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1. SUMMARY

In a given statistical framowork lot 7" bo the class of all estimates that are tho
uniformly mini variance esti of their respective expected values. Let
T, denoto tho class of bounded estimates in T, The main conclusions of tho papor
may then bo ontlined as follows. (i) Thoro exists a statistic such that 7, is the
class of all bounded functions of this statistic; morcover, oevery real valued function
of this statistic is in 7. It follows, in particular, that if ¢ i 1s in Tyand v is a renl
valued function of ¢, then wisin 7. (ii) T ins an d esti of every
estimable parameter if and only if the framework admits 'a complete sufficient
statistic. In this case, as is well known, 7' is the class of all real valned functions of
the complete sufficient statistic.

Conclusion (ii) can also be stated as follows. Supposo that in the given frame-
work tho maximum possible reduction of the samplo spaco by means of sufficient
statistics has already boen carried out. Then cither cach estimablo parameter has a
unique unbinsed estimate, or there exist estimable paramoters that do not admit
unbinsed estimates of uniformly minimum variance,

A more preciso statement and discussion of the above conclusions is deferred
to later sections. Tho conclusions are established undor the mild restriction that the
samplo spaco is, or may be taken to be, a subset of the m dimensional Cartesian
space (1 € m < o0), and that tho alternativo distributions of the sample point admit
density functions with respeet to a fixed o-finito moasure. It is shown by an examplo
that the rostriction to bounded eati is ial to Tusion (i).

2. INTRODUCTION

Let X bo a sample space of pointa z, and suppose that x is distributed in X
according to some unknown one of o given set P of probability moasures p. Lot ¢
bo a real prrameter, that is, a real valued function on P, g is said to bo estimable if
thore oxista at least ono unbiased estimato of g, say #(z), auch that tho variance of ¢
is finito for each p. Suppose that g s estimable. A particular unbiased estimate of
9, 1y 8ay, ia said to be eflicient at p, if the variance of #, docs not oxcood that of any

211



Vor. 18] SANKHYA : THE INDIAN JOURNAL OF STATISTICS [Pants3&4

other unbinscd estimato when z ia distributed according to pg; Iy is uniformly officient
if 1y is cfficient at each p in P,

A theory of uniformly officient estimation wns developed by Lehmann and
Scheffé (1950, 1953). This theory includes the following application of a thcorem
of Rao and Blackwell, Supposo that thero exists o sufficient statistic, y = s(z)
say, such that tho sot of altermative distributi of y is plete, that in
to say, thero exist no unbiased estimatos of zero that depond on z only through o
except for tho trivial estimate #(y) == 0. Such a statistic Is called a completo suffi-
cient statistio. In this caso, according to Theorem 5.1 of Lehimann and Scheflé
{1950), every estimable g admits o uniformly efficient estimate; morcover, the uni-
formly cficient estimate of & given g can bo characterised as tho unbiased estimate
that depends on z only through s and is of finite varianco for ench p, or, alterna-
tively, as the conditional expectation of ¢ given y, where ¢ is any unbiased estimate
such that tho varinnce of ¢ is finite for each p.

As may bo scen from examples (ef., Girshick, Mostellor and Savage (1946);
Halmos (1946); Rao (1946, 1949); Lehmann and Stein {(1030); Lehmann and Scheffé
(1950, 1955)) the theorem just stated provides a powerful techniquo for the discovery
(or verifiention, in caso a likely estimato is on hand) of the uniformly efficient estimate
of a given g. It can also bo scen from oxamples, howevor, that this technique is not
always available, that ia to say, & completo sufficient statistic may not exist in a givon
caso (cf., Lebmann and Scheff§ (1950); Lehmann and Stein (1950)). The main object
of this paper is to show, under cortain technical qualifications, that this technique
is availablo whenover every estimable g admits & uniformly efficient cstimate. Some
related conclusions, which are trivially true if a complete sufficient statistic exists,
but which happen to be valid in general, avo also established (cf., para 1 of Section 1),

