (transition to state 1) or death without illness (transition to state 2), 
whichever occurs first. Also, let So be the failure type indicator, which takes the 
values 1 and 2 for illness and death without illness, respectively. Also, let Tn 
denote the sojourn time in state 1 before moving to state 2. Then, the QAL is 
defined by

Q =
wqTq + w\T\2 if So = 1 

 ̂ wqTo if So =  2,

where w0 and u>i are the utility coefficients in state 0 and 1, respectively.

F ig .l  T h ree-s ta te  
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Let Xhj(-\ •) be the rate of the h / transition. We assume that the transition 
rates depend only on the sojourn time in the current state (a semi-Markov 
model) which implies that T0 and Tn  are independent. The dependence of the 
transition rates on the covariates are specified via Cox’s proportional hazards 
regression model (Cox 1972), as given by

khj(t\ Z,■) =  khfAt) exp (pTZ hji) , for hj = 01, 02,12, and i = 1....... n, (1)

where Xiyoit) is the arbitrary baseline rate for the h -> / transition, [’> =
{Pi....... is the vector of regression coefficients and //,,, is the vector of
state-specific covariates for individual i obtained from the basic covariates 
Zj. It may be noted that [’> contains all the parameters corresponding to 
different transitions, therefore, not depending on the specific transition hj  (see 
Andersen et al. 1993, p. 478). In the heart transplant data (see Section 4), 
for example, let Z, =  (Z ;(1), Z ;(2), z f ])T, where Z ;(1) =  an indicator for pre
vious history of surgery, z f ] = age at acceptance into the program and 
Z f ] =  mismatch score. Note that the mismatch score is available after 
heart transplantation. Hence, it has possible effect on Tn  only. The state- 
specific covariate vector Z/y, for individual i is, therefore, formed to be 
a 7-variate vector by including the extra components equal to zero . We 
have Zoii =  (Z,(1), Z,(2), 0, 0,0, 0,0), Z 02i =  (0,0, Z,(1), Z,(2), 0, 0,0) and Z 12i = 
(0, 0,0, 0, Z,(1), Z,(2), Z,(3)).

The survival function for a given covariate Z0, with state-specific covariate 
Zhjo, is given by (Pradhan and Dewanji 2010)

where Z0) =  exp [ -  A0i ( J s  Z0) -  A02( ^ ;  Z0)], the survival function
of To forgiven Z0, and P n (±;  Z0) =  j f Wo S12(“ ; Zo)S0(x; Z 0)dA01(x; Z0) 
with Af,j(x\ Z0) =  f*Xhj(w, Zo)du, for hj = 01, 02 and 12, and Si2 (-,Z0) =  
exp[-A i2(-; Z0)] being the survival function of Tn  for given Z0.

It may be noted that the semi-Markov model does not fit readily into the 
multiplicative intensity framework because of its renewal nature (see Voelkel 
and Crowley 1984; Shu et al. 2007). This can be dealt with by introducing time- 
shifted multivariate counting process over a fixed interval, say [0, r], given by

NU) =  {Nhji(x), hj = 01,02, 12; / =  1....... n, x e [0, t ] },

where Nhji(x) counts the number of h / transitions for individual i whose 
transition time from state h to state / is less than or equal to x, for hj  =  01, 02 
and 12. Note that such formulated counting process Nhji(x) have the intensity 
processes ahji(x\ Z,) in the form of a multiplicative intensity model given by

(2)

^i) — Yhi(x)hfij(X’, Tii), (3)



with '/-hjtx: Z j) given by Eq. 1, where Yln (x) is the indicator for individual i being 
at risk just before sojourn time x  in the state h, for h = 0, 1. That is, Yhi(x) = 1 
if the sojourn time of the ?'th individual in state h is larger than or equal to 
x, and 0 otherwise. Under independent censoring, Nhjiix) can be uniquely 
decomposed as

where Mhjiix) are orthogonal local square-integrable martingales with pre
dictable variation process given by [Mhjiix)) = f*  Y^Ui) exp (fiTZ  hji) Xhjoii<)du. 
For convenience, we use the following notation (Shu et al. 2007):

for tn = 0, 1,2 and hj = 01, 02, 12, where for a column vector a, a°{) = 1, 
a° l = a and a°2 = aaT.

3 Estimation and asymptotic theory

In this section, we consider the estimation of fi, the cumulative baseline 
hazards and the survival function S q (-, Z0). Let C be the censoring ran
dom variable. Define X0 =  m in(r0,C) and let So =  0 indicate censoring 
(i.e., To >C). When 50 =  1, let X[ =min(7o-|-ri2, C) and Si = IiTo + Tn  < C). 
Define X\ = X[ — X ,, when 50 =  1. It is clear that if So =  0 or 2, then X[ 
(and hence Xi) and Si are not defined. For n individuals, we have the data 
set {(*o;,So;,;ti;, Si;,Z0i,\ Z02 ,\Z i2 ,-);/=  1....... n}, where xu = Si,=— 1, when
ever S0, =  0 or 2, to represent their non-existence. The partial likelihood (see 
Andersen et al. 1993, pp. 481-482) to estimate fi is given by

where /;0i; =  /(S0; =  1), mu = H&oi = 2) and i]m = Hhi  = 1)- The correspond
ing information matrix is given by

