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CHAPTER 1 

1. INTRODUCTION AND LITERATURE SURVEY 

 

1.1 MODERN GROWTH THEORY 

1.1.1 Sources of Economic Growth and the Definition of 

Steady-State Equilibrium 

Economic growth is defined as a continuous increase in national income 

taking place over a time horizon. According to the neoclassical theory of 

economic growth there are three sources of economic growth: (i) capital 

accumulation, (ii) growth of labour force and (iii) technological progress. 

 The steady-state growth equilibrium is defined as a state where all major 

macro-economic variables grow at the same rate so that the ratios of these 

variables remain unchanged over time. For example, in the one sector 

aggregative model like that of Solow (1956), capital and labour grow at equal 

rates and hence capital-labour ratio remains time-independent. If this 

equilibrium is stable then the rate of growth in the steady-state equilibrium is 

the long run rate of growth of the economy. In a multi-sectoral dynamic model, 

steady-state equilibrium growth means balanced growth of all sectors at equal 

rate.  

 

1.1.2 Old Growth Theory Versus Endogenous Growth Theory  

In the old growth theory developed by Solow (1956) and extended by 

many others, steady-state equilibrium growth rate is exogenous because the 

rate of growth of labour force and the rate of technological progress are 
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exogenous. This exogenous growth rate cannot be influenced by public policy. 

However, the rate of growth is endogenous in the old theory when the economy 

is on the transitional growth path. On the other hand, the long-run rate of 

growth or the steady-state equilibrium rate of growth is endogenously 

determined in a model of endogenous growth. In such a model, the rate of 

growth of labour force or the rate of technical progress is assumed to depend 

on some macro-economic variables.  

 

1.1.3 Sources of Endogenous Growth 

The strand of endogenous growth literature identifies externalities arising 

from productive inputs. These spillover effects compensate for diminishing 

returns to physical capital accumulation and make the endogenous growth rate 

positive. 

The seed of the idea of endogenous growth can be found in Arrow (1962) 

where ‘learning-by-doing’ mechanism leads to endogenous technical change. 

The labourer can gain experience as aggregate physical capital is accumulated 

and this experience gain is called the process of ‘learning–by-doing’. This leads 

to an improvement in the labour productivity; and the improvement is internal 

to the economy as a whole though external to the individual firm. Hence the 

economy grows because diminishing returns to capital is halted by the increase 

in labour productivity.      

Lucas (1988) finds the source of endogenous economic growth in 

endogenous human capital accumulation; and, in his model, technological 

change is identical to the human capital accumulation. The rate of 

accumulation of human capital is endogenous because the consumer allocates 

his resources between production and human capital accumulation solving a 

lifetime utility maximization problem. 

In Romer (1990) and Grossman and Helpman (1991), the technical 

progress takes the form of product development and this is made by the R & D 
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sector that is the engine of growth. Endogenous allocation of resources between 

the production sector and the R & D sector makes the rate of technological 

progress endogenous. 

However, Barro (1990) deviates from the idea of endogenous technical 

progress as a source of endogenous economic growth; and shows that 

endogenous growth is possible even without such technical progress if the 

system generates external economies arising from productive public inputs. 

Public inputs used by firms create externalities which cannot be internalized 

by an individual firm’s decision making process. However, these halt the 

diminishing returns to physical capital on an aggregate scale and make the 

growth rate positive in the long run. 

 

1.2 PUBLIC EXPENDITURE AND ENDOGENOUS GROWTH 

1.2.1 Empirical Support 

There is substantial empirical evidence of public expenditure having a 

positive impact on economic growth in empirical papers like Gregoriou and 

Ghosh (2009), Hulten (1996), Neill (1996), Tuijl, Groof and Kolnaar (1997), 

Khan and Kumar (1997), Rioja (1999), Shioji (2001), Kneller, Bleaney and 

Gemmell (2001), Ghartey (2008), Forni, Monteforte and Sessa (2009), etc. 

 

1.2.2 Barro (1990) Model 

Barro (1990) first shows that productive public input can outweigh the 

diminishing returns of private physical capital even without endogenous 

technological progress, and can be the driving force behind economic growth. 

The production function in Barro’s (1990) model satisfies constant returns to 

scale in private capital and productive public expenditure, as shown below. 
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Here,  ,   and   stand for output, private physical capital and productive 

public input respectively, all in per capita units. While private physical capital 

is a durable input, Barro treats productive public input as a perishable input. 

Public input is financed by public expenditure which is a flow variable.   is the 

constant productivity term. 

Government finances expenditure on public input with a proportional 

income tax. The budget of the government is balanced. Hence, we have  

                                                                                                                               

 Here   is the income tax rate. 

The representative household’s budget balance equation is given by 

                                                                                                                                    

Here,   is the level of per capita consumption. The dynamic optimization 

problem of the representative household is to maximize the discounted present 

value of utility over the infinite time horizon,            
 

 
, with respect to  , 

subject to equations (1) and (3). Here,   is the discount rate. The instantaneous 

utility function is given by 

      
    

   
                                                                                                                         

In the steady-state growth equilibrium,   and   grow at equal rates. 

Barro (1990) first finds out the growth rate maximizing income tax rate at the 

steady-state equilibrium; and then shows that the growth rate maximizing 

solution is identical to the welfare maximizing solution of the representative 

household. The income tax rate is identical to the ratio of productive public 

spending to national income; and the optimum income tax rate is equal to the 

competitive output share of the productive public input, as given by   

                                                                                                                                                 

However, the growth rate in the decentralized economy falls short of that 

in the planned economy. This is clearly due to private individual’s inability to 

internalize the positive externality caused by the productive public input. The 

social planner can internalize this externality.  



5 
 

1.2.3 Futagami, Morita and Shibata (1993) Model 

However, the Barro (1990) model fails to exhibit transitional dynamic 

properties due to the assumption that public spending is a flow variable. This 

makes it identical to an    model where marginal productivity of capital is 

independent of capital accumulation. All macro variables, in his model, start at 

their initial values and jump to their steady-state equilibrium values.  

Futagami et al. (hereafter known as FMS) (1993) question the validity of 

the assumption that public productive input is a flow variable. Futagami et al. 

(1993) extend Barro (1990) model assuming that productive public input is a 

stock variable like physical capital. Equations (1), (3) and (4) of Barro (1990) 

model remain unchanged here, but equation (2) is modified as follows. 

       

Here,    is the net investment in public capital and   is the stock of 

public capital. Both   and   accumulate over time; and, in the steady-state 

equilibrium,  ,   and   grow at equal rates. 

Transitional dynamic properties come back to this extended model; and 

Barro (1990) result about the optimal income tax rate remains valid in the 

steady-state equilibrium but not in the transitional phase of economic growth.  

 

1.2.4 Various Extensions of Barro (1990) Model 

Both Barro (1990) and Futagami et al. (1993) models are extended and 

reanalyzed by various authors in various directions; and the literature includes 

the works of Aschauer (1988, 1989, 1990), Turnovsky (1997, 1996), Tsoukis 

and Miller (2003), Lansing (1998), Mourmouras and Lee (1999), Tanaka (2002), 

Dasgupta (1999, 2001), Varvarigos (2003), Ghosh and Roy (2004), Yakita 

(2004), Marrero and Novales (2005), Greiner and Hanusch (1998), Park and 

Phillippopoulos (2002), Hu, Ohdoi and Shimomura (2008), Burguet and 

Fernandez-Ruiz (1998), Ghosh and Mourmouras (2004), Park (2009), Baier and 
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Glomm (2001), Cazzavillan (1996), Chen (2006), Zhang (2000), Chang (1999), 

Ohdoi (2007), Greiner and Semmler (2000), Kalaitzidakis and Kalyvitis (2004), 

Shioji (2001), Tamai (2007), Raurich-Puigdevall (2000), Neill (1996), Chen and 

Lee (2007), etc.  

Neither Barro (1990) nor Futagami et al. (1993) considers adjustment 

cost of investment. Turnovsky (1996) and Tsoukis and Miller (hereafter known 

as TM) (2003), incorporate convex adjustment costs of private capital 

investment in an endogenous growth model with productive public 

expenditure. Public expenditure affects adjustment cost in Turnovsky (1996). 

However, public services have no effect on the adjustment cost in TM (2003).  

Lansing (1998) develops an endogenous growth model of business cycle 

with public capital and examines optimal fiscal policy when utility of the 

consumer is enhanced by consumption of public goods.  

Mourmouras and Lee (hereafter referred to as ML) (1999) and Tanaka 

(2002) examine the effects of government spending on infrastructure within a 

Barro (1990) type endogenous growth model populated by individuals within 

finite horizon.  

Dasgupta (1999) constructs a two sector model of endogenous growth 

with durable productive public infrastructure where this public infrastructure 

is used to produce the final good as well as new public infrastructure. Private 

capital is also used by these two sectors. Government imposes a proportional 

profit tax on the household’s aggregate capital income and charges a price per 

unit of the infrastructural service to producers of the final good.  

In a Barro-type model, Varvarigos (2007) shows how policy variability 

can affect the time varying growth rate when a productive public good is 

involved, either as a direct input in production or as an input in human capital 

accumulation.  

Ghosh and Roy (2004) develop an endogenous growth model with both 

stock and flow varieties of public input.  

Yakita (2004) examines the effects of fiscal policy on growth and welfare 

in a model of public capital driven growth where different varieties of final 
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goods are produced and markets for final goods are characterized by 

monopolistic competition. The utility is a function of a composite consumption 

index consisting of all these varieties of final goods.  

The implications of alternative tax policies are examined by Marrero and 

Novales (hereafter referred to as MN) (2005) in an endogenous growth model 

with productive public expenditure as well as public consumption expenditure. 

Aggregate private capital and public capital have positive externality effects on 

production. With full depreciation of private capital as well as of public capital, 

the dynamic equilibrium is shown to be devoid of any transitional dynamic 

properties. However, properties of alternative tax policies are analyzed when 

the government wants to maximize the growth rate in the steady-state 

equilibrium.  

Greiner and Hanusch (1998) also analyze growth rate maximizing and 

welfare maximizing policies in a Futagami et al. (1993) type of model when 

various fiscal instruments vary.  

The problem of moral hazard of redistributive transfers and its 

implication for growth and fiscal policy are examined in Barro (1990) kind of 

model by Park and Philippopoulos (2003). They consider heterogeneous capital 

endowments across individuals to capture wealth inequality and consider a 

utility function defined over final good consumption and consumption of public 

services.  

Hu, Ohdoi and Shimomura (referred to as HOS hereafter) (2008) extend 

the Barro (1990) one-sector model to a two-sector endogenous growth model 

with an investment good sector which is more capital intensive than the 

consumption good sector. They show the steady-state growth equilibrium to be 

unique and the transition path to be indeterminate. Thus they bring back 

transitional dynamic properties in Barro (1990) model without introducing 

durable public capital.  

Burguet and Fernandez-Ruiz (1998) develop an open economy growth 

model with public capital in production and show the existence of multiple 

steady-state equilibria when a proportional output tax finances the public 
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capital investment. If debt financing with borrowing from the international 

market is possible, then the economy may be able to move out from the low 

level equilibrium trap. Ghosh and Mourmouras (2002) also extend Barro (1990) 

model in the direction of a two-country world with capital being perfectly 

mobile between the two countries and with production in both the countries 

enjoying positive externalities. These externalities are obtained through 

spillover effects which originate from the average capital stock of domestic and 

foreign firms, and through average government consumption expenditure that 

provide direct utility to households.  

Park (2009) investigates Ramsey optimal fiscal policy in an endogenous 

growth model with productive public expenditure and with labour-leisure 

choice. Baier and Glomm (hereafter referred to as BG) (2001) introduce public 

services as a flow to enhance the representative consumer’s utility while 

endogenous growth in this model is driven by the accumulation of productive 

public capital.  

Several authors have explored the effects of public good externality on 

utility function in the endogenous growth framework. Cazzavillan (1996) 

develops an endogenous growth model where public good creates positive 

externalities on production as well as on utility of the consumer. If the 

economies of scale, which arise from the complementarity between private 

consumption and public expenditure, are strong enough to generate increasing 

returns in the representative agent's utility function, then unique steady-state 

growth equilibrium exists and the transitional path to this equilibrium is 

locally indeterminate in this model. Chen (2006) extends Cazzavillan’s (1996) 

model by considering public input in production as a stock variable. He shows 

the existence of unique balanced growth equilibrium and quantifies the 

parameter space of the consumption externality of public expenditure for 

indeterminate, unique and unstable transitional growth paths.  Zhang (2000) 

also comes to similar conclusions when he explores the possibility of increasing 

returns in a Barro (1990)-type production function. Utility of the representative 

consumer is enhanced by consumption and public good and exhibits 
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increasing returns in these two arguments. Chang (1999) explores a planner’s 

optimization problem in an endogenous growth model when utility is enhanced 

by public expenditure and production of the final good requires public capital 

as one of the inputs. The steady-state growth equilibrium is shown to be saddle 

path stable. Changes take place in the steady-state equilibrium and in the 

transitional growth path due to changes in public consumption expenditure 

and in public investment. 

 

1.3 PROBLEM OF CONGESTION EFFECT ON PUBLIC CAPITAL 

1.3.1 Nature of the Problem  

Public goods are not necessarily non-rival. In this case an agent cannot 

be prohibited from using the public good, although her use lowers its 

availability to others. Breakdown of the non-rival characteristic of public good 

gives rise to congestion effect where the per-capita availability of the public 

good varies inversely with the number of agents using it. 

In the endogenous growth literature with productive public input, 

congestion effect arises from the accumulation of private physical capital. 

Public infrastructure acts as a complement to private capital input. Factories 

need roads, power and water to operate. So wherever such infrastructure is 

abundant in supply private investment takes place in these regions and in the 

process congests public capital.  

 

1.3.2 Existing Dynamic Models with Congestion Effect  

Raurich and Puigdevall (hereafter referred to as RP) (2000) develop a 

model of endogenous growth with congestion effect on productive public capital 

and with leisure in the utility function. The model shows the existence of 
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multiple balanced growth paths and the possibility of local and global 

indeterminacy due to the relationship between public capital accumulation and 

labour-leisure choice of individuals.  

Turnovsky (1997) extends the model of Futagami et al. (1993) 

introducing congestion effect on productive public capital and explores the 

design of fiscal policy when growth rate and welfare are maximized at the 

steady-state equilibrium. When welfare is maximized in the planned economy, 

the optimal public expenditure-output ratio falls short of the growth rate 

maximizing public expenditure-output ratio which is equal to the elasticity of 

output with respect to public capital. Fisher and Turnovsky (hereafter known 

as FT) (1998) work out a very similar model with the difference that both types 

of capital, public and private, are subject to depreciation and their analyses are 

qualitatively similar to that of Turnovsky (1997). Turnovsky (1996) also deals 

with congestion effect on productive public input. 