Ono of tho qualifications referred to abovo is necessitated by the possible
existenco of unbinsed estimates of zero that are of infinite variance. This difficulty
is excluded simply by letting complotoncss of a statistic y mean that there exist no
nontrivial unbiased catimates of zerothat depend on x only through y and are of finite
variancoe for each p. It is easily scon that this definition of comploteness is adequate
for to mini varianco estimation theory. Another source of difficulty
is thnt it may bo impossible to earry out tho maximum reduction of the givon sample
space by means of sufficient statisties (cf., Pitcher, 1057). This difficulty is rentoved
by assuming that (*) X is, or may bo taken to be, a Borol sct of tho m-dimensional
Cartesian space (1 € m g oo}, and that each p in P admits a probability donsity
function with respeet to a fixed o-finite measure. This assumption is valid in most
experiments of statistical interest, including sequontial ones.

The following Scction 3 diacusses efficiency at a point. A geometric charac-
terisation of estimates cfficient at a given point is obtained (Theorem 1), It is
pointed out that this el isation yields y and sufliciont conditions (a)
in order that tho Rao-Blackwell method of improving a given estimato always lond
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1o tho cfficient estimate, and (b) in order that the sequenco of Bhattacharyyn lower
bounls to the variance always tend to the exact bound, These conclusions concern-
ing efficiency at a point aro uacd in Scctiona 4 and 5 to establish tho main theorema of
the paper (Theorems 4 and 5).

The writer is indebted to his colleaguo C. R. Rno for pointing out that ecrtain
propositiona closely related to the ones established here are treated in {Rao, 1952).
An argument used in tho paper just cited has enabled the writer to simplify the proofa
of tho main theorems of this papor.

In tho formal exposition of the following sections it is convenient and of somo
theoretical advantago to discuss subficlds rather than statistics or measurablo trans.
formations. Such technical terms as are used without explanation are dofinoed in the
first part of (Bahadur, 1954.) Tho relation between transformations, statistics, and
subficldsis di 1, for plo, in {(Bahadur and Let 1935) and in (Bahadur,
1933a), and conclusiona concerning subficlds established here can bo formulated in
other terms (e.g. as in Scction 1) by referenco to these papera. In particular, if (*)
holds, then to all intonts and purposes a subfield corresponds to a statistic, and an
estimate measurable with respect to a subfield is an cstimato that depends on the
sample point only through the corresponding statistic.

3. EFFICIEXCY AT A POIXT

Let X bo a sot of points z, S a ficld of subsets of X, and P a set of probabi-
lity measures p on 8, The framework X, S, P will remain fixed throughout this sec-
tion and the following ones. A parameler is a real valued function on P An estimale
is defined {without reference to any particular parameter) to bo a real valued $-measur-
ablo function of z. An estimate ¢ is an unbiased cstimate of a parameter g if ¢ is
Pintegrable and

E,(t) = g{p) for each p in P, . (31)

whore E, denotes expocted value when p obtains,

In order to simplify the writing, this section and tho following ones aro written
as if the empty sct were tho only S-measurable sct of p measuro zero for each p in
P, 1If this condition is not satisfied in tho given casc, many of the definitions,
arguments and conclusions to follow should be panied, strictly speaking, by a
null set statement or qualification. For example, tho assertion that ¢, is tho ‘only’
estimate with & cortain property is likely to mean that if #y also has the proporty
then p{ty = 4;) =1 for each p in P. Specifically, the following convention is
obsorved throughout the papor. If 4 and B are sots in S, A = B means that
{A=B)Y(B~A)is p-null for each p in P; if ¢, and I, aro catimates, §; = I, moans that
{z 1 4,{z) = 1,{x} =the wholo spnce X. The relations of inclusion and equality between
classes of sots of X, and botween classcs of estimates, aro to be interpreted, of
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courso, in terms of this convention. Tho interested reader may verify that in this
paper the adoption of this convention does not lend to any real difficulty, partly
becauso much of tho discussion is in terms of subfiolds.

It is assumed in this soction that P s a dominated sct. Lot thero be given
a measure i on § such that tho following threo conditions aro satisfiod: 4 is o-finite;
each p in P is absolutely continuous with respeet to 4; and each of tho density fune-
tions dp/dp is square integrable with respect to p, that is, f (dp/dpu)tdpu < w for each
pin P, In most applications, x is a probability measure in P, or perhaps & mixture
of tho measures in P, but the following development is valid provided only that
and P satisfy tho conditions statod.