S ^ i P ,  x) = }  Yhi ixYL^  exp Z hii) and x) =

Let j} be the estimate of [’> obtained by maximizing /. ([’>). Then the cumulative 
hazards Ahjit, Z0) are estimated as Ahjit, Z0) =  A/y0(/‘,/3) exp(/3r Z/y0), where 
Ahpit, j->) is the Breslow (1974) estimator of A/;/(7), for hj = 01, 02 and 12. Also



the survival functions for given Z0, 50 (/: Z0) and .S',2(7: Z0) for and Tu , 
respectively, are estimated by

So (t\ Zo) =  ]~[ {l — dAoiiw, Zo) — dAoniir, Z o)J, and (4)
U < t

Suit; Zo) =  J- [ {l — dAu(u\  Z o)J. (5)

Then, using Eq. 2, an estimate of S q (q \ Z0) is given by

SQ(q- Z0) =  S0 I — : Z0 ) + P n (  —  \ Zo
V U ’o )  \ Wo

Q— So ( — ; Z0
, w0

I ”° S12 ( Q W°X; Zo ) SoOc; Zo)dAoi(x; Zo). (6)U>1

Note that the two product-limit estimators So(u; Z0) and .S'nf//: Z0) are approx
imately equal to the corresponding ones derived from the Breslow estimators,
given by exp and exp —A n (?/; Zo) , respectively.—Aoi(?/; Zo) — Ao2 (h; Zo)
For the derivation of asymptotic results, the latter estimators of Sotir, Z0) 
and Sniii; Z0) are considered for some algebraic convenience. Let 0 e [0, r). 
Following Shu et al. (2007) and under the regularity conditions 1-3 therein, 
we have the following theorems. The proofs of the theorems are given in 
the Appendix.

Theorem 1 The random vector s/ii(P — ft) converges weakly to a multivariate 
normal with mean zero and a covariance matrix which can be consistently 
estimated by

Theorem 2 The process s/ti So(-, Z0) — 5o(-, Z0) converges weakly on [0, 0] 

to a zero-mean Gaussian process whose variance at q/w0 can be estimated 
uniformly consistently by

xjf (0 ) JL
Wo

; Z (
Wo

+  n j So ( — • Zo
. Wo

-n \ So ( — ; Zo
. Wo

Wo

exp(/J Zqio)

exp(/Jr Z02o)' '

IT
r

dAoioiu, P)

Sfn(A^) 

dAo2o(u* P) 
S{̂ ( P ,u )



where

Wo
Ql0)( — j )  = - S o ( — ;Zo

Wo

{Zoio -  Eoi (P,u)} exp(/3 Z ow)dA0W(u,P)

{Zo2o-£o2(/3, ii)}exp(/3TZo2o)dAo2o(ii, /?)

Theorem 3 Tfteprocess s/ti[Pn(•, Z0) — -P1 2K Z0)] converges weakly on [0, 0] 
t o  a  zero-mean Gaussian process whose variance at q/wo can be estimated 
uniformly consistently by x[ra2) Z0)

Wo )  \ Wo

W 1
So(u- Z0)512 ( 9 Z,,) —j '  | S,,(x: Zo)512 ( g W°*; Z0

■ ru

X exp(/3r Z0i0 )dAow (x, / i )  j

”0  ̂  ̂ I q — u’ox

7^  dAowiu, P)
(j8r Zoio)}

(±_ { n_q_
So(x; Zq)5i2

W i
; Z0 exp(/3y Zoio)rfAoio(x, /3)

x jexp r™ \ 1 2 dAo2o(u, ft)
(j8r Zo2o)}

5‘02’(j8 ,h)
q (  q - w iu  

w0

■r un I { I S0(x; Z0)5i2 ( Z:> ) exp(/FZoio)dAoioU, /3)

x jexp \ ] 2 d A i 2 o ( u ,  f t )  

S{̂ ( P ,u )  '

(/Sr Zi2o)} (8)

where



-  J  |Z|J20 -  E02(P, x)} exp (j0rZO2o) dAtm(x, 0)

q—wqu

-  j  1 {Z120 -  E n (P, x)} exp ( p TZ120) d A U0(x, P) 

x exp (j8rZoio) dAoio (u, /i) .

Theorem 4 sfn Sq(q\ Z0) — Sq(q\ Z0) converges weakly to a mean zero 
Gaussian process in [0,0,„], where 0W < t  wo is a constant, with a variance at 
q which can be estimated uniformly consistently by

ir(q, Zo) =  Zo
w0

^.(12) j Z 0 
Wo

U)0 U)0
(9)

where

cot { v/n50 f  : Z0) , V«/'i2 ( — ; Z0
Wo Wo

-  Q l0)( — j )  n l (P ) - l Qa2)(  —  , p ] - n S o ( — ; Zo) W /T Z o io )} '  
\ « ’o /  \W’0 /  \W’0 /  1 J

X ^ ”° 5o(h; Zo)512 ( ^ ^ | Z 0) - ^ ”° S0(x ; Z 0)S12 ( Z(}
W \

x exp(j8rZoio)dAoioU,j8)

nSV, ( Z,, j  |e x p ^ rZ02o)}

dAoioiu, P) 
0 / 3 ,  h )

2

f  ° I f  ° 5oU;Zo)5i2 ( - — — ; Z0 ) exp(/3i Zoio)dAoio(^ P) \ 
JO  Ju W 1

dAo2o(^> /O
(10)

4 Simulation study

In this section we investigate finite sample properties of the proposed semi
parametric estimator of the QAL distribution by simulation. In particular, 
we study the bias and precision of the proposed estimator, given by Eq. 6, 
for a number of QAL values. In our simulation study, we consider only one



covariate effect, say, Z . It is assumed that the sojourn times T<n , T02 and Tn 
are independent. The hazard rates of the sojourn times are modelled by