Eicher and Turnovsky (2000), on the other hand, focus on the distinction 

between relative and aggregate congestion effects of public capital due to 

private capital accumulation; and explore their implications on fiscal policy in 

their model. The steady-state equilibrium growth rate is shown to be a function 

of the congestion parameters, both absolute and relative; and an increase in 

either type of congestion reduces this growth rate. The optimal public 

expenditure-income ratio is shown to be equal to the output elasticity of public 

capital in the socially efficient steady-state equilibrium; and the optimal income 

tax rate which replicates the socially efficient solution in the market economy is 

shown to be an increasing function of the congestion parameters. This tax rate 

also achieves the first-best optimum in the transitional phase too, unlike a 

time-varying optimal tax rate derived in Turnovsky (1997).  

Ott and Turnovsky (hereafter known as OT) (2006) develop a Barro 

(1990) type model of endogenous growth with productive public inputs where 

these public inputs are categorized as excludable and non-excludable and 

where both public inputs are subject to congestion effect. Government not only 

imposes a proportional income tax but also collects a user fee on the usage of 
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the excludable public good and exercises monopoly power over this pricing. In 

their first model, the government does not act as a monopolist providing the 

productive public input; and growth rate maximizing and welfare maximizing 

policies appear to be identical in the case of the central planner. Optimal 

income shares of expenditure on excludable and non-excludable public inputs 

are equal to their corresponding production elasticities. The optimal income tax 

rate is shown to be a function of congestion-adjusted production elasticities of 

the two types of public input and is higher than the optimal public 

expenditure-income ratio on the non-excludable public good. The optimal user 

fee also appears to be a function of congestion-adjusted output elasticities of 

the two public inputs and is lower than optimal public expenditure-income 

ratio on the excludable good. In the second model, when government is allowed 

to act as a monopolist with respect to the provision of excludable public input, 

the optimal income tax rate remains unaffected by monopoly pricing and thus 

coincides with the competitive case. However, the optimal user fee in this case 

is shown to be higher than that in the competitive case and vary positively with 

the degree of monopoly power. 

Gomez (2008), however, develops an endogenous growth model with 

absolute as well as relative congestion of productive public capital and with 

Lucas (1988) type of human capital accumulation. Steady-state equilibria in 

the decentralized and in the centralized economy are shown to coincide and to 

satisfy saddle point stability; and various fiscal parameters do not affect the 

long run equilibrium growth rate in the market economy although the steady-

state levels of the ratio variables are affected by changes in these policy 

parameters. This is so because technology of the education sector is linear in 

effective labour time. It is shown that an increase in absolute congestion 

reduces the steady-state equilibrium growth rate of output though a change in 

relative congestion has no effect on it. This result is different from ET (2000) 

where both types of congestion reduce the equilibrium growth rate. The socially 

optimum income tax rate varies positively with the value of the congestion 

parameter.  
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Bougheas, Demetriades and Mamuneas (hereafter known as BDM) (2000) 

develop an endogenous growth model in the lines of Romer (1987) with 

congestion affected public infrastructure whose role is to reduce cost of 

production of imperfectly substitutable intermediate inputs. They show that 

there exists a positive relationship between the degree of specialization and the 

size of public infrastructure while the average output of intermediate good 

bears an inverse relationship with the size of public capital. There also exists 

unique income tax rate that maximizes the balanced growth rate. Results of 

this model are empirically tested using US census data. 

   

1.4 ROLE OF HEALTH CAPITAL 

1.4.1 Empirical Works  

There are models using Barro’s (1990) theoretical framework which carry 

out various empirical studies emphasizing the role of health on economic 

growth. For example, Miyakoshi et al. (2010) develop a gradient method in 

order to arrive at the optimal adjustment of fiscal spending components so as 

to maximize growth rate, starting from the present shares of components. 

Public spending is composed of expenditures on health, education, security 

and other miscellaneous public services in their theoretical model. In a sample 

consisting of both developing and industrial countries, Bloom et al. (2004) find 

that good health (proxied by life expectancy) has a significantly positive impact 

on economic growth. Sala-i-Martin et al. (2004) also find similar evidence of 

positive relationship between health and economic growth. Several other 

authors examine this relationship using data from specific countries. For 

example, Jamison et al. (2005) use a sample of 53 countries over the period of 

1965-1990 and show that improvements in health account for approximately 

11% of growth. Gyimah-Brempong and Wilson (2004) show that 22-30% of the 

transition growth rate of per capita income in Sub-Saharan Africa can be 
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attributed to health factors. Weil (2007) use microeconomic data to show that a 

significant part of growth in per capita income can be explained by health 

factors.  

 

1.4.2 Dynamic Models with Public Expenditure and Health 

Hosoya (2003) considers public expenditure on health input that helps 

accumulation of health capital through a flow channel while a physical capital 

deepening externality helps accumulate it through a stock channel. In this two-

sector endogenous growth model, the stock channel is shown to be more 

significant than the flow channel for determining the long-run growth rate 

maximizing tax rate.  

In an endogenous growth model with public infrastructure services, 

Agenor (2008) distinguishes between flow and stock approaches to health as an 

input in production. Health also affects utility of the consumer. In the first 

model, health is treated as a flow variable which is produced by a Cobb-

Douglas technology that uses government expenditure on public infrastructure 

and on health as inputs. The growth rate maximizing income tax rate is the 

sum of the elasticities of health and public infrastructure input. However, this 

tax rate is less than the welfare maximizing income tax rate. Moreover, the 

welfare maximizing share of spending on infrastructure is lower than the 

growth rate maximizing share; and hence the welfare maximizing share of 

spending on health is higher than its growth rate maximizing share. The 

second model uses the same Cobb-Douglas production technology with 

infrastructure and health as inputs in the accumulation of health input which 

is treated as a stock variable. The welfare maximizing tax rate and the welfare 

maximizing share of spending on public infrastructure service are shown to 

vary inversely along the balanced growth path. 

Agenor and Moreno-Dodson (hereafter called AM) (2006) develop an 

endogenous growth model with public infrastructure and health services where 
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public infrastructure and government expenditure on health services are used 

as inputs in the production of health services. The government allocates its tax 

revenue into investment in public infrastructure and in health services; and 

income tax is the only source of tax revenue. Production of final good uses 

public infrastructure, health services and private physical capital as inputs. 

AM (2006) show the steady-state growth equilibrium in the planned economy to 

be unique and saddle-path stable. They also show the steady-state growth rate 

to vary positively with the efficiency of the investment expenditure in the public 

infrastructure production technology. A revenue-neutral shift in expenditure 

share from health to infrastructure is shown to have a positive effect on the 

long-run growth rate if public infrastructure is sufficiently productive in the 

health production technology. Growth rate maximizing public expenditure 

allocation rule states that the spending share on public infrastructure varies 

positively with the elasticity of output of health services with respect to 

infrastructure capital. So it may be more effective to increase expenditure on 

public infrastructure rather than to directly increase expenditure on health. 

Agenor and Neanidis (hereafter called AN) (2011) develop a model of 

endogenous growth with productive public capital and health services similar 

to AM (2006) though there are minor points of differences between these two 

models. Instead of a single proportional income tax, there is a consumption tax 

as well in this model, while in AM (2006), there is only an income tax. AN 

(2011) assumes no tax collection costs in their first benchmark model and then 

introduces both exogenous and endogenous collection costs in their second 

model while AM (2006) do not introduce tax collection cost. AN (2011) find the 

growth rate maximizing consumption tax rate to be zero but the income tax 

rate to be equal to the competitive output share of the two public inputs taken 

together. However, welfare maximizing consumption tax is not necessarily zero. 

Different combinations of distortionary tax rates can be used to achieve the 

optimum; and the optimal solutions are shown to depend inversely on the 

share of productive spending.  
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The interplay between health and environmental pollution is analyzed in 

the two period overlapping generation model of Gutierrez (2008). The savings 

rate is found out to be an increasing function of the total stock of pollution 

where the stock of pollution in the current period is proportional to the level of 

total output. The dynamic competitive equilibrium is suboptimal due to the 

narrow time horizon of the short-lived agents even without externalities; and 

with negative pollution externalities, this problem is even more aggravated. 

Gutierrez (2008) shows that the optimal tax rate varies inversely with the 

natural decay rate of pollution, and varies directly with the pollution-output 

coefficient. When pollution is the only cause of inefficiency, both generations 

receive transfers. However, only the younger generation pays taxes to transfer 

resources to the older generation when pollution is not the only cause of 

inefficiency.  

 

1.5 DEPRECIATION OF PUBLIC CAPITAL  

In the endogenous growth model of Funke and Strulik (hereafter called 

FS) (2000), public capital enters as an input in aggregate production function 

and it depreciates over time. However, public capital depreciates exogenously 

at the same rate as private capital and FS (2000) do not consider any 

maintenance expenditure in their model.  

Rioja (2003 b) first shows the cost of ineffective public infrastructure. He 

numerically solves a general equilibrium model using data from seven Latin 

American countries; and shows that, in the long run, penalty of ineffective 

infrastructure is about 40% of per capita gross domestic product. Raising 

effectiveness has positive effects on per capita income, private investment, 

consumption and welfare. Rioja (2003 a) introduces the problem of public 

capital depreciation and the role of maintenance expenditure in a FMS (1993) 

type of open economy growth model. In this model, domestic income tax 
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revenues finance maintenance expenditure and foreign aid finances new public 

investment. The optimal income tax rate varies inversely with the international 

aid-public capital ratio. However, in the absence of foreign aid, the optimal tax 

rate varies directly with the elasticity of output with respect to public capital. 

Kalaitzidakis and Kalyvitis (hereafter called KK) (2004) extend Rioja’s 

(2003 a) model in various directions. Income tax revenue is allocated between 

public investment and maintenance expenditure and foreign aid is not 

considered. A positive external effect of private capital on production is 

considered in the form of learning-by-doing effect and an adjustment cost of 

private investment is introduced. Moreover, a profit maximizing solution is 

considered instead of a utility maximizing solution. The income tax rate is 

identical to the income share of combined expenditure on public investment 

and maintenance; and the tax rate that maximizes steady-state equilibrium 

growth rate in that model exceeds the competitive output share of public 

capital. However, the public investment-output ratio is less than this 

competitive share. They also show that the unique steady-state equilibrium 

point is saddle-path stable.  

Dioikitopoulos and Kalyvitis (hereafter called DK) (2008) introduce a 

negative congestion effect of public capital and the problem of depreciation of 

public capital with the role of maintenance expenditure in a FMS (1993) type of 

model. However, they do not consider the learning-by-doing effect of private 

capital accumulation and consider a utility maximizing solution instead of a 

profit maximizing solution. The transitional dynamic results and the properties 

of growth rate maximizing fiscal policy in the steady-state equilibrium in DK 

(2008) are similar to those in KK (2004).  

In Agenor (2009), the maintenance expenditure plays a dual role of 

increasing the durability as well as the efficiency of public capital. The growth 

rate maximizing income tax rate in the steady-state equilibrium is found to be 

identical to that of Barro (1990); and the steady-state equilibrium is proved to 

be a saddle point.  
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1.6 INFORMAL SECTOR 

1.6.1 Definition and Features with Empirical Support  

The unorganized sector of an economy which is generally not monitored 

by the government is known as the informal sector. Typically the informal 

sector consists of unregistered firms who do not pay taxes and therefore, are 

legally not entitled to avail facilities of public services. The emergence of the 

informal sector is the result of various policies which increase transaction costs 

and thus create barriers to entry for formal firms. Formal sector firms may use 

expensive but less polluting technology as a legal requirement while firms in 

the informal sector often use cheaper and polluting technologies.  

Various empirical works study features of informal sector firms in 

various countries. De Soto (1989) studies the informal sector in Peru. 

Chickering and Salahdine (1991) in their book present evidence from selected 

underdeveloped Asian countries. Tokman (1992) provide evidence from Latin 

American and Caribbean countries. Nippon (1991) and Alonzo (1991) study the 

informal sector in Thailand; and Mazumdar’s (1976) study on informal sector is 

based on evidences from Bombay1. Huq and Sultan (1991) report evidences 

from Bangladesh. These empirical studies point out various causes of the 

growth of informal sector; and these include high corporate income taxes and 

bureaucratic controls on formal sector firms, existence of labour unions and 

labour legislation laws in the formal labour market, etc.   

Various studies point out that informal sector firms adopt low cost and 

pollution generating technologies and the benefits of environmental policies of 

the government are largely restricted to formal sector firms. These studies 

include the works of Biller and Quintero (1995), Blackman and Bannister 

(1998), Blackman (2000), Kolstad (2000), Chaudhuri and Mukhopadhyay 

(2006), Kathuria (2007), etc. 

 

                                                
1 It is an industrial city of India presently known as Mumbai. 
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1.6.2 Dynamic Models with Public Expenditure and Informal 

Sector 

There are a few theoretical works developing two sector dynamic models 

incorporating both the formal sector and the informal sector; and the literature 

includes works of Blackman and Bannister (1998), Gibson (2005), Antunes and 

Cavalcanti (2007), Saracoglu (2008), Loayza (1996), Penalosa and Turnovsky 

(2005), Turnovsky and Basher (2009), etc. Only a handful of them analyze the 

role of productive public expenditure on economic growth. This small set 

includes the works of Sarte (2000), Loayza (1996), Penalosa and Turnovsky 

(2005) and Turnovsky and Basher (2009); and the discussion is restricted to 

introduce only these four models because the present thesis also analyses the 

role of productive public expenditure on economic growth. 

Sarte (2000) develops a small open economy model where final good 

production uses a range of intermediate goods and labour as inputs and each 

intermediate goods industry comprises of a number of formal and informal 

sector firms. The technologies which help use intermediate inputs in the final 

good production are learnt sequentially from abroad. Thus endogenous growth 

stem from domestic investments to adopt newer technologies. The intermediate 

goods industry is monopolistically competitive. The informal sector firms in 

each intermediate goods industry incurs a fixed cost of operating in that sector; 

it is the cost of non-availability of legal protection against theft or non-

compliance of contracts. Similarly, the formal sector also incurs a fixed cost 

that is a tax paid to the government for the provision of public services like 

legal protection. The provision of this public service is subject to congestion. 

The steady-state equilibrium growth rate is derived as a function of the fixed 

cost of informal firms. It is shown that if the fixed cost to the informal firms is 

above a critical level then free entry in the formal sector rules out existence of 

informal firms and the growth rate is that of formal sector output only. If, on 

the other hand, the cost of informally operating falls below the threshold level 

then an informal sector comes to operate which raises the return of acquiring 
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new technology. An extension of this model considers rent-seeking behavior of 

bureaucracy who can control entry in the formal sector. It is shown that the 

size of the informal sector is relatively larger in this case and the growth rate 

may also be lower than the previous case of free entry. Welfare is increasing in 

growth rate; therefore, in the case of unrestricted entry to the formal sector 

welfare is higher than that in the case of restricted-free entry. 