Let ¥ denote the real linear spaco of all eatimates ¢ such that { 2dp < co.
X
For t,tye V writo (1, ) = {4, . tdp and [ 4 ) = (. ;8. We have
x

E = (t,dpldy) for all te V,peP. . (3.2)

Let W denoto the subspace (= closed linear manifold) epanned by the set
{dpldp :pe P}

Let us say that & parancter g is p-estimable if thero exists a te V that satis-
fies (3.1). According to (3.2), g is p-cstimable if and only if thero exists a te V such
that (¢, dp/dp) = g(p). For any s -estimablo g let U, denote the class of all estimatos
t ¢V that aro unbinsed estimates of g. It is ensily scen that U, is a closed and convex
subsot of V.

An estimate f, is said to bo a p-efficient estimate of g if ¢, ¢ U, and
[Holl = inf {}j¢|| : te U,}. Noto that in tho special case whon z is a probability measure
in P, a se-officient ostimate is simply an unbiased cstimate of mini variance at .
Also, in this case, tho set IV is tho subspace gencrated by the likelihood ratios relative
to .

Theorom 1 below asserts tho existence and uniquencss of tho z-efficient esti-
mate, and gives a geometrical description of it. The mathematical content of the
theorom ja virtually tho same as that of tho principal theorem of (Stein, 1950), (cf.
also Section 8 of Barankin, 1949}, but the present statoment and proof scem simpler.
A similar treatment was given carlier by Basu (1953).

Theorem 1: Let g be a pr-estimable parameter. (i) The set U consists
of one estimale, to say. (i), =TI for every L ¢ U,, where 11 is the orthogonal projection
to W. (iii} ty s p-efficient. (iv) by is the only p-efficient estimile of g, that is, if L6 U,
and ¢ £ I, then ||, || <J|l|1.

214



ON UNBIASED ESTIMATES OF UNTFORMLY MINIMUM VARIANCE
Proof: Sinco I is & projection, wo havoe
(N1, u) = (¢, [Tu) . (33)
anid < e, e (34)
with equality in (3.4) only if [i¢ = 4. Morcover, since IT i3 tho projection 10 ¥,
WeftiteV M=t ={Mt:1cV} e {3.5)
(ef., Halmos (1931)).

Chooso and fix a e U, und doliné
fo = I e (3.6)
Then ly€ W, by (3.5) and (3.6). Also, for each p,

(to» dpfdp) = (Tt, dpldp) by {3.6)
= (¢, I dpjdyr) by (3.3)
= {t,dp/dp) by (3.5)
= g{p)sincete U, . 37

0 that t,¢ U,. Thusie U, and (3.6) imply tye U,N W, and [|6,] & ]}, with equality
only if to = ¢ (cf., (3.4), (3.6)).

Since U, is pty by hypathesis, this last lusion implics, in parti-
culur, that U,ﬂ I¥ ia non-empty. We now show that U, () IV cannot contain more
than one estimate. Let £, and 4, be functions in U, N I¥. Then {—~t, = usay, is
a function in W such that (w, dp/du) = (t, dpldp)—(ty, dp/dst) = g{p)—g(p) =0
for each p in P, that is, u is orthogonal to each dp/dy; henco u is orthogonal to each
tin 17; in particular, u is orthogonal to itself, so that u = 0. This establishes part
(i) of Theorem 1, Parts (ii), (iii) and (iv) aro immediate consequences of pact (i) and the
conclusion of the preceding paragraph. This completes the proof of Theorom 1.