Xhj(t\ Zj) = khjex.p (pTZhj) , for hj = 01, 02, 12 and i = 1....... n,

where p = (PouPoi* Pu), Zoi; =  (Z ;, 0, 0), Zm  = (0, Z,, 0) and Z ni =  (0, 0, Z,).
The censoring variable C is assumed to be independent of sojourn time 

variables and follow exponential distribution with parameter Ac. We consider 
two sets of parameter values for the simulation study. In parameter set 1, 
we take A0i = 0.04, A02 =  0.05, A12 =  0.08, Ptn = 1.5, pt)2 =  0.5, Pn =  0.8 and 
Ac = 0.035. Here we generate covariate Z  from N{0, 1). The survival prob
abilities Sotq: Z 0) are computed for Z 0 =  0.5 by taking w0 = 1 and u>i =  
0.5 for different ^-values. In parameter set 2, we choose A0i =  0.04, A.02 =
0.05, An =  0.06, Ac =  0.03, Poi = 1, pt)2 =  0, Pn =  0.5. We generate covariate 
Z  from a Bernoulli distribution with probability of success p = 0.5. The 
survival probabilities Sotq: Z 0) are computed for Z 0 =  1 by taking w0 = 1 
and u>i =  0.6 for different ^-values. The two sets of parameters depict different 
scenarios with respect to covariates, regression coefficients and censoring per
centage. The censoring percentages corresponding to two sets are 56 and 33, 
respectively.

For each set of simulated data, we generate n observations of the form as 
in the beginning of Section 3 and calculate the proposed semi-parametric esti
mate of the QAL distribution using Eq. 6 for some q values. The standard error 
is calculated using Eq. 9. The simulation is repeated 1,000 times for sample size 
n =  100 and 200. Based on 1,000 estimates of SQ(q\ Z0), we compute average 
bias and sample standard error (SSE). The standard errors for the estimated 
survival probabilities, obtained by using Eq. 9 for the proposed estimator, are 
averaged over the 1,000 simulations. These are similar to the corresponding 
SSE values and, hence, not reported. The simulation results are reported in 
Table 1. As expected, both bias and standard error decrease with sample size.

Table 1 T he average b ias (A B ) and  sam ple s ta n d a rd  e rro r  (SSE )  in p aren th eses o f the  regression  
coeffic ients and  survival p robab ilities fo r tw o sets o f  p a ram e te r  values w ith sam ple sizes n =  100 
and  200

P aram eter
set

n R egression  coefficients Survival p robab ility

P A B  (SSE) q SQ(q\ Zo) A B  (SSE)

1 100 Poi =  1.5 0.038(0.263) 1.5 0.5 0.895 0.002 (0.032)
200 0.011 (0.163) 0 .000(0.022)
100 002 =  0.5 0.007 (0.216) 7 0.508 0.004(0.060)
200 -0 .0 0 3  (0.158) 0.003 (0.042)
100 2

s ii o 00 0.031 (0.299) 16 0.159 0.013 (0.050)
200 0.013 (0.193) 0 .008(0.036)

2 100 fioi =  1 0.024(0.324) 1.7 1 0.904 0.000(0.030)
200 0.022 (0.232) 0 .000(0.021)
100 "O
b o II o - 0 .0 1 3  (0.371) 8.2 0.509 0.003 (0.062)

200 0.008(0.262) 0.001 (0.046)
100 012 =  0.5 0.021 (0.413) 19 0.145 0.009 (0.048)
200 0.011 (0.284) 0 .004(0.036)



The asymptotic normality of the proposed estimators is checked by QQ plot 
based on 1,000 estimates. The QQ plots, not presented here, gives evidence in 
favour of asymptotic normality.

5 Analysis of heart transplant data

We use the Stanford Heart Transplant data (Crowley and Hu 1977) to illustrate 
the proposed estimate of QAL distribution with covariate effect. Patients have 
been admitted to the heart transplant program, from September 1967 to March 
1974. Here we are interested in the quality adjusted life of heart patients. 
There have been 103 patients altogether. Out of the 103 patients, 69 patients 
have received heart transplantation, 30 patients have died before getting a 
suitable heart transplantation and four patients have been lost to follow up 
before transplantation. Out of the 69 patients with heart transplantation, 24 
have been alive when last seen and the remaining 45 have been dead. For each 
patient, the date of acceptance into the Stanford program and the date seen 
last are available along with the date of transplantation, if carried out. We view 
this as an illness-death model by equating the event of heart transplantation 
with the incidence of illness. Here T0 is the time, since acceptance into the 
program, of heart transplantation or death before transplantation, whichever is 
earlier, and Tn  is the time till death since heart transplantation. As mentioned 
in Section 2, the covariates we consider are indicator for previous history 
of surgery ( Z (1)), age at acceptance ( Z (2)) and mismatch score ( Z (3)). The 
mismatch score is available after heart transplantation. So Z (3) may have 
effect on Tu  only. Let p = (An* A 1 2 * Am* Am* A 2 1 * A 2 2 * A 2 3 )7 be the vector 
of regression coefficients. Out of 103 patients, all the covariate values are 
available for 99 patients. So the analysis is based on 99 patients. The estimates 
of the regression coefficients along with standard errors and /;-values are 
presented in Table 2. From Table 2, it is clear that only age at acceptance ( Z (2)) 
has significant effect on the hazards of 01 and 12 transitions.