Loayza (1996) develops a two-sector model with a formal sector and an 

informal sector to explore the implications of optimal fiscal policy on economic 

growth when taxes from the formal sector finances productive public services 

used by both the sectors. Formal sector pays proportional income tax which is 

used to finance all of public services and to partially finance the enforcement 

system. On the other hand, informal sector pays a penalty in order to operate 

illegally and also partially finances the enforcement system for the formal 

sector. Public services are fully funded by a fraction of the tax revenues from 

the formal sector; and this fraction varies directly with the quality of 

government institutions and inversely with the strength of enforcement. The 

penalty rate is an increasing function of the strength of enforcement and of the 

relative size of the informal sector. In the competitive equilibrium, the relative 

size of the informal sector is found to vary positively with the tax rate imposed 

on formal sector output. The steady-state equilibrium growth rate is shown to 

be decreasing in relative size of the informal sector. The optimal tax rate is 

shown to be lower than that in Barro and Sala-i-Martin (1992) who consider 

only the formal sector with public good congestion.  

Penalosa and Turnovsky (hereafter referred to as PT) (2005) examine the 

implications of fiscal policy on the development of the informal sector when 

income only from the formal sector can be taxed. Production in the formal 

sector technology is more capital intensive than the technology used by the 

informal sector. Production is linear in average capital in both sectors. 

Moreover, formal sector needs public infrastructure to operate which is 

financed by the government by taxing income of the formal sector. However, 
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this infrastructure does not affect productivity. If the government has no 

redistributive goals, then the socially efficient growth rate cannot be achieved 

with tax revenues only from the formal sector. In that case, for efficient sectoral 

allocation capital and wage income should be taxed equally at a rate equal to 

the infrastructure requirement rate; and in such a case the growth rate in the 

decentralized economy is less than the socially optimum growth rate. If the 

government has only a growth rate maximizing objective to fulfill, then capital 

and wage income should be taxed equally irrespective of how public 

expenditure is used. Otherwise, when welfare is to be maximized, then equal 

taxation is again optimal if public expenditure is used to create infrastructure. 

However, if redistribution is the goal, then labour income should be taxed at a 

rate less than the rate of taxation on capital income as long as the formal 

sector is more capital intensive.  

Turnovsky and Basher (2009) also develop a growth model where 

informal sector uses more labour intensive technology than formal sector. Both 

sectors have requirements for public infrastructure, synonymous to fixed costs, 

and the rate of requirement is relatively more for the formal sector. Government 

can only audit a fraction of the informal sector and thus is able to impose a 

labour tax on the audited fraction only. Labour income and capital income in 

the formal sector are both taxed along with a lump sum tax collected from the 

representative consumer. The tax revenue and budget deficit go on to finance 

the public infrastructure requirement of the two sectors in the economy. The 

steady-state dynamic equilibrium is shown to satisfy saddle-path stability. The 

focus of the analysis is to examine whether existence of an informal sector 

hinders the government’s revenue generating capacity in a developing country. 

It is shown that more auditing of the informal sector negatively affects the 

ability of tax policy to influence the size of that sector, but positively affects its 

impact on tax collection. On the other hand, higher tax rates enhance the 

ability of auditing to influence the size of the informal sector as well as its 

effectiveness to generate higher tax revenues. 
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1.6.3 Models with Informal Sector and Environmental 

Pollution 

Informal sector is distinguished from formal sector by its pollution 

generating technology in Cassou and Hamilton (hereafter known as CH) (2004) 

model of endogenous growth. Both sectors use private capital, human capital 

adjusted effective labour and environmental quality as inputs. The formal 

sector produces a clean good but the informal sector produces a dirty good. 

Physical capital used in the informal sector is the source of environmental 

pollution whereas formal sector production technology uses physical capital 

that does not pollute. In each of these two sectors, production is augmented by 

accumulation of human capital that occurs through cumulative private 

investments in physical capital. Utility is enhanced by consumption and by the 

quality of environment and is reduced by work effort. CH (2004) show that 

growth rate in both sectors depends on the level of dirty capital. Also, when 

environmental externality on production is identical and fiscal policy does not 

discriminate between capital types then the output growth rate in the dirty 

sector exceeds that in the clean sector. The policy setting is shown to produce 

the Environmental Kuznet’s Curve when dirty sector output is bounded. The 

clean sector grows endogenously and the growth in the dirty sector brings 

down growth in the clean sector. 

 

1.7 HUMAN CAPITAL  

1.7.1 Survey of Dynamic Models on Public Expenditure and 

Human Capital  

Glomm and Ravikumar (2001) develop a simple overlapping-generations 

model of human capital accumulation. Human capital accumulation of an 
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agent depends on human capital of the corresponding parent, quality of 

schooling and labour input. Income of each individual is assumed to be a 

linear function of his human capital. This income is proportionally taxed by the 

government and this tax revenue determines the quality of public schools. The 

existence and uniqueness of competitive equilibrium is proved with appropriate 

restrictions on preference parameters and parameters of the learning 

technology.  

Chen and Lee (referred to as CL hereafter) (2007) develop a two sector 

model of endogenous growth with congestible public good where congestion 

effect comes from aggregate human capital in the economy to be used as input 

only in the final good production sector. A positive relationship is derived 

between the fraction of human capital and the fraction of physical capital 

employed in the final goods sector. CL (2007) proves the existence of unique 

balanced growth equilibrium and shows that the transition path to this 

equilibrium may be locally indeterminate.  

Agenor (2008) develops an endogenous growth model with public 

infrastructure spending, public education expenditure and utility enhancing 

government services to examine the right composition of fiscal policy to finance 

all the above expenditures. He considers separable as well as non-separable 

utility functions and assumes the stock of educated labour force accumulation 

to be linear in the quality of education, which, in turn, is a concave function of 

the ratio of public expenditure on education to the educated labour force 

employed in the education sector. The rate of growth of total population is 

assumed to be equal to the rate of growth of the stock of educated labour in the 

steady-state equilibrium. The steady-state equilibrium growth rate maximizing 

income tax rate is equivalent to the sum of output elasticities of public 

infrastructure services and education input. The growth rate maximizing share 

of public expenditure on utility enhancing services is seen to be zero. With non-

separable utility function, the steady-state growth rate maximizing tax rate is 

same as that obtained in the previous case. However, in the planned economy, 

the welfare maximizing tax rate and spending shares are not independent of 
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each other and are determined simultaneously. With congestion of public 

educational infrastructure to be determined by the number of students, the 

growth rate maximizing share of public spending on infrastructure is higher 

than that without congestion effect. 

Agenor (2011) develops a similar endogenous growth model with human 

capital and public infrastructure as inputs but does not consider utility 

enhancing public services. The growth rate maximizing tax rate is derived to be 

equal to the competitive output share of public infrastructure and human 

capital taken together. Also the growth rate maximizing shares of public 

expenditure on infrastructure and education depend not only on the output 

elasticities of public infrastructure and human capital but also on the 

productivity parameters of inputs in human capital formation. Agenor (2011) 

uses numerical techniques to examine the transitional as well as long-run 

effects of a budget-neutral shift in government spending from education to 

infrastructure for different values of parameters characterizing human capital 

accumulation technology. Under a plausible calibration for a low-income 

country, it is shown that reallocating funds from education to infrastructure 

may increase the growth rate even if public infrastructure only has a moderate 

effect on the production of human capital.  

Cassou and Lansing (hereafter known as CS) (2006) analyze effects of tax 

reform in an endogenous growth model with human capital and with two types 

of public expenditures. The infinitely lived representative consumer derives 

utility from a public consumption good and suffers disutility from quality 

adjusted non-leisure activities. Aggregate human capital accumulation depends 

on its own stock in the previous period, private investment in human capital, 

government investment in human capital and time devoted to acquiring human 

capital. Government can finance expenditure on public consumption good and 

on public education by imposing either a pure income tax or a pure 

consumption tax or a hybrid between these two policy instruments. CS (2006) 

analyze the efficiency of these instruments in their model. CS (2006) show that 

the transitional path to the balanced growth equilibrium is unique. Then they 
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analyze the optimal fiscal policy to determine the efficient size of the 

government, the efficient type of fiscal instrument and the optimal ratio of 

public to private expenditure on human capital. 

 

1.8 ENVIRONMENTAL POLLUTION AND ECONOMIC GROWTH 

1.8.1 Sources and Economic Effects of Pollution 

That the production activity in an economy is a major cause of pollution 

is a well known and widely accepted fact. Running of factories leads to burning 

of fuel and the processing of raw materials leads to waste generation; and 

these, in turn, pollute the environment directly or indirectly. So majority of 

theoretical models available in the literature on environment treat production 

as the source of pollution. However, some models treat physical capital usage 

as the source of pollution. Burning of fuel is required mainly to run 

machineries. Intermediate goods can also be the source of pollution. For 

instance, the heating and melting of tar which is used to lay modern roads 

emits polluting fumes in the air. The level of emission also depends on the 

degree of cleanliness of production technology. For example, a leather industry 

may use chemicals which release fewer harmful pollutants to the water used to 

wash leather. Few theoretical models treat the level of consumption to be the 

source of pollution. For example, pollution takes place only when the services 

of the automobile are consumed by buyers. 

Development of production activities with protection to the environment 

means sustainable development. Environmental pollution is a negative 

externality generating social cost and thus wasting the benefits of production 

in the long run. These social costs operate through various channels. Pollution 

can cause substantial damage to public infrastructure. For example, roads and 

bridges can be corroded due to harmful chemicals released in air and water; 

and this lowers longevity of such infrastructure. Degradation of environmental 
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quality has health costs also. Air pollution is proven to increase cases of 

asthma, lung infections, skin diseases and cancer. Water pollution causes 

cholera, dysentery, ailment of the alimentary tract, etc. Usage of plastics, 

pesticides, fertilizers is documented to have widespread health risks. Thus all 

these health costs deteriorate the quality of human capital in an economy; and 

this, in turn, adversely affects efficient use of other productive factors.  

 

1.8.2 Dynamic Models with Pollution 

In Hartman and Kwon (hereafter referred to as HK) (2005), human 

capital accumulation is considered to be pollution free while physical capital is 

used to reduce pollution generated from final goods production. The 

representative agent allocates labour time between production and human 

capital accumulation. A reduction in the use of capital in production directly 

lowers the level of pollution through reduction in output and indirectly does so 

increasing the use of capital in abatement activities. Utility is a positive 

function of consumption and a negative function of pollution. In the long-run 

steady-state growth equilibrium, output, physical capital and consumption 

grow at the same rate and human capital grows faster than physical capital. 

Pollution may grow or decline in the long run depending upon the elasticity of 

intertemporal elasticity of marginal utility. The optimal allocation can be 

implemented in the competitive economy with a pollution tax imposed on the 

firm and this optimal tax rate is an increasing function of the pollution rate. 

HK (2005) also show that their model can consistently explain environmental 

Kuznets curve for realistic values of parameters. 

There are few overlapping-generations models introducing environment 

as a public good in the utility function of the representative consumer; and the 

small literature consists of the works of Ono and Maeda (2002), Ono (2003) 

and Ono (2007). Ono and Maeda (2002) analyze the role of maintenance 

expenditure on investment but abstain from exploring its growth effects. In 
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Ono (2003), environmental quality accumulates over time depending upon its 

existing stock and maintenance expenditure of the consumer and depletes due 

to emissions caused by production. Government imposes taxes on emission to 

finance lump sum transfer to the elderly. The balanced growth rate maximizing 

pollution tax rate depends positively on the pollution parameter and negatively 

on the efficiency of maintenance expenditure. Ono (2007) develops a similar 

model where emission is also used as an input in production. It is shown that 

the competitive equilibrium allocation of emission input is time-independent 

and varies inversely with the pollution tax rate. However, none of these models 

analyze the role of productive public expenditure on economic growth.   

In the endogenous growth model of Mohtadi (1996), environmental 

pollution, generated from capital stock used in production, negatively affects 

utility of the representative agent in the absence of abatement activities. He 

first shows that, when the elasticity of environmental degradation is high (low), 

the market economy growth rate falls short of (exceeds) the socially efficient 

growth rate. Also, when the rate of environmental degradation is low (high), 

maximization of the steady-state equilibrium growth rate justifies an output 

subsidy (tax) which is financed by a lump-sum tax (subsidy) on consumption. 

The saddle-path stability of the steady-state growth equilibrium is proved and 

the socially efficient income tax (subsidy) rate is found to be proportional to the 

elasticity of environmental degradation with respect to capital. In an extension 

to his first model, Mohtadi (1996) shows how capital and consumption grow at 

the same rate but not a constant one if environmental quality affects the 

productivity of capital in the production process. The socially efficient growth 

rate is even smaller than that in the previous case and thus the optimal 

subsidy (tax) rate prescribed is also smaller (greater).  

Bovenberg and Smulders (hereafter referred to as BS) (1995) develop an 

endogenous growth model where environmental quality that affects utility 

deteriorates due to pollution generated as a by-product of production and is 

improved by its own natural regeneration process. In BS (1995), allocation of 

physical capital and pollution-generating inputs are considered between the 
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production sector and the pollution-augmenting knowledge capital sector. In 

the steady-state equilibrium, physical capital, knowledge capital, output, 

consumption and the relative price of natural capital grow at the same rate 

while aggregate pollution and natural capital remain constant. They also show 

how balanced growth can be optimal if there are unitary elasticities of 

substitution between environmental quality and consumption in the utility 

function and between environmental quality and the other factors of 

production in the production function. The optimal pollution tax revenue used 

to finance research subsidies should grow at the rate equal to the rate of 

growth of knowledge capital.  

Gradus and Smulders (hereafter referred to as GS) (1993) analyse two 

endogenous growth models which incorporate pollution in the utility function. 

The first model is an extension of Rebelo (1991) in which pollution is generated 

from physical capital use and the endogenous growth rate varies inversely with 

the increase in abatement expenditure. In their second model, GS (1993) 

follows Lucas (1988). Here the optimal growth rate remains unaffected by an 

increase in abatement activity when pollution does not influence agents’ ability 

to learn. However, the optimal growth rate varies positively with abatement 

activity when pollution produces a negative effect on the ability to learn. In 

another model, Smulders and Gradus (hereafter referred to as SG) (1996) 

examines appropriate environmental policy and the institutional conditions 

where sustainable growth and preservation of environment are compatible and 

optimal. They consider pollution as an input in production and capital usage 

as the source of pollution. Utility is also adversely affected by pollution which 

can be countered by undertaking abatement activity.  SG (1996) characterize 

appropriate forms of production function, utility function and environmental 

accumulation function so that a socially-efficient steady-state balanced growth 

equilibrium may be attained.  

Ayong Le Kama (2001) follows previous authors closely to present an 

endogenous growth model with an environmental resource that affects utility 

and also enters as an input in the production function. Environment is self 
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regenerative but is depleted by pollution originating from production. The 

existence of socially optimum steady-state equilibrium is shown along with its 

saddle-point stability property. 