Remark 1: Supposo that I1 is the projection, not to 3¥ as in the statemont
and proof of Theorem 1, but to a subspace containing 1V. It can thon bo scen from
the above proof that the foliowing ia still truo : if ¢e U,, then f, = [t e U, and
MY < 1¢]l, with strict inequality unless ¢ = ¢,

A method of improving o given unbiased estimato, duo to Rao (1943) and
Blackwell (1047), is to replace it by its conditional oxpectation givon a suitable statistio,
This methed is a specinl case of tho ono mentioned in remark 1 above, To bo procise,
supposo #(X) < 0, and let S, bo a subfield of § such that each dp/dx {(and therefore
each tin 1f’) ia an S,-measurablo function. For any S-p-integrablo function ¢ lot Ct
denote tho conditional oxpoctation of {givon S,, thatis, Ctis the unique $,-p-integrablo
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function such that [ tdp = [ Cldp for overy Sy-mensurable A, It follows easily from
A A

well known propertics of conditiona) expectation that, regarded as an operator on
¥,C is the orthogohnl projection to the subapaco of Sg-moasurablo estimates (cf. Moy
(1054}, Bahadur (1055b)).  Sinco this last subspaco contnins IV, remark | appliea to C.
It is interesting to examino whether the Rao-Blackwell method not only im-
proves a given estimate but actually yields the s-cflicient ono. Tho p ling discua.
sion shows that this last will bo the case, for ovory si-estimable g, if and only if 1 iy
the class of all S,-mensurablo functions in V. Consoquently, in order that the Rao-
Blackwel! mothod always yields the p-eficiont eatimate, S, must bo the smallest ficld
such that each dp/dp is Sy-measurablo. This nocossary condition is, howevor, insuf-
ficient. Somo necessary and sufficient conditions are given in (Bahadur, 1955b),
Ono of these conditions may Lo stated ns followa. Lot us say that W is algebraic it
it contains overy constant estimato, and if for any bounded estimato £ in IV, 0 is also
in I¥'; and that 1V is bounded if tho set of bounded estimates in 1¥ is overywhere denso
(in the Ly senso) in . Then, with S, tho smallest ficld such that oach dpjdn is So-
mensurablo, W is tho sct of all S,-mensurablo estimates in ¥ if and only if I¥ is algob-
rnie and bounded,
Remark 2: As n counterpart to remark 1 abovo, lot TT bo tho projection to
a subspaco of J¥. It thon follows from Theorom 1 that corresponding to each e
estimable ¢ thero exists a unction in tho subspace, t® say, such that Tlt = ¢* for
each te U, Conscquently, |i¢]| 2 |iee|) for each te U,, tho incquality boing atrict
unless ¢ = ¢
The preceding romark describes a gonoral method of obtaining lower bounds
to tho varianco of unbiased estimates, of which various bounds in the literaturo are
specinl cases. In. particular, in caso P = {py : 0 in & roal interval}, dpy = f(x, O)dA
whero A is & o-finite measnre, and p = py,, then under suitablo regularity conditions
(cf., Stoin (1930)),the n-th Bhattacharyya bound to tho variance, b,(g) say, may be
obtained from remark 2 by letting I1 bo the projection to the subspace epanaed by
ho Ay, ..y and by, where hfz) = r-th partial derivativo of f(z, 0)/f(z, 0,). ovaluated
a0 =0,r=01,..,..0 It follows from the dorivation outlined here that lim
e

b.(g) = varianco of the O-efficiont cstimato of g(when 0, obtains), for every 0,-osti-
mablo g, if and only if each likelihood ratio f(z, 0)/f(x, 6,) is in tho subspace spanned
by {4, :7=0,1,2,..}. Tho reador may vorify that this condition is always satis-
fiod if wo can write f(z, 0) = afz) . f(0). exp[0s{z)], —o0 < 0 < c0.

4. UNIFORM EFFICIENCY

In this scction wo consider tho framework X = {z}, 8, and P = {p} of the
preceding section. It is not assumed for tho prosont, however, that P is a dominated
sot.

Let U donote tho class of all S-moasurable estimatos /(£) such that

Ey(t") < o0 for cach pe P, e (1)
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A parameler g i3 snid to bo estimable if U contains an unbiased estimato of g; g is
boundedly estimable if thero exists & bounded unbiased estimato of g.  Clearly, cach
boundedly estimablo | tor is estimable. 1 g is estimablo, n particular unbiased
estimato of g, I, ray, is uniformly efficient if fur any unbiased ¢ U we havo

E,f) € E%) for each p in P

Now let S, bo an arbitrary sublickl of 8. Wo shall say that Sg is complete
if 1 =0 is tho only Sy-measurable unbinsed estimato of zero in U; S, is boundedly
completo if ¢ = 0 is tho only bounded Sg-mensurable unbiased estimato of zero.