One can easily estimate the survival probabilities for QAL using Eq. 6 and 
the estimates given in Table 2 for a particular value of Z. The standard error 
is calculated by using Eq. 9. We take the coefficient w0 for the sojourn time 
T0 as 0.3 and, assuming that the heart transplantation improves the quality of

Table 2 E stim ates o f the 
regression  coeffic ients fo r the  
h ea rt tran sp lan t d a ta

T ransition P aram eters E stim ate S tandard
erro r

p-value

01 A )i i 0.1333 0.3224 0.680
A)12 0.0313 0.0142 0.028

02 A)21 -0 .4 7 8 4 0.6137 0.440
A)22 0.0149 0.0183 0.410

12 A 2 1 -0 .7 6 2 0 0.4858 0.120
A  22 0.0520 0.0225 0.021
A  23 0.5163 0.2957 0.081



life to some extent, take the coefficient for the sojourn time Tn  as 0.8, as 
in Pradhan et al. (2010). For example, with Z (1) =  0, Z (2) =  45 and Z (3) =  1.5, 
the survival probability S q{q) at q = 10 is estimated as 0.7819 with standard 
error 0.0333.

In order to study the effect of covariate on the QAL distribution, we 
compare the estimated survival probabilities for different covariate values 
by graphical method. To show the effect of previous surgery, we plot the 
estimated survival probabilities for Z (1) =  0 and Z (1) =  1, keeping Z (2) =  45 
and Z (3) =  1.5 as fixed (see Fig. 2a). To study the effect of age, we plot the 
estimated survival probabilities for Z (2) =  30 and Z (2) =  45, keeping Z (1) =  0 
and Z (3) =  1.5 as fixed (see Fig. 2b). Similarly, to study the effect of mis
match score, we plot the estimated survival probabilities for Z (3) =  0.75 and 
Z (3) =  1.5, keeping Z (1) = 0  and Z (2) =  45 as fixed (see Fig. 2c).

Although Z (1) has no effect on the hazards of different transitions, the 
estimated survival curves indicate some difference. The age at acceptance 
has significant effect on hazards of different transitions and the two QAL

(a ) Effect o f  previous surgery (b )  Effect o f  age

1

0.9
Za ,= l, Z(2)=45, Z(3,=1.5

1
0.9 z (1)=0, Z(2)=30, Z(3,= 1.5

W 0.2
0.1

CO 0 2  

0.1
0 0

0 100 200 300 400 500 600 700 800 900
q

0 100 200 300 400 500 600 700 800 900
q

(c )  Effect o f M ism atch score

1
0.9 Z(1,= l, Z(2)=45, Z(3,=0.75

0.1
0

0 100 200 300 400 500 600 700 800 900
q

Fig. 2 E ffec t o f  covariates on th e  Q A L  d istribu tion  fo r the  h e a rt tran sp lan t d a ta



distributions corresponding to age 30 and 45 also show the difference. The 
mismatch score has no significant effect on the hazard and the two QAL 
distributions corresponding to mismatch score 0.75 and 1.50 seem to have 
no difference. In order to compare two survival curves corresponding to two 
different values of a particular covariate, we have looked at 95% confidence 
intervals for the corresponding survival probabilities at several q values. For 
all the three comparisons, as shown in Fig. 2, all the intervals are found to be 
overlapping. This indicates that there is no significant difference on the QAL 
distribution for the choices of covariate values, even though age at acceptance 
has significant effect on the hazards of 01 and 12 transitions. A more objective 
test in this regard is necessary.

6 Extension to progressive illness-death model

In this section, we consider estimation of QAL distribution with covariate 
effect for the progressive illness-death model as described in Fig. 3. Let Th,h+\ 
denote the conceptual sojourn time in state h before moving to the illness state 
h + 1 and ,k+i denote the same before moving directly to the absorbing state
k  +  1, for h = 0 ,1 ....... k -  1. Also, let Tk,k+i denote the sojourn time in the
penultimate state k  before moving to the next state k +  1. Then, the QAL is

m—1
given by Q = J2 whTh,h+i +  "’/» Tm.k i , when transition to death k +  I occurs

h= 0
from the state m, for m = 1....... k. For m=0, Q = wn l',, k ,. Note that, with
m{> 1) fixed, we have Th,h+\ < Th,k+i, for h = 0 ,1 ....... m -  1, and Tmjn+1 >
Tm,k+i (except for m = k). With m = 0, T01 > Ttxk+1.

We estimate the QAL distribution under the assumption that the different 
sojourn times are independently distributed. It may be noted that the transition 
from state h to either state h + 1 or to state k  +  1, for h = 0, 1....... k  — 1, con
stitutes a competing risks framework with Th,h+\ and l'i,.k i denoting the two 
corresponding conceptual sojourn times. Let A/j.a+iU/,; Z) and )-i,,k i (x/,: Z) be



the cause specific hazards for the two possible transitions to state h + 1 or 
k  +  1, respectively, at time x/, for an individual with covariate vector Z. Note 
that, for h = k, Thj,+i and , are the same random variable representing 
the actual sojourn time in state k  before death with ordinary hazard rate 
h,k+i(Xk\ Z) at time xk. The distribution of Q, for the given covariate Z0, is 
then given by

k
Fq ](q\ Zo) = P ( Q < q )  = J 2  Pm, (11)

m =0

where the expressions for P0, Pm and I \  are as follows (see Pradhan and 
Dewanji 2009a):