In Ligthart and van der Ploeg (hereafter known as LP) (1994), the 

consumer derives utility from public consumption expenditure and disutility 

from pollution when pollution is a by-product of production. If there is no 

productive public expenditure, then a greater concern for welfare raises optimal 

tax rate but lowers the long-run growth rate. If productive public expenditure is 

considered and if preferences are biased towards environmental quality then a 

reallocation of tax revenue takes place from productive public expenditure to 

public consumption expenditure and to abatement expenditure; and this 

lowers the long-run growth rate. In this case, they find improvement in 

environmental quality as well as in welfare. Withagen (1995), however, uses a 

pollution augmented Rebelo (1991) model where pollution generated from 

production causes disutility. He shows that growth may not be balanced in the 

long run and the negative externality of pollution on utility may affect the long-

run growth rate.  

Byrne (1997) develops a model of endogenous growth with pollution 

affecting the utility function of the consumer. However, he assumes 

technological progress to be a clean activity and pollution to be a stock variable 

that accumulates with labour and capital used in the final goods production 

and is reduced by an abatement process governed by a Cobb-Douglas 

technology. In the steady-state growth equilibrium, consumption, output and 

technology grow at the same rate but the stock of pollution grows at a different 

constant rate in the market economy. In the planned economy, the pollution 

growth rate is lower than that in the market economy while the sustainable 

growth rate exceeds the same in the decentralized economy when abatement 

activities are undertaken.  

Oueslati (2002) develops a model with human capital driven endogenous 

growth where private physical capital is the source of pollution. Pollution that 

affects consumer’s utility negatively, varies inversely with abatement activities 
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undertaken by firms. At the steady-state growth equilibrium of the market 

economy, pollution stays time-independent while all other macro variables 

grow at the same rate. The optimal pollution tax revenue grows with the capital 

stock on the balanced growth path. Oueslati (2002) analyzes welfare costs 

when the economy transits from one steady state to another due to a change in 

pollution tax rate. In the transitional phase, an increase in the pollution tax 

rate raises the long-run growth rate. However, the level of welfare has a 

standard U-shaped relationship with this tax rate at the steady-state growth 

equilibrium and has an increasing relationship with it in the transitional 

phase.  

In Pautrel (2006), economic growth is driven by human capital when it is 

affected by health in an overlapping-generations model with pollution reducing 

utility. Pollution affects health of agents which reduces their probability of 

survival; and thus reduces the aggregate human capital in the economy. 

Quality of health varies negatively with pollution and positively with public 

health expenditure. Pollution reduces optimal growth rate through the health 

channel. However, greener preferences are both health improving and welfare 

improving. 

Other authors like Elbasha and Roe (1996) explore the welfare effects of 

environmental quality in a small open economy endogenous growth model 

when utility is enhanced by consumption of goods from two production sectors 

and by environmental quality. Jones and Manuelli (2001) assume pollution to 

cause disutility and to vary positively with capital used by different 

technologies in production; and show that the relationship between pollution 

and growth is not always monotonous. Liddle (2001) develops a simulation 

model to explore trade and environment in the context of development. He 

considers both production and consumption as sources of pollution and 

abatement investment is undertaken here to counter this pollution. Natural 

resource is an intermediate input which is traded. The benefit of trade can be 

either positive or negative, and it depends on the country-specific endowments. 

It is shown that pollution level is higher under free trade than under autarky. 
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However, results of this model do not support the pollution haven hypothesis 

which states that trade causes less pollution in developed countries and more 

pollution in developing ones. The model of Hart (2004) also considers final 

goods production as a source of pollution while damages to the environment 

caused by such emission adversely affect a consumer’s utility. He illustrates 

the implications of pollution on the quality and quantity of research when 

technological change is of environment-friendly type. On the other hand, Itaya 

(2008) assumes capital stock and output as two alternative sources of pollution 

in two separate models and assumes pollution to be a public bad in the utility 

function. Production has learning-by-doing externality effect. The government 

imposes a pollution tax and transfers the revenue as a lump sum amount to 

the representative household. In the case of capital as the source of pollution, 

the transition path to the steady-state growth equilibrium is shown to be 

indeterminate (determinate) if the elasticity of substitution is less than unity 

(greater than unity); and the pollution tax varies positively (negatively) with the 

steady-state growth rate as well as with steady-state equilibrium employment 

level. In the case of pollution generated from output, an increase in the 

pollution tax rate may have a positive impact on the growth rate when the 

elasticity of substitution is less than unity and the steady-state growth 

equilibrium path is determinate. Itaya (2008) also considers the role of public 

abatement activities, financed by pollution tax, on the pollution generating 

function when capital use is the source of pollution. The transition path to the 

steady-state equilibrium is characterized; and the relationship between the 

balanced growth rate and the pollution tax rate is summarized under different 

assumptions of parameters of the utility function. 

Di Vita (2008) establishes an inverse U shaped relationship between 

income and pollution in an endogenous growth framework by establishing a 

link between pollution dynamics and interest rate. Pollution is generated by 

production and is eliminated by abatement activities in which labour is used as 

the only input. Utility is assumed to be a positive function of consumption and 

a negative function of pollution stock. The model proves the existence of a 
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saddle-point stable socially efficient steady-state equilibrium where 

consumption and capital are constant.  

Bovenberg and Moorji (hereafter known as BM) (1998) deal with 

environmental tax reform in a static small open economy where they consider a 

polluting input in the production function. Public good consumption, 

environmental quality and final good consumption are assumed to raise utility 

while pollution reduces it.  

Models like that of Jouvet, Michel and Pestieau (2000) and Inoue (1998) 

consider production to be the source of environmental pollution which is 

treated as a public bad by consumers. Inoue (1998) develops a two region 

model where environment is jointly polluted by two regions by their respective 

productive activities while at the same time use environmental quality as a 

common input in their production functions. Abatement is undertaken by the 

advanced region and the backward region receives technological aid for 

abatement from the former with a time lag. Inoue (1998) uses simulation 

results to emphasize the welfare effects of abatement policy using optimal 

control method. However, his analytical model fails to show the existence of 

steady-state balanced growth equilibrium. 

Tahvonen and Kuuluvainen (referred to as TK hereafter) (1991) develop 

an endogenous growth model where pollution affects economic activities both 

as a stock and as a flow and where utility is reduced by stock pollution. In 

another similar model, TK (1993) first solves the planner’s problem when 

production uses only capital and emission. Utility function and the evolution of 

the pollution stock are assumed to be similar to those in TK (1991). The 

existence and uniqueness of saddle-point stable steady-state equilibrium is 

proved where capital and pollution stock have zero growth rate. It is shown 

that, when pollution is not optimally controlled, then the steady-state levels of 

consumption and capital are higher than those when pollution is optimally 

controlled.  

Butter and Hofkes (1995) concentrate on both stock and flow uses of 

environmental quality in production by considering its extractive and non-
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extractive uses. Environmental quality is also introduced as an argument in 

the utility function. They show that environmental quality remains time-

independent on the steady-state balanced growth path and hence sustainable 

growth becomes feasible.   

Chimeli (2003) explores the feasibility of attaining social optimum with 

pollution and consumption taxes in a dynamic model where environmental 

quality is degenerated by production of final output and is protected by its 

natural regeneration and by government’s abatement expenditure. However, 

Chimeli (2003) does not study the role of environmental quality or of pollution 

in the utility function nor in the production function.  

John and Pecchenino (1994) develop an endogenous growth model using 

overlapping-generations framework to illustrate the potential conflict between 

economic growth and the maintenance of the environmental quality when 

consumption degrades environmental quality. However, there is no productive 

public expenditure in this model.  

Bertinelli, Strobl and Zou (2008) use a capital vintage model to show how 

environmental pollution decreases with the usage of capital of newer vintage in 

the production function. In Benarroch and Weder (2006) the usage of 

intermediate goods generates pollution. 

Kempf and Rossignol (2007) use the median voter theorem to show how 

income inequality is harmful for the environment in a model of endogenous 

growth with productive public input and government expenditure on 

environmental protection. Given the abatement rate, the share of expenditure 

on public input used to maximize welfare also maximizes the growth rate. The 

choice of welfare maximizing abatement rate is then shown to be determined by 

majority voting according to the median voter theory. This abatement rate is 

shown to be an increasing function of the endowment parameter which implies 

that poorer individuals spend less on environmental protection and more on 

productive activities. This pollutes the environment. 
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1.9 GROWTH MODELS WITH ENVIRONMENTAL POLLUTION AND 

PRODUCTIVE PUBLIC EXPENDITURE 

1.9.1 A Brief Survey of Existing Models  

Only a few models on endogenous growth deal with the interaction 

between productive public expenditure and environmental pollution. Greiner 

(2005) develops a Futagami et al. (1993) type of model where he considers 

public expenditure as a stock variable and environmental pollution as a flow 

variable. Economides and Philippopoulos (hereafter called EP) (2008) extend 

the Barro (1990) model in this direction but treat environmental quality as a 

stock variable. In Greiner (2005) as well as in EP (2008), the level of production 

is the only source of pollution. However, both Greiner (2005) and EP (2008) 

introduce a negative external effect of environmental pollution only on the 

utility function of the representative household but not on the productivity of 

the inputs. In Greiner (2005), rate of abatement expenditure is treated as 

exogenous; and the properties of optimal income tax policy and optimal 

pollution tax policy are analyzed. The optimum share of investment to national 

income is identical to the optimum income tax rate because a separate 

pollution tax is introduced to finance abatement expenditure. The optimum 

share of investment to income is equal to the competitive output share of the 

public input and hence is independent of the rate of emission because the level 

of pollution affects only the utility function and not the production function. 

The optimal income tax rate in the case of welfare maximization in steady-state 

equilibrium is identical to the growth rate maximizing tax rate. However, this 

result is not true for the pollution tax because pollution directly affects the 

utility of the household in his model. Greiner (2005) also shows the steady-

state equilibrium to be saddle-path stable. 

Economides and Philippopoulos (2008) studies Ramsey optimal second-

best fiscal policy in an endogenous growth model using the technique of an 

open-loop Stackleberg differential game in which government plays the role of a 
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leader. Environmental quality being a stock variable is degraded through 

pollution and is improved through government’s abatement activities. The 

government finances the infrastructural expenditure as well as the abatement 

expenditure with its tax revenue. The existence of unique steady-state 

equilibrium growth rate is proved and that equilibrium is shown to be socially 

efficient. The growth rate in the planned economy is higher than that obtained 

in the Ramsey second-best solution. 

 

1.9.1 Existing Research Gap 

Productive public expenditure is an important externality that can fuel 

economic growth. Sustainability of this growth process makes environment a 

very crucial source of externality, especially when the productivity of public 

expenditure is affected by the quality of the environment. Then maintenance of 

the environment in order to increase the durability and efficiency of other 

public goods should feature in a major way in government’s tax policy if the 

goal is to boost economic growth. Thus, the tax structure to be imposed and 

the allocation of expenditure to be made to different budgetary heads must be 

designed to fulfill this objective.   

In the context of endogenous growth models with productive public 

expenditure, there is no work exploring the policy implications when 

environmental pollution affects the productivity of an economy. Several models 

consider pollution to affect utility of the consumer. Although Greiner (2005) 

and EP (2008) deal with environmental pollution and public expenditure, no 

negative effect of pollution on productivity of public expenditure is considered 

in their models.  

There are plenty of instances where degradation of environmental quality 

through various channels reduces the effective benefit of public investment 

expenditure. For example, deforestation reduces rainfall and thus lowers the 

efficiency of public irrigation programme by reducing canals’ water supply and 
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depleting the groundwater level. Poor quality of natural resources (coal) and the 

lack of current in the water flow of streams and rivers negatively affect the 

generation of electricity. Global warming leads to natural disasters like floods, 

earthquakes, cyclones, etc.; and these, in turn, cause severe damage to 

infrastructural capital like roads, electric lines, power plants, buildings, 

industrial plants, etc. Private capital goods like plants and equipments are also 

damaged by natural disasters. Water pollution and air pollution create a 

disease-friendly environment; and hence government’s expenditure programme 

on public health cannot provide adequate security to the health capital of 

workers. When such a circular interaction exists, thus, designing fiscal 

instruments to maximize growth and welfare is a challenging exercise that has 

not been attempted before. 

  

1.10 A SUMMARY OF THE PRESENT THESIS  

1.10.1 The Basic Model 

The chapter 2 is devoted to developing a model of endogenous growth 

with special consideration to the interaction between productive public input 

and environmental pollution in the presence of congestion effect on public 

input. Productive public expenditure is assumed to be a flow variable similar to 

that in Barro (1990). However, environmental quality is assumed to be a stock 

variable. Production of the final good uses private inputs and a productive 

public input financed by government’s tax revenue. However, the productivity 

of this public input is positively affected by the quality of environment; and the 

average stock of private capital causes a negative congestion effect on this 

public input. Thus, production is subject to externalities. Environmental 

quality is degraded due to emission resulting from production. However, it 

improves if the government spends on abatement activities. The government 

allocates its income tax revenue between pollution abatement expenditure and 
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productive public expenditure. The representative household maximizes the 

discounted present value of her instantaneous utility over infinite time horizon 

subject to the intertemporal budget constraint; and in section 2.2 the 

instantaneous utility is assumed to be a positive and concave function of the 

level of consumption of the final good only. Section 2.3 considers 

environmental quality as an additional argument in the utility function in an 

otherwise similar model of section 2.2 of chapter 2. 

Greiner (2005) studies a similar model of endogenous growth but treats 

public input as a stock variable and environmental quality as a flow variable. 

Environmental pollution in this model is proportional to the level of output of 

the final good like that of ours. However, pollution affects the utility function 

and not the productivity of public expenditure in Greiner’s (2005) model unlike 

that of ours. The government has two sources of revenue in the form of an 

income tax and a pollution tax which are used to finance the public input and 

the abatement activities respectively. On the other hand, in EP (2008) 

environmental quality is a stock variable and is renewable if the government 

spends on abatement activities. Otherwise it is similar to Greiner (2005).  

We derive some interesting results analyzing the basic model in section 

2.2 of this chapter. First, in the steady-state equilibrium, the optimum (growth 

rate maximizing) ratio of productive public expenditure - depicted as total tax 

revenue minus abatement expenditure - to national income is less than the 

competitive output share of the public input; and this ratio varies inversely 

with the magnitude of the emission-output coefficient. This is different from the 

corresponding result obtained in Barro (1990), Futagami et al. (1993), Greiner 

(2005), etc. The optimum ratio of productive public expenditure to national 

income in all these models is equal to the competitive output share of the 

public input. This is so because there is no environmental pollution in Barro 

(1990) model or in Futagami et al. (1993) model. If the emission-output 

coefficient is zero, the Barro-FMS result comes back to the present model. In 

Greiner (2005), there exists an alternative instrument for financing the 

abatement activities in the form of a pollution tax; and this makes the income 
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tax rate identical to this optimum ratio and hence equivalent to the competitive 

share of the public input. Secondly, the market economy growth rate is not 

necessarily less than the socially efficient growth rate in the steady-state 

equilibrium due to the presence of conflicting externalities. Thirdly, transitional 

dynamic property comes back to this model even though it considers a flow 

public expenditure. Environmental quality, being a stock variable, protects the 

model from being trapped into an AK model. 