Theorem 2: If there exists a suflicient and complete subficld, then every estimable
parameler admits a uniformly efficicnt estimate,

The proof of this theorem is virtually tho samo as that of Theorem 5.1 of
Lehmann and Scheffé (1950) and so is omitted. Tt follows from tho omitted proof
that if S, is suflicient and complete, tho uniformly eflicient estimate of & given estima-
ble g is unique, and can bo deseribed as the S;-measurable unbiased estimate in U, or
alternatively, as €1, where £ is any estimato satisfying (3.1) and (4.1) and € denotes
conditional expectation given S,

Tho above descriptions of the uniformly efficient estimate suggest that thero
can bo at most one subficld Sy’ that is sufficient and complete. It can be scen from tho
following theorem that this is indeed the ease, sinco the neceskary and suflicient sub-
field, if it exists, is uniquo (cf. Bahadur, 1934).

Theorem 3:  If 8 is sufficient and boundedly complete, then S, is necessary.

It may bo noted hore that this theorem does not presuppose the existenco of
the. necessary and suflicient subfield.

Proof :  Let S° bo an arbitrary but fixed suflicient subfield. Wo have to show
that S,C 8° Considera set A€ S, Let x denote tho characteristic function of A,
that is, y=10n 4 and =0 on X—dA. Let ¢ bo tho conditional expectation of
X given 8%, and ¥ tho conditional expectation of & given S;.  Then

0<gg, 0yl e (32)
and E())=E,($)=E/x) =pld)forpeP. e (43)

Write ¢ = x—t7. Then ¢ is a bounded unbiased cstimato of zero, by (4.2) and (4.3),
and ¢ is S-measurablo sinco y and y are.  Ci quently, by 1 led pl
of 8§,4=0, that is, x = ¢/. Sinco x* = x, this last rolation implics

Xy=x e (4.4)
217



Vor. 18]  SANKHYX : THE INDIAN JOURNAL OF STATISTICY [ Panvs 3 & 4

It now follows from (4.4), the definition of y, and the Ng-meaaurability of x, by a
well-known property of conditionnl expectation, that

E)=Ex.v)=E x.¢) for pel. o {4.5)

Wo ree from (4.3) and (4.5) that
EX{1—¢)) = EJ(1—x)3) = 0 for pe I’ Y

It follows from (4.2) und (3.6} that ¢ = x. Since ¢ is S°-incasurable by 1he definition
of @, x is S%-measurable, vo thnt A is in S° Thus A ¢ Sy impliea 4 8%  Thia
completes the proof of Theorem i,

Tho following theorem is a converse of Theorem 3.

Theorem 4;  Supposc thal P i3 a dominated sel.  If cvery boundedly extimahile
parameler ardmits @ uniformly cficient estimate, then a sufficient and complete aubficld
exisls.

The proof of this theorem {as also of Theorem & Lelow) is postponed to, the fol-
lowing section.

In tho general cnse, let 7 donote thoe claza of all nniformly eflicient estimates,
ie. {eT il and only if te U and ¢ is the uniformly officient estimate of y defined by
(3.1). Now, if a complete sullicicat aubficld oxiats, T ean bo charncterised ar the class
of all estimates in U that are measurablo with respeet to this subfield. “Ihis suggests
that in general (irrespective of whether o completo sufficient subfickl exista) 7' can
perhaps be characterised s tho class of all estimates in U that are measurable with
respect to somo {not necesearily sufficient) subfield. A related conjecture is that if
tisin T, and we U i o function of 7, then u is in 7. It is shown in Scction 6 by an
examplo that neither conjecture is valid in general.  Tho following theorems show,
however, that both conjectures aro ‘nearly’ valid. ‘The near validity of tho sccond
conjecture was demonstratedl carlier by Rao (1032).

Let 7, dlenote tho class of bounded catimates in 7. Note that 7, is non-
empty, #ince it certainly contains every constant.

Theorem 5:  There exiats @ subificld S, such that (i} T, ia the class of all bounded
So ble eali {ii) reery Sy bl 3 in U is also in T, and (iif)
S, is necessary and complele.