Po  =  /  ”° Xo,t + i U ;  z n ) ^ (Aoi(-v:Zo)+Ao'i+l(-v:Zo))(ix  
Jo

I S0(x; Zo)dAo,k+i(x; Z0),

q_ q-WQXQ . g -E jlo 1 wi xi

P m  =
r  wq f  wi r  wm
I I I Zo)dA.m,k-\-l Zo)

Jo Jo Jo

x Sm— \(xm—i\ Zo)dAm_i?m(xm_i; Zq)

x So(xo; Zo)dA0i(x0; Z0), 

f o r m  =  1 , . . . ,  k  — 1 ,  and

f  »o f  »1 f  1

/ / /
t/0 */o t/0

x 5fc_iUfc_i; 7jo)dAk_i^(Xk-\ \ Z0)

x 5oUo; Z0)dA0i(x0; Z0),

where SaU; Z0) =  exp [ -A a,a+i(x; Z0)-A /U-+iU; Z0)], for h = 0, 1....... k  -  1,

Aj,j(x) =  / /-,.,(//)c/// and , (•) is the distribution function of 
Jo



6.1 Estimation

The observations for progressive illness-death model are described as follows.

1. For/; =  0 ,1 ....... k, write

0, if censoring takes place in state /;

h + 1, if transition takes place from /; to /; + 1 
Sh =  (that is, Th,h+i < Th,k+\- C — Y,i=o Tu+i)

k  +  1, if transition takes place from /; to k +  I
(that is, Th'k+i < Th,h+i* C — J2i=o Tu+i)-

Note that for h =  0, YuZo Tu+i is treated to be 0.
2. Write X 0 = minC/;,,, Ttxk+1, C).
3. For h = 1....... A: — 1, if h - \  = h, write

h- 1

Xf, = min ^r*,A+i, Th'k+i* C — ^  Tu+i j  ,

and, if 5*_i =  k, write

X k = min ^ r fcfc+i, C -  ^  7'/./ i j  .

4. For h = 1....... k, whenever S*_i =  0 or k  +  1, the /;th state and the subse
quent states h + 1....... k  are not attained. We then write Xi = Si = - 1  for
I = luh + 1....... k.

For n individuals, the data set is then given by

{(xhi, Shi, Z hji), h = 0, 1....... k , i  = 1.........n } ,

where U/„, 5*,) denotes the observed value of {Xh, Sh) for the ?th individual and

hj =
(/?,/? +  1), (/?, k + 1) for/; =  0 ,1 ....... k — 1
0uh  + l) for h = k.

Define i]hj =  / ( S *  =  ;) if ;  =  /; +  1 or k  +  1, for /; =  0, 1 ....... k —  1 and i ]k,k+\ =

I(&u = k +  1). Also, i]hjt denotes the value of ///,, for the /th individual. The



estimate of regression parameters p is obtained by maximizing the partial 
likelihood (see Andersen et al. 1993, pp. 481-482)

hj i \ hj

where {p, x), for different hj, are defined at the end of Section 2. 
Then, the Breslow (1974) estimator for Ahjotf) = f (] XhjoUi) is given by

Ahp( t J ) =  [  dNhj(x),
Jo S,:A0,x)o

where Nhj(t) = Y ,”=i H X hi<t, SM = j), for j = h + 1, Ar+1, Yh(t) = Y ,'U  I ( X hi>t)
and Jh(t) = I(Yh(t) > 0), for /; =  0 ,1 ....... k. Then, Sh(t; Z0) and Fk,k+i(t; Z0)
are estimated by

Sh(t\ Z0) =  ]~[ {l — dkh,h+\(u\ Z0) — dkh,k+i(.x\ Z0)J , (12)
U < t

fo r/; =  0, 1....... k  — 1, and

Fk.k+i(t; Z0) =  1 — ]~[ {l — dAk'k+i(ti; Z0)J , (13)
U < t

respectively. Then, using Eq. 11, an estimate of F ^ i q - ,  Z0) is obtained by 
substituting Sh(-Ys, Aa,a+i(-)'s, AA,fc+i(-)'s and Fk,k+1 (-) by the corresponding 
estimates.

Note that F ^ i q - ,  Z0) can be written as

I
w0

F{Q]{q\ Z0) = I ” S0(x; Z0)dAtXk+i(x; Z0)

L ° Fq, l)(q- w0X(u Zo)So(x)dAoi(x\ Z0),

where Q* is defined in the same way as Q but starting from state 1 instead of 
state 0. The corresponding survival function given by

S^(q-  Zo) = So Zo) +  &£ru (q ~ w0x; Z 0)S0(x; Zo)dA01(x; Zo),

having the similar form as in Eq. 2 with Sq71\-)  in place of 5n(-). Hence, 
following the proofs of Theorems 2-4 and using method of induction, one 
can prove weak convergence of s / n  (q: Z0) -  S{q {q\ Z0) to a mean zero 
Gaussian process with a covariance function that can be estimated, where 
S{Q(q\ Zq) denotes the estimate of S{q {q\ Z0), as described above.