In the model in section 2.3, we find that the steady-state growth 

equilibrium, if it exists, is either unique or multiple with two equilibria. In this 

model if the equilibrium is unique, then properties of optimum fiscal policy are 

similar to those obtained from the earlier model. Secondly, this model too 

shows transitional dynamic properties. But, the steady-state equilibrium is not 

necessarily a saddle-point in this model. In the case of multiple equilibria, we 

may have indeterminacy of the transitional growth path converging to one of 

the two equilibria. Fourthly, the planned economy steady-state equilibrium 

growth rate is not necessarily less than that of the market economy.  

 

1.10.2 Extension of the Basic Model 

1.10.2.1 Alternative Sources of Pollution 

In chapter 3, the basic model is extended by introducing two alternative 

sources of pollution in two separate models. In one of these two models, we 

consider consumption as the source of pollution. In the other model, private 

capital usage is taken as the source of pollution. In both of these two 

extensions, the nature of optimal fiscal policy differs from that obtained in the 

basic model. The optimum ratio of the productive public expenditure to 

national income, in both the models, is equal to the competitive output share of 

the public input in the steady-state equilibrium and is independent of the rate 

of emission. Thus our result is similar to that obtained in Barro (1990) and in 
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Futagami et al. (1993). However, the income tax rate, the abatement 

expenditure rate and the growth rate in the steady-state equilibrium are 

determined simultaneously in these extended models unlike the basic model. 

Other results related to the transitional dynamic properties and to the social 

efficiency property of the steady-state equilibrium hold through.  

 

1.10.2.2 Role of Health Expenditure 

In chapter 4, we introduce health infrastructural capital as an input in 

the production function in addition to private capital and productive public 

input. Health capital, like environmental quality, also acts as an externality to 

the producer. Like environmental quality, health capital deteriorates due to 

pollution; and the government spends resources to augment this health 

capital. Thus tax revenue of the government is now allocated to three 

expenditure heads - public infrastructural expenditure, expenditure on health 

and pollution abatement expenditure. Agenor (2008) focuses on the allocation 

of government budget between health expenditure and public infrastructural 

expenditure but does not deal with the problem of environmental pollution. 

Following the basic model of chapter 2, we assume level of production as the 

only source of pollution in this extended model. 

This addition of the productive role of health capital to the basic model 

generates some new results in the steady-state equilibrium. The optimal ratio 

of combined expenditure on public infrastructure and health capital to national 

income appears to be less than the competitive output share of infrastructure 

and health taken together; and it varies inversely with the pollution-output 

coefficient. This result is different from that obtained in the basic model and in 

the extended model of chapter 3. In the present model, the share of 

expenditure on health capital in national income is the fraction that accounts 

for the pollution induced depreciation of health capital plus the competitive 

share of health capital in total output adjusted for environmental pollution and 
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health capital depreciation. Secondly, the steady-state equilibrium is never 

saddle-point stable in this extended model. There is a possibility of 

indeterminacy of the transitional growth path converging to the unique steady-

state equilibrium. This result is different from the corresponding one obtained 

in the basic model.  

 

1.10.2.3 Endogenous Depreciation of Public Capital 

In all the previous models, productive public input is considered as a 

flow variable. In another extension to the basic model done in chapter 5, we 

assume public input to be a stock variable like that in Futagami et al. (1993). 

Public capital here is subject to depreciation; and this depreciation is 

endogenous. The depreciation of public capital can be slowed down by 

increasing expenditure on its maintenance and by an improvement in the 

environmental quality while it accelerates due to negative congestion effect of 

private capital. Here the government’s problem is to allocate total expenditure 

among three heads - investment to augment public capital, maintenance 

expenditure and abatement expenditure. However, we do not consider health 

expenditure here and assume level of production to be the only source of 

pollution. A few endogenous growth models like Rioja (2003 a), Kalaitzidakis 

and Kalyvitis (2004), Dioikitopoulos and Kalyvitis (2008) also deal with the 

problem of endogenous depreciation of public capital and analyze the 

properties of optimal maintenance expenditure. However, they do not analyze 

the role of environmental pollution on the depreciation of public capital. 

We obtain following results by analyzing this extended model. The 

optimum combined share of public investment expenditure and maintenance 

expenditure in national income can be less (greater) than the competitive 

output share of the public capital in the steady-state equilibrium if the 

emission-output coefficient is greater (less) than the optimum share of the 

maintenance expenditure. Secondly, the steady-state equilibrium is either 
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unstable or the transitional path converging to the steady-state equilibrium is 

indeterminate. Lastly, we compare the planned economy solution to the market 

economy solution and find that the steady-state equilibrium growth rate in the 

former does not necessarily exceed the latter. 

    

1.10.2.4 Formal and informal sector 

All of the previous contributions are based on a one sector aggregative 

framework. In a two sector model, one of the two sectors that bears the full 

burden of taxation is called formal and the untaxed sector is called informal. In 

less developed countries like India, Bangladesh, etc., agriculture and urban 

unorganized small-scale sectors do not bear the burden of income taxation. 

There are many theoretical works developing dynamic models with informal 

sector; and the literature includes Emran and Stiglitz (2005), Enste and 

Schneider (2000), Turnovsky and Basher (2009), Gerxhani (2004), Saracoğlu 

(2008), Antunes and Cavalcanti (2007), Dessy and Pallage (2003), Sarté (2000), 

Amaral and Quintin (2006), Azuma and Grossman (2002), Rauch (1991), Auriol 

and Warlters (2005), etc. However, these models do not deal with the problem 

of environmental pollution. In the present extension developed in chapter 6, we 

develop a two sector endogenous growth model of an economy consisting of 

both formal sector and informal sector; and analyze the role of public 

infrastructural expenditure and environmental pollution. In the current 

extension to the basic model, the representative household allocates capital 

between the formal sector and the informal sector. There is no such allocation 

problem that the representative household faces in any model analyzed in the 

earlier chapters. Pollution is generated by production of both the sectors but 

the emission-output coefficients in the formal and informal sectors are 

different. Environmental quality and productive public expenditure are inputs 

in the production of both sectors. However, there is no congestion of public 

productive input. Government finances the abatement expenditure as well as 
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public infrastructural expenditure from its tax revenue obtained from income of 

the formal sector. However, the informal sector derives the benefits of public 

expenditure without paying any tax.    

Following results are derived from this model. First, we prove the 

existence of unique steady-state equilibrium growth path in the market 

economy with simultaneous existence of the formal and the informal sector. 

Secondly, the optimum income tax rate is dependent upon the emission-output 

coefficient of the formal sector only; and this result is independent of whether 

two sectors have identical production technologies or not. The congestion effect 

parameter does not enter into the expression for the optimum income tax rate 

unlike in Barro and Sala-i-Martin (1992) model with no informal sector. 

Thirdly, the optimum abatement expenditure rate as well as the optimum ratio 

of productive public expenditure to formal sector’s output depends not only on 

the emission-output coefficient of the formal sector but also on that of the 

informal sector. Lastly, the relative size of the informal sector in the steady-

state growth equilibrium of the competitive economy exceeds its socially 

efficient size when this sector pollutes the environment. 

 

1.10.2.5 Human capital and pollution 

In chapter 7, the basic model is extended through two separate models to 

analyze the role of human capital as an input in production. In the first model, 

human capital stock is jointly financed by public expenditure and private 

educational expenditure. Tax revenue is thus allocated to investment in human 

capital, expenditure on public input and abatement activity. Role of health 

expenditure and maintenance expenditure on public capital are ignored here. 

Uniqueness of the steady-state growth equilibrium is proved; and the growth 

rate maximizing ratio of combined net public expenditure on productive public 

input and on human capital to national income in the steady-state equilibrium 

is shown to be equal to the combined competitive unpolluted output share of 



42 
 

public input and public expenditure financed human capital. Hence this 

optimum ratio varies inversely with the magnitude of the pollution-output 

coefficient and directly with the coefficient representing elasticity of human 

capital accumulation with respect to public expenditure on education. Agenor 

(2008, 2009) deals with similar models with public expenditure on human 

capital but does not include environmental pollution in these models. 

The common thread running through the basic model and all of its 

extensions is the assumption that pollution-output coefficient is exogenous. 

However, the pollution-output coefficient may depend on one or more variables 

that are endogenous to the system. Under this assumption of an endogenous 

pollution rate, the second model analyses the allocation of tax revenue to 

different public goods. Pollution-output coefficient is assumed to be a positive 

function of the stock of private physical capital and is a negative function of the 

stock of human capital. Thus, any endogenous changes in the stocks of 

physical or human capital affect this pollution rate. However, human capital is 

solely funded by private expenditure in this model; and tax revenue finances 

public productive expenditure and abatement expenditure. The optimum ratio 

of net public expenditure on productive public input to national income in the 

steady-state growth equilibrium is shown to be equal to the competitive 

unpolluted output share of the public input; and hence this optimum ratio 

varies inversely with the magnitude of the parameters representing the 

pollution elasticity with respect to the ratio of human capital to physical 

capital. 
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CHAPTER 2  

2. PUBLIC EXPENDITURE, ENVIRONMENT AND 

ECONOMIC GROWTH 

 

2.1 INTRODUCTION  

In this chapter, we develop a model of endogenous economic growth with 

special emphasis on the interaction of productive public expenditure and 

environmental pollution. In section 2.2 of the present chapter, we introduce 

environmental quality as an input in the production function. An improvement 

in environmental quality positively affects the productivity of a public input 

used to produce the final good. Environmental quality in turn is degraded by 

pollution generated as a by-product of final good production. Improvement in 

the environmental quality is caused by the increase in abatement expenditure. 

The government makes an allocation of its total revenue between creation of 

productive public input and financing abatement activity; and the government 

revenue is earned by imposing a proportional income tax. However, 

environmental quality does not affect the preference function of the consumer 

in this section. In section 2.3 of this chapter, we introduce environmental 

quality as an argument in the utility function, keeping the model of section 2.2 

otherwise unchanged. 
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2.2 ENVIRONMENTAL QUALITY AFFECTING PRODUCTIVITY2 

Our model developed in this section follows Greiner (2005) and EP (2008) 

to include productive public expenditure and environmental pollution. 

However, it is different from Greiner’s (2005) model and EP’s (2008) model on 

the following points: (i) Greiner (2005) introduces a negative external effect of 

environmental pollution only on the utility function of the representative 

household. So does EP (2008). We consider the negative effect of environmental 

pollution and the negative congestion effect of private capital accumulation on 

the effective production benefit derived from public input expenditure. Greiner 

(2005) and EP (2008) do not consider these. (ii) We consider flow public 

expenditure like Barro (1990) while Greiner (2005) assumes public expenditure 

as a stock variable like FMS (1993). It is more meaningful to consider public 

input as a stock variable because the effect of environmental quality on public 

input is relevant for stock public expenditure. For the sake of technical 

simplicity, we consider flow public expenditure in this model in this chapter. 

Chapter 5 of this thesis extends this basic model replacing flow public input by 

stock public input. (iii) We consider environmental quality as a stock variable 

which is upgraded through abatement activities and is degraded through 

emissions. In Greiner (2005) it is treated as a flow variable. (iv) Rate of 

abatement expenditure is treated exogenous in Greiner (2005) who analyzes 

the properties of optimal income tax and pollution tax policies. We do not 

consider a separate pollution tax here but make the allocation of income tax 

revenue between productive public expenditure and abatement expenditure 

endogenous to the analysis. 

We obtain many interesting results analyzing this model. The optimum 

ratio of public input expenditure to national income is equal to the competitive 

share of the public input in the unpolluted output of the final good; and hence 

this optimum ratio varies inversely with the level of emission per unit of 

production. However, in Barro (1990) and in FMS (1993), there is no 
                                                

2 A related version of this section is published in Journal of Public Economic Theory. 
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environmental pollution; and hence this ratio is always equal to the competitive 

output share of the public input. In Greiner (2005), the optimum share of 

public investment to national income is also independent of the rate of 

emission because the level of pollution enters into the utility function as a 

negative argument but does not enter into the production function. Secondly, 

in our model, optimum income tax rate is higher than that predicted by Barro 

(1990) and FMS (1993); and this rate varies positively with the emission-output 

coefficient. This is so because a part of the income tax revenue is spent as 

abatement expenditure in this model. However, this is not necessarily true in 

Greiner (2005) because he considers pollution tax as an alternative instrument 

of financing abatement expenditure. Thirdly, our model exhibits transitional 

dynamic properties though it follows Barro (1990) to assume public 

expenditure to be a flow variable. Introducing environmental quality as an 

accumulable input in the production function and including the negative 

congestion effect of private capital, we protect our model from being an    

model and thus bring back transitional dynamic properties. In Greiner (2005), 

transitional dynamic properties are obtained because public expenditure is a 

stock variable there. Fourthly, like Barro (1990) and FMS (1993), we do not 

find any conflict between the growth rate maximizing solution and the social 

welfare maximizing solution along the steady-state equilibrium growth path. 

Greiner (2005) does not find such a conflict in the case of an income tax policy 

but finds it in the case of a pollution tax policy because pollution directly 

affects the utility of the household in his model. Fifthly, the competitive 

equilibrium growth rate in this model is not necessarily less than the socially 

efficient growth rate which is unlike in Barro (1990), FMS (1993), Greiner 

(2005), etc. This is so because we have two conflicting types of externalities on 

production - positive externalities arising from productive public expenditure 

and from the up-gradation of the environmental quality and negative 

externalities arising from the congestion effect of private capital and from 

environmental pollution. However, the welfare level is always higher in the 
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planned economy where externalities are internalized. Barro (1990) and FMS 

(1993) consider only the positive externality from public expenditure. Greiner 

(2005) also does not consider any negative external effect on production. 

Section 2.2.1 describes the basic model of the household economy. 

Section 2.2.2 elaborates on its dynamic equilibrium properties. Subsection 

2.2.2.1 shows the possibility of the existence of unique steady-state 

equilibrium growth path in the market economy; and subsection 2.2.2.2 

analyzes the properties of optimal fiscal policy along the steady-state 

equilibrium path. Section 2.2.3 shows transitional dynamic results and section 

2.2.4 describes working of the command economy. Appendices 2.2A through 

2.2E contain derivations related to results presented in sub-sections 2.2.2 to 

2.2.4.   

 

2.2.1 THE MODEL  

The single production sector of the economy uses capital, labour, and 

public intermediate good as inputs in production. The production function is of 

Cobb-Douglas type satisfying increasing returns to scale in capital, public 

intermediate good and labour. However, it satisfies constant returns to scale in 

capital and public input and diminishing returns to each input. 

The product market and the private input markets are competitive and 

every producer maximizes profit. The public intermediate good is treated as a 

flow variable like that in Barro (1990). The government imposes a proportional 

tax on income of the representative household who consumes a part of the 

post-tax income and invests the other part. The environmental quality is a 

stock variable. It deteriorates with emissions caused from production of the 

final good; and is improved by abatement activities of the government. 