Theorem #:  If$ (2, 2y. ... ;) 1a @ Borel measurable function of k real variables,
and if wm QU by, ..., 1) T8 in U, where t,,t,, ... and t are in T, then wisin T.

Proof : Sinco the f; aro Se-measurablo by Theorem 5, and @ is Borel measur-
able, it follows that 4 is an Sy-mensurable function in U, and so e T by Theorem 5.

This corpletes tho proof. It is cloar that Theorem 6 and its proof can bo generalized,
©.g. to pointwiso limits of functions of estimates in 7).
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In connection with Theorems 5 and 8 it may be worth whilo to note that if
i & finite set then Ty = 7%, A less trivial (and perhaps less usofal) sufficient condi-
tion for the samo relation is that P be a finito wet.

5. Prouor or THEOREMS 4 AND &

Wo shall first cstublish Theorom 5. It will Lo seen that a continuation of the
samo argutent then yields Theorem 4. Tt is convenient to presont tho argument, as
a serivs of propositions, as follows.

The classes U, T, and T, of estimates aro definod in the preceding section,
Tt 8, be the smallest field of sets of X such that each estimato in 7'y is S,-meusurable,
Further, let N, denoto the class of all unbiased catimates of zero, and ¥, the subclass
of all unbiased cstimates of zero that are alvo in U.

Proposition 1 An estimate te U in in T if and only if Lze ¥, for cvery
16Ny

Jroof : For a proof of this well known and important proposition seo, for
example, Lehmann and Scheffé (1950), Theorom 5.3.

Proposition 2: T, is an algebraic linonr manifold.

Proof : Wo havo to verify that (i) T, contains tho estimato () =1, (i)
w,ce Ty implies xu+fee T, for all constants « and f, and (iii) ¢ € T, implics B¢ T,.
‘These verifications can be based on proposition 1. For example, to establish (iii)
consider 826N, Then ¢.zisin NV}, by proposition 1. Sinco ¢ is bounded, it follows
that ¢,z is in fact in N,, Hence f.(!.z) = 2.z is in N}, by proposition 1. Since
2¢ N, is arbitrary, it follows from proposition 1 that te T, and so 2¢ T, since *
_is bounded. This proof of (iii) is duo to Rao (1952).

Now choose and fix a finite measure z on S, and for any S-measurablo fune-

tion fiz) et 11l = (J f2dp-

I’roMiliorz 3:1f fis Sy-mensurable, and || f || < o, there exists a sequence
{t.} in Ty such that lim |f—1] =0.
“~—n

Proof : For the purposes of this proof only, let ¥ denote the normed lincar
space of all S,-measurablo £ with |Ifi < co, with tho usual jdentification of functions
that differ on a sct of g-mensure zero.  Since x i an arbitrary measuro, this lust identi-
fication is not necessarily the same as the ono nscd elsewhero in this paper. At any
rate, since g is o finite measurc, and since each ¢ in T, is o (literally) bounded
Sy-measurable function, we have 7, (C V. Let Y be the closure of 7. We have
to show that ¥ = T,

Since T, is a lincar ifold of L led functions, including tho 1
(cf. proposition 2), it is cloar that Y is 2 bounded subspuce, and that ¥ contains tho
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constnnts. \We shall now show that if f is & Lounded function in ¥ then f?isin ¥,
Given o bounded fin Y, lot {1,} bo a sequenco in T, such that

limt jt,—f} = 0. e (8)
n-n

Let & bo o positive integor, and lot ¢; Lo n cons tant such that |/ (x)] € ¢, Wo then
have fitf,—t SIS ¢ Wa —f Y for each n. Hence, by (5.1),
Tt t —h S =0 e {52)
0
Sinco T, is an algobraioc lincar manifold (cf. proposition 2), and sinco
tdy = ((H)'—~E— G2, wo havo 41, € T, It now follows from (3.2) that

hfeY e (33

for overy k. ILet ¢ bo o constant such that |f(x)] <¢. Wo then have
U f~f2N K cilta—fN for every k. Henco

‘E"l; s f=S3 =0 e {5.4)

by (5.1). It follows from {5.3) and {5.4), as desired, that f2¢),

Thus Y is an algebraic and bounded subspace. It follows (Bahadur, 1955b)
that thero cxists o subficld of S, say $°, such that Y is s-equivalent to the sct of all
S*-measurablo functions f with }| f§] < . Since T}, (C Y, it follows from the definition
of S, that this $° must bo s-cquivalent to Sp, and henco ¥ = V. This completos
tho proof of proposition 3.