6.2 Analysis of IBCSG data

We illustrate our methodology for the progressive illness-death model using 
data from International Breast Cancer Study Group (IBCSG) Trial V in 
which 1,229 patients have been randomized to receive either short duration 
chemotherapy (one month) or long duration chemotherapy (six or seven 
months) with 413 and 816 patients, respectively. This randomized clinical 
trial compares two adjuvant chemotherapy schedules for node-positive breast 
cancer. For each patient, the observation consists of time till (1) the end of 
treatment toxicity (TOX), (2) relapse (disease-free survival time) (DFS), and 
(3) death from any cause (overall survival) (OS) along with censoring indicator 
and covariates. There are 3 health states, namely, (1) toxic side effect of 
chemotherapy, (2) no symptoms of disease and toxicity of treatments and (3) 
disease relapsed. The sojourn times in these health states are denoted by TOX 
(Toxicity period), TWiST (Time without symptoms of disease and toxicity of 
treatment) =  DFS -  TOX and REL (Relapsed) =  OS -  DFS, respectively. 
In our notation, T(n = TOX, Tn  =  TWiST and '/ r , =  REL, and they are 
measured in months. Quality adjusted lifetime (QAL) is then defined by

Q = wo x T01 + u>! x T12 + w2 x r 23,

where u>, is the utility coefficient corresponding to the ?th health state, 
/  =  0 , 1 , 2 .

Note that there is no direct death from health states 0 and 1; therefore, the 
appropriate model for IBCSG data is a special case of the progressive illness- 
death model of Fig. 3. We consider five covariates recorded from each patient 
upon enrollment in the clinical trial as given below.

Z (1) treatment group (0: short duration and 1: long duration),
Z (2) age in years at the time of enrollment,
Z (3) menopausal status (0: pre- and 1: post-),
Z (4) tumor size, and
Z i5> nodal group (0:1 to 3 nodes and 1: 4 or more nodes).

The state-specific covariate vectors are

Zfii =  ( Z (1), Z (2), Z (3), Z (4), Z (5),0, 0,0, 0, 0, 0, 0,0, o, o)7. 

z 12 =  (0, 0, 0, 0,0, Z (1), Z (2), Z (3), Z (4), Z (5), 0, 0,0, 0, o)7.

Z23 =  (0, 0, 0, 0,0, 0,0, 0, 0,0, z (1), z (2), z (3), z (4), z {5))'.

The state-specific hazard rate is modeled as

Xhj(t\ Z) =  Xhj0(t) exp (p TZ hj) , for hj = 01, 12, 23,

where p = (#jii< Pou* Pon* Pou* Pois* Pm* P122* P121* P124* P125* P211* P212* P23 3 , 
$ 2 3 4* >S23 5 ) is the vector of regression coefficients. Then, from Eq. 11, the



Table 3 E stim ates o f the 
regression  coeffic ients fo r the  
IB C S G  d a ta

T ransition P aram eters E stim ate S tandard
erro r

p-value

01 A)i i -2 .7 5 9 9 0.1043 0.000
A)12 -0 .0 0 3 9 0.0049 0.440
A)13 0.0371 0.0937 0.690
A)14 -0 .0 0 0 9 0.0018 0.620
A)15 0.0739 0.0601 0.220

12 fil2l -0 .4 7 7 6 0.0797 0.000
A  22 -0 .0281 0.0069 0.000
A  23 0.4281 0.1297 0.001
A  24 0.0066 0.0022 0.003
A  25 0.8523 0.0810 0.000

23 @231 0.3071 0.0929 0.001
@232 -0 .0005 0.0079 0.950
@233 -0 .1725 0.1535 0.260
P234 0.0040 0.0026 0.130
P235 0.2099 0.0942 0.026

distribution function of Q for given covariate Z0 is given by (see also Pradhan 
and Dewanji 2009a)

a q-WQXo

FQ(q- Z0)) =  I  ”° I  ”1 F23 ( g ~ W° ^ ~  WlXl; Zo)  5l(JCi: Zo)^Ai2 (xi; Zo) 

X SViUo; Zo)dAoiUo; Z0), (14)

where S0(J; Z0) =  exp{-A0iU; Z0)}, Si(t; Z0) =  exp{-Ai2(t; Z0)} and F23(-; Z0)) 
is the distribution function of T23 .

Out of 1,229 patients, all the covariate values are available for 1,215 patients. 
So this analysis is based on 1,215 patients. The estimates of the regression 
coefficients along with standard errors and /;-values are presented in Table 3.

(a) - Zf l -1, Z,2|=45, Z,3i=0, Z,4i=35, Z,5i=1 
Zf l -0, Z,2i=45, Z,3i=0, Z,4i=35, Z,5i=1

20 40 60 80 100 120 140 160
q

(b) ---------  Zf l -1, Zf2-50, Zf3-1, Zf4-35, Zf5-0
--------- z ai=0, Zf2-50, Z,3|=1, Zf4-35, Z,5|=0

1 1
0.9 X 0.9

>* 0.8 0.8
!5cd 0.7 = 0.7
-Q0 0.6 .a 0.6
CL 0.5- 0.5-
n> 0.4 1 0.4>
3 0.3- 0.3 -
CO 0.2 CO 0.2

0.1 0.1
0 1 1 1 1 1 1 1 1 0

20 40 60 80 100 120 140 160
q

Fig. 4 E ffect o f  covariates on th e  Q A L  d istribu tion  fo r the  IB C S G  d a ta



From the /;-values in Table 3, it is clear that the treatment group ( Z (1)) has 
significant decreasing effect on the hazards of TOX and TWiST and, increasing 
effect on the hazard of REL. Age ( Z (2)), menopausal status ( Z (3)) and tumor 
size ( Z (4)) have significant effect only on the hazard of TWiST. Nodal group 
( Z (5)) has significant effect on both TWiST and REL.