Environmental quality is non-rival and is a free good. The budget of the 

government is balanced; and allocation of the tax revenue is made between 
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expenditure on the public intermediate good and on the abatement of emission 

damage. 

There is a negative congestion effect of private capital and a positive 

environmental effect on the efficiency of the public input; and so the effective 

benefit of public input expenditure received by the representative producer 

varies inversely with the average private capital stock of the society and directly 

with the environmental quality. 

There is no population growth; and so labour endowment is normalized 

to unity. Every household maximizes her lifetime utility subject to the inter-

temporal budget constraint. Lifetime utility is defined as the infinite integral of 

the discounted present value of instantaneous utility where instantaneous 

utility is a positive and concave function of the level of consumption and the 

rate of discount is constant. All variables are measured in terms of the final 

product.  

Following equations describe the model.   

                                                                                             

                                                                                                       

                                                                                                    

                                                                                                                        

                                                                                                 

and 

      
    

   
                                                                                                          

Equation (2.2.1) describes the Cobb-Douglas production function of the 

final good.   is the level of output produced.   is the stock of capital and   is 

the effective benefit derived from the public intermediate good. Since labour 

endowment is normalized to unity,   and   can be considered as per capita 

variables with the labour elasticity of output being      . Elasticities of output 

with respect to capital and public intermediate good are denoted by   and 
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      respectively.   is the representative of all the exogenous fixed inputs 

affecting production in the final goods sector. 

Equation (2.2.2) describes the nature of the combined effect of 

congestion and environment on the effectiveness of the public intermediate 

input. It shows that the effective production benefit of the public intermediate 

input varies inversely with the average capital stock of all private producers,   , 

and positively with the environmental quality,  .    and    are two parameters 

governing the congestion effect of private capital and the environmental effect 

on productive public input respectively. For the sake of simplicity we ignore 

environmental effects on the efficiency of private capital, though these effects 

exist in reality.  

Models focusing on the implications of the negative congestion effect3 are 

available in the existing literature4. We assume that the negative congestion 

effect of the average capital stock of the society is not strong enough to 

outweigh the positive private technological contribution of capital of the 

representative producer. Hence, we assume                      implying that the 

social marginal productivity of capital is positive. Here,                    is the 

social elasticity of output with respect to capital. 

Equation (2.2.3) describes the government budget constraint. The 

government finances public expenditure on the intermediate good and the 

abatement expenditure with its tax revenue.   is the abatement expenditure 

rate defined as the ratio of abatement expenditure to national income; and   is 

the income tax rate. Using equations (2.2.1), (2.2.2) and (2.2.3), we have 

    
 

      
   

    
       

  
       

                                                                                   

This derived production function satisfies constant returns to scale in 

terms of   and   only if        , i.e., if the absolute value of the elasticity of 

                                                
3 When a number of industrial plants grow up, effective transportation service becomes slow given the availability 

of roads and streets. Demand for power consumption goes up leading to disruption in power supplies. Parks and 

footpaths of streets get occupied by informal sector businessmen. 
4 See the works of Ott and Soretz (2008), Van Tuijl et. al (1997), Raurich-Puigdevall (2000), Turnovsky (1996, 

1997), etc.  
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efficiency of public input with respect to environmental quality is exactly equal 

to the absolute value of that elasticity with respect to aggregate capital. If the 

constant-returns-to-scale assumption is violated, then the average 

productivities and marginal productivities of different factors cannot be 

expressed as factor proportion ratios. As a result, the law of diminishing 

returns to the variable factor may not be ensured and the convergence to the 

steady-state growth equilibrium may not be guaranteed. So, for analytical 

convenience, henceforth we assume         in the rest of the section as well 

as in the rest of the chapters. 

If we ignore congestion effect of private capital but consider only the 

positive effect of environmental quality, then      and     . In that case, 

equation (2.2.1A) is reduced to an    production function similar to that in 

Barro (1990); and thus our model fails to show transitional dynamic properties. 

Equation (2.2.4) describes the budget constraint of the household who 

allocates its post tax disposable income between consumption,  , and savings 

(investment),           ; and there is no depreciation of private capital. 

Equation (2.2.5) shows how environmental quality changes over time 

depending upon the magnitudes of emissions,    and abatement expenditure, 

  . Abatement activities bring improvements in environmental quality; and 

there exists a substantial theoretical and empirical literature dealing with the 

role of abatement activities and abatement policies of the government5. Here 

emission is assumed to be a flow variable being proportional to the level of 

production of the final good; and   represents the constant emission-output 

coefficient. We also assume the existence of a dynamic process of natural 

regeneration of environmental quality. Here,     is the constant natural rate 

of regeneration. 

                                                
5 See the works of Liddle (2001), Managi (2006), Dinda (2005), Di Vita (2008), Smulders and Gradus (1996), 

Byrne (1997), etc. 
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Many models of environmental pollution assume the level of pollution to 

be a positive function of the level of production6 of the final good. This is 

consistent with only one segment of the Environmental Kuznets curve 7 , 

according to which, there exists an inverted U-shaped relationship between the 

pollution level and the income level.  

Equation (2.2.6) describes the instantaneous utility function of the 

household. The utility is a positive and concave function of the level of 

consumption.   represents the constant elasticity of marginal utility with 

respect to consumption. Many models assume utility to be a positive function 

of the environmental quality8. We ignore this in this model9 for the sake of 

simplicity. 

In the static equilibrium all markets clear. Stocks of   and   are 

exogenous in any particular point in time.   is a non rival stock and   is a non 

rival flow. Given the stocks of capital and environmental quality, and given the 

fiscal instrument rates, equations (2.2.1), (2.2.2) and (2.2.3) together determine 

  and   at each point of time. Thus equation (2.2.5) determines the absolute 

rate of improvement in the environmental quality, denoted by   . The household 

chooses   and this determines the absolute rate of private capital 

accumulation,   , from equation (2.2.4). 

 

 

 

 

                                                
6 For example, see the works of Liddle (2001), Oueslati (2002), Hartwick (1991), Smulders and Gradus (1996), 

Byrne (1997), Gruver (1976), Dinda (2005), etc. 
7 Analysis on this curve is available in Managi (2006), Dinda (2005), Di Vita (2008), Hartman and Kwon (2005), 

Selden and Song (1995), etc. 
8 See the works of Howarth (1996), Tahvonen and Kuuluvainen (1991), Smulders and Gradus (1996), D. Ayong 

Le Kama (2001), Greiner (2005), Gruver (1976), Itaya (2008), etc.  
9 The model with environmental quality as an argument in utility function is developed and analyzed in section 2.3 

of this chapter. 
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2.2.2 DYNAMIC EQUILIBRIUM  

The representative household maximizes      
 

 
       with respect to C 

subject to equations (2.2.1), (2.2.4) and (2.2.6). The demand rate of growth10 of 

consumption is derived from this maximizing problem as follows. 

 
  

 
 

 

 
   

 

           
   

  
 

 
 

      

 
                                                                       

We consider a steady-state growth equilibrium where all macroeconomic 

variables grow at the same rate,   . Hence, we have  

 
  

 
 

  

 
 

  

 
 

  

 
 

  

 
                                                                                                          

 

2.2.2.1 Existence of Steady-State Growth Equilibrium 

We now turn to show the existence of unique steady state equilibrium 

growth rate in the market economy; and so we use equations (2.2.1), (2.2.2), 

(2.2.3), (2.2.4), (2.2.5), (2.2.7) and (2.2.8) to obtain the following equations.  

 
 

 
   

 

           
   

  
 

 
 

      

 
                                                                      

  
 

           
   

  
 

 
 

      

 
 

 

 
                                                                           

and 

  
 

           
   

  
 

 
 

        

 
                                                                         

Using equations (2.2.9) and (2.2.11) we obtain the following equation11 to 

solve for   . 

                                                
10 The demand rate of growth of consumption is derived in Appendix 2.2A. 
11 The derivation of equation (2.2.12) is worked out in Appendix 2.2B. 
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The L.H.S. of equation (2.2.12) is an increasing function of    for all 

values of      and its R.H.S. is constant, given the income tax rate,  , and 

the abatement expenditure rate,  . Its R.H.S. is positive if          . Its 

L.H.S. is defined12  only for     . So figure 2.2.1 shows the existence of 

unique positive value of    satisfying      given that          . Then 

equations (2.2.10) and (2.2.11) show that equilibrium values of 
 

 
 and 

 

 
 are also 

unique in this case. 

  

                                                                                               

                                                                                        

 

       

 

                                                                                

 

 

 

 

We can state the following proposition. 

Proposition 2.2.1: There exists unique positive steady state 

equilibrium growth rate in the market economy only if the fiscal instruments 

                                                
12              is not a real number when     . 

L.H.S.(2.2.12), 

R.H.S.(2.2.12) 

L.H.S.(2.2.12) 

 
R.H.S.(2.2.12) 

 

 

   

  
    

0 

FIGURE 2.2.1 



53 
 

satisfy          ; and the unique steady-state equilibrium growth rate 

exceeds the natural rate of regeneration of environmental quality. 

If the chosen values of   and   do not satisfy this chain of inequalities, 

then a steady state equilibrium growth path does not exist in this model. Here 

    appears to be a strong assumption because then    varies positively with 

 . If the abatement expenditure rate exceeds the pollution-output coefficient, 

then the pollution versus efficient public expenditure trade-off disappears13. 

However, it is necessary to assume     to prove the existence of steady-state 

growth equilibrium. If    , then the R.H.S. of equation (2.2.12) is zero; and 

    makes the R.H.S. to be an imaginary number. In this model,     ; and 

in the steady-state growth equilibrium, 
  

 
     Also, the assumption that social 

elasticity of private physical capital is positive, i.e.,           , is 

necessary for the existence of unique steady-state equilibrium growth rate. If 

private technological contribution cannot outweigh the negative congestion 

effect of physical capital, then effective marginal productivity of private physical 

capital is negative. We do not assume negative effective marginal productivity of 

private physical capital. 

 

                                                
13 When    , sufficiently high values of the natural regeneration coefficient,  , can also negate this trade-off. 
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2.2.2.2 Optimal Taxation 

In this model, optimal taxation refers to the tax system designed to 

maximize the steady state equilibrium growth rate in a decentralized 

economy14 . The government maximizes the steady-state equilibrium growth 

rate with respect to fiscal instruments,   and  . The L.H.S. of equation (2.2.12) 

is a monotonically increasing function of   , because, by assumption,   

       and     . Since the L.H.S. is always equal to the R.H.S. in the 

steady-state growth equilibrium, maximization of    means maximization of 

the R.H.S. of equation (2.2.12).  

We obtain following expressions of optimum tax rate and abatement 

expenditure rate15.           

                                                                                                           

and 

                                                                                                                  

Using equations (2.2.13) and (2.2.14), we have 

                                                                                                                    

Here         is the optimum ratio of public expenditure on the 

intermediate good to the national income; and            is the competitive 

unpolluted output share of the public intermediate good. So the optimum ratio 

is equal to the competitive share of the public intermediate good in the 

unpolluted output. In Barro (1990) and in FMS (1993), entire output is 

pollution free. 

To ensure non-negativity of the decentralized growth rate, degradation of 

the accumulable indirect productive input, namely environmental quality, due 

to pollution is neutralized by allocating   fraction of total output to abatement 

                                                
14 This tax system may not implement the social optimum in the decentralized economy. The problem of the 

social optimum will be analyzed in section 2.2.4. 
15 The derivation of equations (2.2.13) and (2.2.14) is worked out in Appendix 2.2C. 
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expenditure,   . Optimum net expenditure rate is then,     , which is equal 

to the competitive unpolluted output share of environmental quality.  

The social welfare function is given by        
    

   

 

 
    and assuming 

that the economy initially is on the steady-state equilibrium growth path, it can 

be shown16 that 

       
       

   
 
         

         
            

                                                        

Hence,   varies positively with   . Thus the level of social welfare is 

maximized when the steady-state equilibrium growth rate is maximized17. We 

can state the following proposition. 

Proposition 2.2.2: (i) The optimum income tax rate and the optimum 

abatement expenditure rate in the steady state growth equilibrium are given by 

                     , 

and 

                 . 

(ii) The optimum ratio of public input expenditure to national income in 

the steady-state equilibrium is equal to the competitive unpolluted output 

share of the public intermediate good; and hence this optimum ratio varies 

inversely with the magnitude of the emission-output coefficient18.  

The presence of congestion effect making     and the presence of 

environmental pollution causing     make our result different from those of 

Barro (1990) and FMS (1993). If we assume      , we obtain        and 

      and these results are identical to those of Barro (1990) and FMS (1993). 

The optimum ratio of productive public expenditure to national income in this 
                                                

16 The derivation of equation (2.2.16) is shown in Appendix 2.2D. 
17 This is not true when the economy is off the steady-state growth path at the initial time point. In that case, we 

should include the welfare in the transitional phase too; and evaluating this analytically is a very hard technical 

work. 
18 The introduction of the constant natural regeneration rate of environmental quality will not alter the results 

about optimum fiscal policies in this model because the R.H.S. of equation (2.2.12) will remain independent of this 

regeneration rate. 
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model, with       and    , appears to be lower than that in Barro (1990) 

and in FMS (1993). This is obvious because production of the final good 

generates environmental pollution; and this, in turn, lowers the effective benefit 

derived from the public expenditure. However, 

                          

                        . 

Here,        because      ,      , and    . So the optimum 

income tax rate in this model is higher than that in the Barro (1990) model and 

in the FMS (1993) model. This is so because income tax is the only source of 

revenue in this model and a part of the income tax revenue is used to finance 

abatement expenditure. This is not necessarily so in the Greiner (2005) model 

because pollution tax is an alternative instrument of financing abatement 

expenditure there. We do not consider a separate pollution tax. 

In this model, not only the productive public expenditure, i.e., the excess 

of tax revenue over abatement expenditure, but also the level of emission is 

proportional to the level of income (production of the final good). So         

varies inversely with the emission-output coefficient,  . If the level of emission 

is independent of the level of income and if it varies proportionally with   or   

where   is the relevant coefficient, then          would be independent of   

and the Barro (1990) result would come back in that modified model19. 

 

2.2.3 TRANSITIONAL DYNAMICS 

We define the following ratio variables.  

   
 

 
  and   

 

 
  

Using equations (2.2.4), (2.2.5) and (2.2.7), we have 

                                                
19 This is worked out in chapter 3 of this thesis. 
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and 

 
  

 
           

   

  
 

  
      

 
             

   

  
 

  
      

              

                                                                                                           

These are the equations of motion of the dynamic system. The 

determinant of the Jacobian matrix20 corresponding to differential equations 

(2.2.17) and (2.2.18) is given by 

      
        

 
          

   

  
 

  
      

 
    

            
 

 
                

   

  
 

  
      

 
  

. 

Here           ; and         when   and   are optimally 

chosen with    . So       in this case; and hence the two latent roots of the 

Jacobian matrix must be real and of opposite signs. So the steady-state 

equilibrium is a saddle-point and there is only one transitional path converging 

to this point when    . If    , then equation (2.2.14) shows that optimum 

   ; and hence,      . Therefore we can state the following proposition. 