Proposition 4: 1f teU, and tis Sy-measurablo, then te 7.

Proof: Lot ¢ bo an Symeasurablo function in U. Chooso and fix a p in P
and a zin N,.. Sineo E,(?) < o, it follows from proposition 3 with st = p that thero
exists o sequenco {1} in Ty such that E,(f,—1)*—0. Sinco E,(z*) < <0, it follows
that E(,2)-» E,(iz). Howover, E (i,z) =0 for cach n, by proposition 1. Honce
Ejfiz)= 0. Sinco p ¢ P and z ¢ N, arc arbitrary, it follows from proposition 1 that
teT, and this completes tho prool.

P ition 5: S, is y and )

J

Proof: Lot A bo a sct in S, and lct y denoto the characteristic function of 4.
Then ye T by proposition 4. Conscquently, if 80 is any sufficient subfield, x must
bo S%-mensurable, for othorwiso the conditional expectation of x given $° would bo
a different and betler unbinsod estimato of g{p) = p{4), by the theorem of Rao and
Blackwell. Heneo A€ S° whenever 8°is euflicient. Sinco A €S, is arbitrary, it
follows that S, is nceonwary, To whow that S, ia complete, Jot 26 UV an Sy-measurable
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unbinsod estimato of zero,  Then ¢ is the uniformly cfliciont estimato of zero, by pro-
position 4. Honco ¢ = 0. This completes tho proof.

We may note here that Theorom 5 is an immediate consequonce of the dofi-
nition of S, and propositions 4 and 6. It remains therofore to establish Theorem 4,
This will bo dono by showing that if P is dominated, and T ine an unbiascd esti-
mato of every boundedly estimablo parameter, thon S, is sufficient,

Let Q Lo a countablo subsot of I such that Q is cquivalent to P, f.0. p(d) =0
for all pin Q implics p{d) = O forall pin P. The existenco of such a sot Q is assured
by Lemma 7 of Halmos and Savago (1049). Let @ = {py, py. ...} bo an enumeration
of Q, let ¢, ¢y, ... bo constants such that

¢G>0, l".c‘ <« e (5.5)
and define
Hd) = “-'- cpid) v (5.6)

for Ain S. We shall thon eay that ; is & pivotal measure based on Q.

Proposition 6 : For cach g in @, dg/di is Sy-measurablo.

Proof: Chooso and fix & g in Q. It follows from (5.5) and (5.6) that wo can
writo ¢ = ¢q+A where ¢ is & positivo constant and A is a mcasuro. Henco
1 = ¢ {dgfdp) +(dAfdp), and so 0 <.dg/dp € (lfc). Thus dg/dp is o bounded
measurable function.

Writo f = dqfdy, and dofine g(p)=E,{f) for p in P. Then g is a boundedly
ostimablo parametor. Consequently, by hypothesis, thore exists an unbiased cati-
mato of g in T, say £. In particular, wo have E,(t) = E,{f), E,(*) < E,{J?) for all
pin P. Theso rolations imply, using (6.5) and (5.6), that

E ()= E(fiforpeQ; { de < Jf’d/:. . (5.6)

Suppose for the moment that p is restricted to the set Q. Since dpfdx is
bounded for cach p in @ by tho first paragraph of this proof, and sinco s is a finite
measuro, Thoorem 1 of Scetion 3 ean bo applied to determine p-efficient estimates of
#- catimablo paramoters on Q. This application shows that f = dg/du is p-officient.
Consequently, by (5.6), £ is also the pu-cfficient estimato of tho same parameter. Hence
t = f, by uniqueness of tho s-efficient estimate. Thue f is & bounded estimato in 7,
ie. feT,. It now follows from the dofinition of S, that f = dgqjdy is S;-mensurable,
and the proof is comploto.

Propotition 7: 8§, is sufficient.