Next, we estimate the survival function for QAL using Eq. 14 and the 
estimates in Table 3 for a given value of Z0. Since the algebraic expression for 
the standard error of this estimate is very complicated and difficult to obtain, it 
is computed by using a bootstrap method with 500 bootstrap samples, each of 
size 1,215 drawn with replacement. The utility coefficients are taken as w0 = 
0.5, u>! =  1 and w2 =  0.5. The survival probability for Z0 =  (1, 50, 0, 35, 1); at 
q = 10 is estimated as 0.9836 with standard error 0.0030. Next we study the 
effect of treatment ( Z (1)) on the QAL distribution by graphical method, as 
in Section 5. We consider two different combinations of other four covariates 
reflecting two different scenarios. For the first, we plot the estimated survival 
probabilities for Z (1) =  0 and Z (1) =  1, keeping Z (2) =  45, Z (3) =  0, Z (4) =  35 
and Z (5) =  1 as fixed (see Fig. 4a). In the second, we plot the same keeping 
Z (2) =  50, Z (3) =  1, Z (4) =  35 and Z i5) =  0 as fixed (see Fig. 4b). The two 
survival curves in both the scenarios seem to be close to each other.

7 Concluding remarks

In this work, we have proposed a semi-parametric method for estimating QAL 
distribution in a three-state illness-death model and a progressive illness- 
death model. The estimate is easy to obtain and, by construction, monotonic. 
The closed form expression for the distribution of QAL is available, when the 
number of states is not too large. Otherwise, this expression involves multiple 
integration which needs to be evaluated by numerical method. This, however, 
needs to be done only once when the distribution of QAL is to be estimated 
by substituting the different sojourn time distributions by the corresponding 
estimates. Variance estimate has been obtained for three-state model. It is 
difficult to write the variance expression for the general model in closed 
form. One can alternatively use some resampling technique (e.g., bootstrap) 
to estimate the variance of survival estimates. This estimation procedure can 
be extended to some general models like, for example, the competing illness- 
death model of Pradhan and Dewanji (2009b).

One can, in principle, use a Markov model in which the different baseline 
transition rates depend on the time since the beginning instead of the time 
spent in the current state. This represents a complicated structure of depen
dence between the different sojourn times. This, however, readily fits into the 
multiplicative intensity framework. Therefore, the results of Andersen et al. 
(1993, pp. 481-482) are readily applicable for the estimation of the regres
sion parameters, the baseline cumulative hazards, and, eventually, the QAL 
distribution. The asymptotic results also follow from those of Andersen et al. 
(1993, Section VII.2) following similar techniques. In a particular dependence



structure, a transition rate may depend on the previous sojourn time(s), say, 
through a proportional hazards type modelling. The estimation through partial 
likelihood can be carried out in a similar manner.
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Appendix
Let us assume the regularity conditions 1-3 of Shu et al. (2007). Theorem 1 is 
Lemma 1 (ii) of their work.

Proof o f  Theorem 2 Using Lemmas 1 and 2 of Shu et al. (2007),

n
= n - 1'2 J 2  { < ’(«) +  w S \ q )  + W ^ \ q ) ]  + op(l), (15)

i = l

where

W ^ ( q )  = Q{0) ( — . A S2-1 V  f  {Zhji -  E hji(p, u)}dMhjl(u),
\  wo )  “T"' Johj

Q W) ( —  ■ p \ =  —So ( — '■ Zo) f  {Zqio — eoiiP, u)}dAoi(u\ Z0)
V w o )  V w o )  Jo

W f j ' i q )  =  - n S o

w f j 1 (q) = - n S o -̂;Z0)eXp(/3rZ010) f
m  )  ' Jo

Note that, for each q, the right hand side of Eq. 15 is essentially a sum of n 
independent and identically distributed zero-mean random variables. Using 
the arguments of Shu et al. (2007), we conclude that yn[5o(-; Z0) - SV>(-; Z0)]



converges weakly to a zero-mean Gaussian process with covariance function

a t f c l O givenby

r 0) \Wo Wo 

1 n
= -  ^ c o v \ w ^ ( q )  + W l°\q)  + W l°\q),  W ^ \q ' )  + W ^ \q ' )  + W ^\q ' )

i =  1

=  q<°» (  A
Wo

-1 SgV/U/)

o 3, it)
-  E hj(P,u) 02

X u)dAhjo(u)
Wo

-nSo Zo) So ( %  Z0)  {exp (Pt Z 0W)}2e I ^

■nSo ( — ; Zo) S0 ( — ; Zo) {exp (/Jr Z02o)}2£ UU’O w0

JL/XJL »0 “0

J L a  9-»0 “0

Jo(u)dAoi(u) |

J

Jo(u)dAo2(u) | 
5 ^ ’(j8 ,h) J

which, for q = q', can be estimated uniformly consistently by Eq. 7 in Section 3.
□

Proof o f  Theorem 3 Following the similar decomposition technique as that 
used in Voelkel and Crowley (1984) and Shu et al. (2007), we have

sfn P121 Z0) -  P 12 ( — ; Zo
U ’O )  \ Wo

= n 1'2 J 2  \ w \ Y \ q )  + w f \ q )  + W f \ q )  +  W ^ W  +  op(l), (16)
i= 1

where

12) =  Qi 12, S2-1 J 2 1  {Z hji -  Ehji(p, u)}dMhji(u),

f : {
- L

W f \ q )  = n So(m Zo)5i2 ( Q W°U; ZoU?i

”° S0(x- Zq)5i2 ( Q u *°X; Zo ) dAoi(x)} ,

, o T r ,  JoU<)dMoli(u) 
x Z™ 1 '