Proposition 2.2.3: The unique steady-state equilibrium with 

optimally chosen values of fiscal instruments is saddle-point stable with 

unique saddle path converging to that equilibrium point when    . 

This result is important because Barro (1990) model, with a flow public 

expenditure, does not exhibit any transitional dynamic properties. FMS (1993) 

bring back transitional dynamic properties in Barro (1990) model introducing 

durable public input. We obtain the saddle-point property of the long run 

equilibrium in this model even with a flow public expenditure similar to that of 

Barro (1990). The environmental quality is a stock variable accumulating over 

time in this model; and this positively affects the productivity of the system 

                                                
20 The derivation of the determinant is worked out in Appendix 2.2E. 
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when     . Also     implies the existence of a negative congestion effect of 

physical capital. Thus our flow public expenditure model is protected from 

being an    model in this case. Greiner (2005) model exhibits transitional 

dynamic properties treating environmental pollution, in the form of emission 

from industrial production, as a flow variable in the utility function because 

public input is a stock variable there. 

 

2.2.4 COMMAND ECONOMY 

The market economy solution may be suboptimal due to the distortion 

caused by the proportional income tax and by the failure of the private 

individuals to internalize externalities in the system. The presence of two non-

rival inputs - public good and environmental quality - in the production 

function causes positive externalities; and the congestion effect of physical 

capital and environmental pollution introduce negative externalities. The 

planner, who maximizes a social welfare function identical to that of the 

representative household’s lifetime utility function, can internalize these 

externalities. Equations (2.2.1), (2.2.2) and (2.2.6) remain unchanged; and 

equations (2.2.3), (2.2.4), and (2.2.5) are modified as follows.  

                                                                                                                                     

                                                                                                                                

and 

                                                                                                                              

Here   denotes planner’s total lump sum expenditure on public 

intermediate input and abatement activities and   denotes the abatement 

expenditure. 

The planner’s problem is to maximize      
    

   

 

 
   with respect to  ,  

and  subject to equations (2.2.3.1), (2.2.4.1) and (2.2.5.1). We consider a 

steady-state growth equilibrium where the growth rate is denoted by   ; and 
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the following equation solves for the steady-state equilibrium growth rate21 in 

the command (planned) economy. 

        
                        

                                                                            

The L.H.S. of equation (2.2.19) is an increasing function of    for all 

values of    22 and the R.H.S. is a positive constant when       and    . 

So the existence of unique positive value of    is ensured when      ,     

and    . Here,    is the socially efficient growth rate. Figure 2.2.2 shows the 

determination of unique   . 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
21 Equation (2.2.19) is derived in the Appendix 2.2F. 
22 The L.H.S. of equation (2.2.19) is not real when    . 

L.H.S. of (2.2.19), 

R.H.S. of (2.2.19) 

 

   

  
  

L.H.S. of (2.2.19) 

 

R.H.S. of (2.2.19)  

  

                        

 

FIGURE 2.2.2 
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Now we turn to compare the market economy solution to the command 

economy solution. We modify equation (2.2.12) with      and      as 

follows. 

                                   

                                                                                                                                                                             

The R.H.S. of equations (2.2.19) and (2.2.12.1) are identical. However, 

the L.H.S. of equation (2.2.12.1) is greater than that of equation (2.2.19) for all 

values of 

      
     

 
          

 
      

      
        
       

.  

Hence we find that    exceeds (falls short of)    when the pollution 

parameter   takes a high (low) value or when the technology parameter  , takes 

a low (high) value. For simplicity, we shall concentrate on variation of the value 

of the parameter  . The analysis carries through as well when   varies. This is 

shown in figure 2.2.3. The L.H.S. of equations (2.2.12.1) and (2.2.19) are 

plotted as positively sloped curves and the common R.H.S. is depicted by 

horizontal straight lines for different exogenous values of  . The L.H.S. of 

equation (2.2.12.1) curve starts from a point on the horizontal axis where 

     but the L.H.S. of equation (2.2.19) curve starts from a point on the 

vertical axis. The intersection point of the two L.H.S. curves shows that 

       
     

 
          

 
      

      
        
       

.  

When   takes a high (low) value, points of intersection of the two L.H.S. 

curves with the lower (higher) horizontal line shows that   
  falls short of 

(exceeds)   
 .  
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We can state the following proposition. 

Proposition 2.2.4: If    , then         takes a positive (negative) 

sign when   takes a low (high) value. 

Barro (1990) and FMS (1993) show that the market economy growth rate 

in the steady-state equilibrium falls short of the socially efficient growth rate. 

Our result may be different from theirs’. The intuition behind this result may 

be explained as follows. The planner internalizes two conflicting types of 

L.H.S.(2.2.12.1), 

L.H.S.(2.2.19), 

R.H.S. 

 L.H.S.(2.2.12.1) 

 
L.H.S.(2.2.19) 

 R.H.S. 

 

                     

R.H.S. 

 

      

  
    

  
  

  
            

  

 

  
     

 
          

 
      

      
        
       

    

FIGURE 2.2.3 
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externalities - the negative externalities arising from the congestion effect of 

physical capital accumulation and the environmental pollution, and the 

positive externalities caused by the presence of the public intermediate good 

and the environmental quality. So the net effect of internalization of 

externalities on the productivity of private inputs is ambiguous. Hence, the 

effect on the growth rate is also ambiguous. Socially efficient growth rate 

should exceed (fall short of) the competitive equilibrium growth rate when a 

positive (negative) externality is internalized. The negative externality on 

production does not exist in Barro (1990) model and in FMS (1993) model. In 

Greiner (2005), the negative externality of environmental pollution affects the 

utility function but does not affect the productivity of private inputs. 

The equilibrium growth rate (in both the market economy and the 

command economy), in our model depends on the parameter,  , which 

measures the magnitude of emission per unit of production. If the rate of 

emission is increased, then the level of unpolluted output should fall. This also 

has a negative effect on the rate of physical capital accumulation as well as on 

the up-gradation of the environmental quality. When   takes a high (low) value, 

the negative externality of physical capital dominates (is dominated by) other 

positive externalities; and so the socially efficient rate of growth is lower 

(higher) than the market economy growth rate.  

However, it is always beneficial to internalize externalities. What is 

important is the welfare of the agent and not the growth rate. It means that the 

agent’s welfare is always smaller in the absence of internalization of 

externalities regardless of the relationship between the socially efficient growth 

rate and the competitive equilibrium growth rate. Moreover, it implies that the 

proposed scheme of proportional income tax and abatement expenditure is not 

sufficient to internalize the externalities though welfare maximization is 

attained through such a scheme. This is so because here the emission rate,  , 

is beyond the control of the government. In the presence of alternative 

technologies, this emission rate is a variable; and the government can lower 
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this rate of emission subsidizing the use of eco-friendly production technology. 

It is clear from figure 2.2.3 that, given other parameters, there exists a critical 

value 23  of   that equates    to   ; and the optimum subsidy rate should 

correspond to that critical value of  . 

 

2.3 ENVIRONMENTAL QUALITY AFFECTING UTILITY 

Both Greiner (2005) and EP (2008) introduce pollution as an argument in 

the utility function. In this section, we also introduce environmental quality as 

an argument in the utility function in an otherwise identical model developed 

in section 2.2. 

We obtain many interesting results analyzing this model. First, we find 

that the steady state growth equilibrium, if it exists, is either unique or 

multiple with two equilibria. If the equilibrium is unique, then properties of 

optimum fiscal policy derived in this model are similar to those obtained from 

the earlier model. Secondly, this model too shows transitional dynamic 

properties. The explanation of the presence of transitional dynamic properties 

is similar to that in section 2.2.3. But, unlike in section 2.2.3 steady-state 

equilibrium is not necessarily a saddle-point in this model. In the case of 

multiple equilibria, we may have indeterminacy of the transitional growth path 

converging to one of the two equilibria.  

Section 2.3.1 presents the basic model of the household economy. 

Section 2.3.2 analyzes its dynamic equilibrium properties. Subsection 2.3.2.1 

shows the problems related to the existence of unique equilibrium in the 

market economy; and subsection 2.3.2.2 analyzes the properties of optimal 

fiscal policy in the steady-state equilibrium. Section 2.3.3 derives transitional 

dynamic properties and section 2.3.4 analyzes the possibility of the existence of 

                                                
23 For that critical value of  , the horizontal straight line passes through the point of intersection of the two 

L.H.S. curves. 
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a socially efficient growth rate. Appendices 2.3A to 2.3F contain derivations 

related to equations of the model developed in this section. 

 

2.3.1 THE MODEL 

We assume     in equation (2.2.1) and     in equation (2.2.5) in this 

section; the rest of the equations, (2.2.2) to (2.2.4), of section 2.2 remain 

unchanged. The major results of this section remain unaffected by the above 

assumptions. We assume utility to be enhanced by both consumption and 

environmental quality. 

                                                                                            

Equation (2.3.1) describes the instantaneous utility function of the 

household. The instantaneous utility is a positive function of the level of 

consumption as well as of the stock of environmental quality 24  and this 

function is homogeneous of degree  ;    and        represent the constant 

elasticity of utility with respect to consumption and environmental quality 

respectively. We assume        to satisfy diminishing marginal utility of 

consumption. 

 

2.3.2 DYNAMIC EQUILIBRIUM 

The representative household maximizes        
 

 
       with respect to 

C subject to equations (2.2.1), (2.2.4) and (2.3.1); and the optimum solution 

leads to the following demand rate of growth25 of consumption. 

                                                
24 See the works of Howarth (1996), Tahvonen and Kuuluvainen (1991), Smulders and Gradus (1996), Ayong Le 

Kama (2001), Greiner (2005), Gruver (1976), Itaya (2008), etc.  
25 The demand rate of growth of consumption is derived in Appendix 2.3A. 
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Along a steady-state equilibrium growth path, all macroeconomic 

variables grow at the same rate,   . So equation (2.2.8) remains valid in this 

section. 

  

2.3.2.1 Existence Of Steady-State Growth Equilibrium 

To show the existence of unique growth rate in the steady-state 

equilibrium we use equations (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.5), (2.3.2) and 

(2.2.8) and then obtain following equations.  

 
 

    
            

   

  
 

 
 

      

 
    

  
      

    
          

   

  
 

 
 

      

 
  

                                                                    

           
   

  
 

 
 

      

 
 

 

 
                                                                                 

and 

           
   

  
 

 
 

      

 
  

                                                                                     

Equations (2.3.4) and (2.3.5) solve for unique values of  
 

 
  and  

 

 
  in 

terms of   . Using equations (2.3.3) and (2.3.5) we obtain the following 

equation26 to solve for   . 

   
                 

                                              

                                                                                                            

                                                
26 The derivation of equation (2.3.6) is worked out in Appendix 2.3B. 
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For    , the L.H.S. of equation (2.3.6) (hereafter denoted by 

                 ) is an increasing function of   . However, for    , 

                  is not a monotonic function of   . When    ,                   

appears to have an inverted-U shaped curve against    plotted on the 

horizontal axis27 starting from the origin, reaching a maxima at    
       

      
 and 

meeting the horizontal axis again at    
 

   
. This is shown in figure 2.3.1. The 

R.H.S. of equation (2.3.6) is constant, given the income tax rate,  , and the 

abatement expenditure rate,  . It is positive if          . Given that 

         , two possibilities exist. (i) Unique positive value of    exists if 

   . (ii) When    , either there are two steady-state growth equilibria or the 

equilibrium does not exist at all28. Figure 2.3.1 clearly shows that, in the case 

of multiple equilibria, the two equilibria are characterized by the values of    

satisfying      
       

      
 and 

       

      
    

 

     
 respectively.  

 

 

 

 

 

 

 

 

                                                
27                   is not real for    

 

   
. 

28 Equilibrium may not exist if the value of the policy variables chosen are such that the R.H.S. of equation (2.3.6) 

exceeds  
 

 
 
                   

           
.  
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We can, therefore, state the following proposition. 

Proposition 2.3.1: (i) Given that fiscal instruments satisfy       

   , there exists unique positive growth rate in the steady-state equilibrium of 

the market economy when    .  

(ii) When    , either there exists two equilibria characterized by 

     
       

      
 and 

       

      
    

 

     
 respectively, or the equilibrium does not 

exist at all. 

This result is different from the corresponding one obtained in Barro 

(1990), FMS (1993) and Greiner (2005), etc. There is no possibility of the 

   

L.H.S. of (2.3.6) 

 

R.H.S. of (2.3.6)  

   
       

      
 

  

L.H.S. of (2.3.6), 

R.H.S. of (2.3.6)  

 

 

 

   
 

   
 

    
  

       

      
 

       

      
   

  
 

   
 

FIGURE 2.3.1 
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existence of multiple steady-state equilibria in any of those models. Our 

present result is different because, in this section, we consider a positive 

externality of environmental quality on the utility function of the representative 

consumer. Marginal utility of consumption varies positively with the quality of 

environment which is a stock variable in this model. That, the inclusion of a 

stock variable in the utility function leads to the possibility of multiple steady-

state equilibria, is already established in the literature. Kurz (1968) and 

Liviatan and Samuelson (1969) show the possibility of multiple steady-state 

equilibria in the one-sector Ramsey-Solow model when the physical capital 

stock is introduced into the utility function. Barro (1990) and FMS (1993) do 

not include environment in the utility function. In Greiner (2005), flow 

pollution affects utility but the utility function is separable in terms of 

consumption and pollution. 

If we assume    ,     and       in equation (2.2.12) of section 2.2 

it becomes identical to equation (2.3.6). The existence of multiple equilibria 

crucially depends on the parameter determining the degree of homogeneity of 

the utility function and on the assumption of its range. In the specification of 

the utility function in this section, this parameter is  . If we assume away   

 , there exists unique steady-state growth equilibrium, a result identical to that 

obtained in the model of section 2.2. The possibility of multiple steady-state 

growth equilibria never exists in the model of section 2.2 because the L.H.S. of 

equation (2.2.12) is a monotonically increasing function of   . Here the 

magnitude of   has no role to play because   does not enter into this equation.  

The importance of environmental quality entering into the utility function in 

this section lies in showing that it is the degree of homogeneity of the utility 

function which determines the existence of multiple equilibria and not the 

marginal utility of the environmental quality29.    

                                                

29 An alternative specification of the utility function of the form        
        

   

   
 gives the steady-state 

equilibrium growth rate to be obtained as 

  
             

                                            ,  
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2.3.2.2 Optimal Policies 

The government maximizes the steady-state equilibrium growth rate with 

respect to fiscal instruments,   and  . The L.H.S. of equation (2.3.6) is a 

monotonically increasing function of    when     because         . Since 

the L.H.S. is always equal to the R.H.S. in the steady-state growth equilibrium, 

maximization of    means maximization of the R.H.S. of equation (2.3.6).  