Proof: Lot p; and p, bo two measures in . Choose and fix a countablo
equivalent subsct @ that includes p, and p, and let 2 bo a pivotal mpasuro based on Q.
It follows from proposition 6 that dp; = f{x) dji, whero f; *is Sg-mensurable, § = 1, 2.
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Hence, by tho fuctorization theorem for sufticient subficlds, 8, is suflicient for the set
{21 2}

Sincy p, and pg aro arbitracy measures in P, it follows that §, is puirwise suli-
cient for P, Proposition 7 now follows from the Uheorem of Halmos and Savage (1949)
that in the dominated caso pairwise ruflicicncy is cquivalent to sufficiency.

Thiz completes tho proof of Theorem 4. Tho proof shows that the conclusion
of the theorom holds provided only that overy parameter of the form g{p) = E,ldqldp)
admits a vniformly efticient estimate, whero 4 is & pivolal measuro based on @, ¢ is
& measuro in @, and Q i a countablo cquivalent subsct of P,

6. AN EXAMPLE

It is the object of this section to show by an example 1hat a real valued fune-
tion of a unifurnly efliciont estimata is not necessarily nniformiy efticient. It follows
from the theury doveloped in Sections 4 and 5 that in any such example a completo
wufiicient statistic docs not exist; tho class T of all uniformly eflicient cstimates cannot
bo characterised as the class of all square integrablo functions of somo statistic; thero
oxist estimates in 7' that cannot bo approximated (in any reasonable sense) by hounded
estimates in 77; and both the sample spaco X and the set P of alternative distributions
on X must Lo infinito,

To construct such an sxammd, let X bo tho set of points x = 0, 1, 2, ... adinf.,
and S the field of all séts of X. We shall choose theset P of alternative distributions
of z go that T' = the class of all lincar functions of z. Such a choice of P evidently
furnishes the required example.

Let m bo a probability distribution such that

E (1) < o0, B (z) = © . {6.1)
and such that
Ez)=E () =0 e (0.2)
whero z)(x) =(=1).2% for 2 =0, I, . (6.3)
1 ifz=0
and 2, (z) = { e {64)
(=12 fz=12,.,

It is not diflicult 1o seo that such a distribution m exists, Let po=m. Next, let

21 Hx=0
1 fz=1
= o (0.5
A= ir=2 ©
~0* otherwiso
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od for b=2,3, . 0vt

kb 4 1)k —2 if z=k=1
A—htr—2  ifz=k 0.
PSS b ke iz bl - (0)

0 otherwise,

Having thus defined p, for integral vulues of @ in [0, ), oxtend tho dofinition by
lincar interpolation. Specifically, for any @ with 0 @ < o0, let & = k{0) ba the great-
st integer < 0, let @ = a(0) bo determined by ak+4(l—a)k+1)=0, 0 <a< 1,
and define py(2) = ap(x)H{l—a)plr). Tt P={p:0 0 <0}

To dotermino tho class of uniformly officient catimates in the frameWork
X, S, Pdefined abovo, let the classes X, and N, of unbiased ostimates of zoro bo dofined
as in the socond paragraph of Scetion 5. It follows easily from (6.3), (6.4), (6.5) and
(6.6) that Eylz) =0 for 0=10,1,2,... and i =1,2. Henco Ez) =0 for all 4,
i=1,2 llenco az)+dz, is in ), for all constants a and b, Now consider an arbi-
trary 5 in V). Let @ and & bo constants (possibly both zero) such that with
2 =3—an—by woe havez,{z) = 0 for z = 0 and z = 1; it is ensily scen from (0.3)
and (8.4) that auch constants exist, ‘Then z, is an unbiased estimate of zero, and z
vanishes for z = 0 and z = 1. It now follows from (6.5) and (6.0) that wo must have
) =0for all z. Hence 53 = az,4bz,.

Wo conclilo that N is tho class of all estimates of the form az,+bz,. It fol-
lows henco by (6.1), (6.3) and (6.4) that N, is the class of all estimates of tho form bz,
Since 7, is never zero, it now follows from proposition 1 that T is the closs of all esti-
mates of tho form az,+bz,/z,, i.c. of tho form a4-fz, sinco z,fz, = 2. Thia complotea
tho verification of tho example.
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