W [̂ \ q )  =  - n S\)(x\ Zfi)5i2 ( —------—; Zo ) dAoi(x)

W f \ q )  = - n

r  u
Jo {Ju V U’l

(oTry \ Jo(U)dMo2i(u)
X e x p  (/3 Z 020

f  li
S$(P,U)

So(x\ Zo)5i2 ( —------—; Zo ) dAuix)
W 1

( oT t  \ J \ ( l l ) d M n i (U) 
x e x p (p  L\J120 }

Q
( 1 2 )

~ ' P)  = lU ’o )  Jo
”° C , ^  1 C l (l ~  W° U r*i n  (tr, A n ) *3i2 I ---------------1 An

U’l

f>U
{Zfim-em(/3, u ) } ~  /  {Zfim -  e0i(/3,x)}dAni(x; Zn) 

Jo
pll

— I {Zfi2n — eo2(/3, x)}dAo2(x; Z0)
Jo

pll ~

— I {Zi2o — x)}dAi2(x; Z0)
Jo

dAfu(u; Zo).

Note that, for each q, the right hand side of Eq. 16 is essentially a sum of n 
independent and identically distributed zero-mean random variables. Using 
the arguments of Shu et al. (2007), we conclude that s / n  Pu(- )  -  P n ( - )  

converges weakly to a zero-mean Gaussian process with covariance function 
at ) given by ̂U’o «’o ) °  J

(12) (  Cl  Cl  

W o' Wo
= I  ^ c o v  {W [ f \ q )  +  w f \ q )  +  W f \ q )  +  W f \ q ) ,

i=1

W iTW ) +  Hi!3 V >  +  w p ’w'i +  w JP w '))

=  a - '
\ U’o

X - E  
n

x  ,  r -  5 h ’ ( j8 ,H )

/  I T im --------------- H)V - ' o  1 Ŝ (P.U)

X S{̂ (P , i i )dAhjo(n)
\  U’o )



+ tlE

+ nE

+ nE

jf  ”° ”° J  S0 (h; Zo) S12 (  ; Z0 j  - j f  ”° 50 (x; Z0)

x Sn   ̂  ̂ ^---- ; Zo) dAoi(x\ Zo) J
< |5 o (H ;Z o )5 13^ g / ~ | t’0" ;Z o )

-  jf"° S0(x; Zo)Sn ~ * ° X; Z0)  dA0i(x; Z0)J

x {exp(/3rZoio)}“ /o(») ^ ' Jl(“ )
^01

f *-2-

/  ”° /  .S' !-v: z 1.V :
Jo [ Ju

X  U“UX; Z ° )  r f A o i ( x ;  Z | l )  J  
X |  jf"° So(x; Zo)S12 ^  Zo) dA01U; Z0) J

I / a T r w  \ 1 -  J , \ d A o 2 ( t ( )x {exp [P Zo2o)} -̂ o(H) (0)/O ^
^02 vP > _

L '1 \ L  ° So{X;Zo)Sn

X U“UX’’ Zo) rfAoi(x; Z0) J
<2,/—wij a

x [  ° SV>U; Zo)5n f ; Zo) dAoiU) ■
Jo \  «’i /

x {exp (/?r Z i2o)}2 / i ( h ) ^ ^ (H)
5 12 ( j8 ,? / ) _

which, for q = q ' , can be estimated uniformly consistently by Eq. 8 in Section 3.
□



Proof o f  Theorem 4 Note that

sfn S q (q; Z0) — S q (q; Z0) =  sfn

+ \Jti

w0So I Z0) -  So (  — ; Z0
Wo

Wo
P121 Zo) -  P 12 ( — ; Zo

Wo

Hence, by some rearrangement of terms and following the techniques used in 
the proofs of Theorems 2 and 3, sfn S q  (q\ Z0) -  S q  (q\ Z0) can be written 
as a sum of n independent and identically distributed zero mean random 
variables. The weak convergence result follows by using similar arguments. 
The covariance term in Theorem 4 is given by

cov s/Ti ( 50 (  — ; Zo) -  So (  — : Zo) ) , s f i  ( P 12 ; Z0)  - P 12(  —  ; Zo)} 
I \ W0 J \ w0 ) \  [ V^o )  \™0 /  J_

1 n
= n  E cov +  ^ 2 ,% ) +  W ^(q) ,

W[l2\q )  + W f \ q )  + W f \ q )  + W f \ q ) \  + op(l)

i= 1

=  Q{0) ( p \  t t - ' - E
wo )  n

02

x S y (P ,n )d A hj0(n) QiU) (  —  
V w0

— nS0 (  —  '■ Z0)  {exp(/3rZoio)}
V u ’o )

rt / rj , c , q - m u
O0{U; £ jq)>J12 |  ---------------;

W \

f"° c / 7 ^ c  ( (l ~ w^x rW\ A A , , I J , , dA01(u)— I So(x; Zq)5i2 ( ---------- ; Zq ) aAoi(x) \ Jo(u)
J  u W \ S o i ( f r u )

Q_

w0- nSo ( —  ) {exp(/Sr Z02o)}2

x E [  ° |  f  ° 50U)5i2 f - — — )  rfAoiU)} J0(u)-dA "2{U)
JO Ju W 1 5 ^ ( j8 , h )_

which can be estimated uniformly consistently by Eq. 10 in Section 3. □
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