We obtain following expressions of optimum income tax rate and 

abatement expenditure rate30.           

                                                                                                             

and 

                                                                                                                    

Using equations (2.3.7) and (2.3.8), we have 

                                                                                                                     

Here         is the optimum ratio of public expenditure on the 

intermediate good to the national income; and            is the competitive 

unpolluted output share of the public intermediate good. So the optimum ratio 

of public expenditure on the intermediate good to national income is equal to 

the competitive share of the public intermediate good in the unpolluted output. 

In Barro (1990) and in FMS (1993), entire output is pollution free. 

Using optimal values of the fiscal instruments as given by equations 

(2.3.7) and (2.3.8) in equation (2.3.6) we obtain 

   
                 

                                    

                                                                                               

In the special case when    , equation (2.3.6.1) is modified as follows. 

                                                                                                                                                       
which is identical to equation 2.2.12 in section 2.2 when    . Since    , there is no possibility of the existence 

of multiple steady-state growth equilibria in this case. 
30 The derivation of equations (2.3.7) and (2.3.8) is worked out in Appendix 2.3C. 



70 
 

           
           

 
 
        

                       

 

      

   

                                                                                                           

The social welfare function is given by                  
 

 
    and 

assuming that the economy initially is on the steady-state equilibrium growth 

path and satisfying      31 we can show32 that 

                            
             

     
 
  
       

                        

Hence,   varies directly with   . Thus the level of social welfare is 

maximized when the steady-state equilibrium growth rate is maximized33. We 

can state the following proposition. 

Proposition 2.3.2: (i) Given that    , the optimum income tax rate 

and the optimum abatement expenditure rate in the steady-state growth 

equilibrium are given by 

                              , 

and 

                          . 

(ii) The optimum ratio of public input expenditure to national income in 

the steady-state equilibrium is equal to the competitive unpolluted output 

share of the public intermediate good; and hence this optimum ratio varies 

inversely with the magnitude of the emission-output coefficient.  

These results are similar to those obtained in section 2.2 in which the 

utility function does not include environmental quality as an argument. Even if 

the marginal utility of environmental quality is positive with    , our earlier 

                                                
31 When the fiscal instruments are optimally chosen and when    , equation (2.3.6.1) shows that the steady- 

state equilibrium growth rate satisfies this inequality if  
 

 
           

        

                   
   

        . 
32 The derivation of equation (2.3.10) is shown in Appendix 2.3D. 
33 This is not true when the economy is off the steady-state growth path at the initial time point. In that case, we 

should include the welfare in the transitional phase too; and evaluating this analytically is extremely difficult. 
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results remain valid. However, we cannot analyze the properties of optimal 

fiscal policy when     because the equilibrium growth rate is not unique.  

The results in proposition 2.3.2 are unaltered from that in proposition 

2.2.3 even though environmental quality is an argument in the utility function 

here. This is so because environmental quality and pollution-related damage to 

it affects productivity. So, when growth rate is maximized, preservation of 

environmental quality is also optimized from the welfare perspective. Thus, 

there arises no conflict between growth rate maximization and welfare 

maximization.  

 

2.3.3 TRANSITIONAL DYNAMICS 

The ratio variables defined in section 2.2.3 are relevant in this section too 

and hence, we keep them unchanged. 

Using equations (2.2.4), (2.2.5) and (2.3.2), we have 

 
  

 
  

 

    
             

   

  
      

  
      

    
          

   

  
      

 
  

 

         
 

    
                                                                                                                        

and 

 
  

 
           

   

  
      

 
             

   

  
      

                                

These are the equations of motion of the dynamic system. The 

determinant of the Jacobian matrix34 corresponding to differential equations 

(2.3.11) and (2.3.12) is given by 

      
        

 
  

   

    
           

   

  
      

 
    

         
      

    
          

   

  
      

 
  

. 

                                                
34 The derivation of the determinant is worked out in Appendix 2.3E. 
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Here           ; and          . When    ,       and the 

steady-state equilibrium is a saddle point. Also, when    ,       if the policy 

variables are chosen such that the second term dominates the first term; and 

the two latent roots of the Jacobian matrix will be real and of opposite signs. In 

this case, the steady-state equilibrium will be a saddle-point if  

   
                      

       

        
 
        

 
     

   
 
        

                      

The two latent roots of the Jacobian matrix will be real and negative in 

sign if the inequality (2.3.T.1) is reversed and the trace is negative. The 

transitional path converging to the steady-state equilibrium is indeterminate in 

that case. The trace is negative if  

               
  

          
   
 

 

 

        

       
     

     
                          

So, when    , the low growth equilibrium characterized by      

       

      
 is saddle-point stable if condition (2.3.T.1) is satisfied; and the 

transitional path to this equilibrium is indeterminate if the reverse of inequality 

(2.3.T.1) holds and inequality (2.3.T.2) is satisfied. The high growth 

equilibrium, characterized by 
       

      
    

 

     
, is also a saddle point or the 

transitional path is indeterminate for the same corresponding conditions 

mentioned above. Notably, each of these two equilibria is unstable when both 

the inequalities (2.3.T.1) and (2.3.T.2) are reversed. 

Proposition 2.3.3: (i) When    , the steady-state equilibrium is 

always saddle point stable.  

(ii) When    , either the two equilibria are unstable or they are saddle-

point stable or the transitional path leading to each of those steady-state 

equilibria is indeterminate.  
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This result is important because Barro (1990) model, with a flow public 

expenditure, does not exhibit any transitional dynamic properties. FMS (1993) 

brings back transitional dynamic properties in Barro (1990) model introducing 

durable public input and shows that the equilibrium is necessarily a saddle 

point. But unlike in section 2.2.3, for different ranges of the growth rate we 

show here the possibility of indeterminacy and uniqueness in the transitional 

path converging to the long run equilibrium even with a flow public 

expenditure like that of Barro (1990). The environmental quality is a stock 

variable accumulating over time in this model; and this positively affects the 

utility of the representative household and the productivity of the system when  

   . Also     implies the existence of a negative congestion effect of physical 

capital. Thus our flow public expenditure model is protected from being an    

model in this case too. Greiner (2005) model exhibits transitional dynamic 

properties treating environmental pollution as a flow variable entering the 

utility function and public input as a stock variable. However, the possibility of 

indeterminacy in the transitional path does not arise in his model because no 

stock variable enters the utility function there. 

 

2.3.4 COMMAND ECONOMY 

The market economy solution may be suboptimal due to the distortion 

caused by the proportional income tax and due to the failure of private 

individuals to internalize externalities in the system. The presence of two non-

rival inputs, public good and environmental quality, cause positive 

externalities; and the congestion effect of physical capital and pollution 

introduce negative externalities. The planner, who maximizes a social welfare 

function identical to that of the representative household’s lifetime utility 

function, can internalize these externalities. With a reminder that     and 

   , equations (2.2.1), (2.2.2), (2.3.1), (2.2.3.1), (2.2.4.1) and (2.2.5.1) 

describe the model in the planned economy.  
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The planner’s problem is to maximize                
 

 
   with respect to 

 ,   and   subject to equations (2.2.1), (2.2.2), (2.2.3.1), (2.2.4.1) and (2.2.5.1). 

As in section 2.2.4, here too, the growth rate in the steady-state equilibrium, 

denoted by   , is the socially efficient growth rate. The following equation solves 

for the socially efficient growth rate35. 

  
         

        
 

        

      
             

   

 
   

   

 
    

   
     

 
                             

   
 

         
 

 

      

       
 

      
 

       
             

 
    

                                                                                                           

 The L.H.S. of equation (2.3.13) is a continuous function of    for all 

values of       
 

        
 

        

      
 

 

   
 ; and its R.H.S. is a positive constant when 

      and    . So the existence of at least one socially efficient growth rate 

is ensured when      ,    , and when 

   
 

        
 

        

      
      

 

      
 

       
             

 
  

 

   
                      

In the special case when    , equation (2.3.13) can be written as 

      
 

   
     

     
 
                

   
 

 
 

 

      

 

  

 

               
 

      
 

       
             

 
  

        

 
 

        

      
        

                                                                                                          

Thus, in this special case, the existence of unique socially efficient 

growth rate is ensured. Now, we establish the following proposition. 

                                                
35 Equation (2.3.13) is derived in the Appendix 2.3F. 
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Proposition 2.3.4: If     and if      , then there exists at least 

one positive socially efficient growth rate when           is satisfied. Further, if 

   , this growth rate is unique. 

Equations (2.3.6.2) and (2.3.13A) show that the steady-state equilibrium 

growth rate in the market economy as well as in the planned economy varies 

inversely with the magnitude of pollution output coefficient,  . This is so 

because when production is highly polluting a larger fraction of the output is 

allocated to maintain efficiency of the productive public input. So less output is 

available for investment and for public input expenditure.  

The relationship between market economy growth rate and the socially 

efficient growth rate involves ambiguity because the planner internalizes two 

conflicting types of externalities in this model. There is a negative externality 

whose root lies in the congestion effect of physical capital accumulation. 

However, positive externalities also result from the presence of the public 

intermediate good and the environmental quality. Negative externality on 

production and positive externality on utility does not exist in Barro (1990) 

model and in FMS (1993) model. In Greiner (2005), negative externality of 

environmental pollution affects the utility function but does not affect the 

productivity of private inputs.  
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APPENDIX 2.2A 

DERIVATION OF EQUATION (2.2.7) IN SECTION 2.2.2: 

 The dynamic optimization problem of the representative household is to 

maximize      
    

   

 

 
   with respect to   subject to equation (2.2.4) and given 

    . Here   is the control variable satisfying           ; and   is the state 

variable. 

The Hamiltonian to be maximized at each point of time is given by 

      
    

   
                 . 

Here λK is the co-state variable representing the shadow price of 

investment. Maximizing the Hamiltonian with respect to   and assuming an 

interior solution, we obtain 

                                                                                                                                 

Also the optimum time path of λK satisfies the following. 

 
   

  
                                                                                                    

Using equations (2.2.1), (2.2.2), (2.2.3) and (2.2A.2) we have 

 
   

  
     

 

           
   

  
 

 
 

      

 
                                                                

 Using the two optimality conditions (2.2A.1) and (2.2A.3), we have 

 
  

 
 

 

 
   

 

           
   

  
 

 
 

      

 
                                                              

which is same as equation (2.2.7). 
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APPENDIX 2.2B 

DERIVATION OF EQUATION (2.2.12) IN SECTION 2.2.2.1 

Using equations (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.5), (2.2.7) and (2.2.8) 

we have the following equations. 

    
  

 
 

 

 
   

 

           
   

  
 

 
 

      

 
                                                 

    
  

 
  

 

           
   

  
 

 
 

      

 
 

 

 
                                                       

and 

    
  

 
  

 

           
   

  
 

 
 

        

 
                                                      

From equation (2.2B.1) we have, 

 
 

 
    

 

           
   

           
 

 

      
                                                  

Using equations (2.2B.3) and (2.2B.4) we derive the following equation. 

     
 

           
   

    
 

           
   

           
 
        

      
  , 

or, 

    
 

       
        

                
        

           
 

        
        

        , 

or, 

             
        

        
        

       
 

                
        

           
 

 , 

or, 

                             

                                                                                         

This is same as equation (2.2.12). 
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APPENDIX 2.2C 

DERIVATION OF EQUATIONS (2.2.13) AND (2.2.14) AND THE SECOND 

ORDER CONDITIONS IN SECTION 2.2.2.2: 

We denote the L.H.S. and the R.H.S. of equation (2.2.12) by L.H.S.(2.2.12) 

and R.H.S.(2.2.12) respectively. Maximizing the R.H.S. of equation (2.2.12) with 

respect to τ, we obtain the following first order condition. 

                                                   

or,      

                                                                                          

Maximizing the R.H.S. of equation (2.2.12) with respect to  , we obtain 

the following first order condition. 

                                           

or, 

                                                                                                                    

Using equations (2.2C.1) and (2.2C.2) we obtain the following 

expressions.  

                    ; 

and 

                . 

These are same as equations (2.2.13) and (2.2.14) in section 2.2.2.2. 

To check the second order conditions for optimality we twice differentiate 

equation (2.2.12), with respect to   and   respectively. At the equilibrium point 

                              . We arrive at the following two second order 

conditions. 
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 ; 

and 

                                         
   

  
 
 

 

                                       
    

   
 

   
 

      
 

 

      
 .                   

Now we evaluate the above two second order conditions at      and 

     where 
   

  
  

   

  
   at the optimum. Hence we obtain the followings. 

                                     
    

   
                                                                                                                                 

   
                

                        
  

and 

                                      
    

   
  

   

  
  

                                        and the R.H.S. of 

each of these two equations is negative. Hence the sign of both the second 

order derivatives is negative. 

 

APPENDIX 2.2D 

DERIVATION OF EQUATION (2.2.16) IN SECTION 2.2.2.2 

Here the social welfare functional is given by            
 

 
  . From 

equation (2.2.9), we have 

  
 

           
   

  
 

 
 

      

 
 

     

 
                                                                   

Using equations (2.2.10) and (2.2D.1), we have 
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At the steady state equilibrium,           ; where      is the initial 

value of  . Thus equation (2.2D.2) can be written as 

   
 

 
                

                                                                                 

Using equations (2.2.6) and (2.2D.3) and the social welfare functional we 

have 

        
                                

         

 

 
    

or, 

   
         

         
           

                 
 

 
    

For convergence we assume            . Thus, 

   
         

         
           

              
                                     

or, 

       
         

   
 
         

         
            

                                              

This is same as equation (2.2.16). 

 

APPENDIX 2.2E 

DERIVATION OF THE DETERMINANT OF THE JACOBIAN MATRIX IN 

SECTION 2.2.3 

We consider the following equations from section 2.2.3. 

 
  

 
  

 

  
 

 
             

   

  
      

    
 

 
                                                  

and 
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We obtain the following partial derivatives corresponding to these two 

equations. 

 
  

  

 
 

  
    

  
  

 
 

  
 

      

 
 
 

 
             

   

  
 

  
      

 
  

; 

 
  

  

 
 

  
    

and 

 
  

  

 
 

  
  

        

 
          

   

  
 

  
      

 
  

 

           
      

 
          

   

  
 

  
      

 
  

. 

So the determinant of the Jacobian matrix can be written as follows. 

      
        

 
          

   

  
 

  
      

 
  

 

         
      

 
          

   

  
 

  
      

 
  

 

         
      

 
 
 

 
             

   

  
 

  
      

 
    

or, 

      
        

 
          

   

  
 

  
      

 
  

 

         
      

 
          

   

  
 

  
      

 
  

. 

Here          and        . Thus the determinant is negative in 

sign. 
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APPENDIX 2.2F 

DERIVATION OF EQUATION (2.2.19) IN SECTION 2.2.4 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

                    
    

   
                                       

                                                  

The state variables are K and E. The three control variables are  ,   and 

 . λK and λE are two co-state variables. 

Maximising   with respect to  ,   and  , we have 

                                                                                                                                

  
  

  
                                 

  

  
                                        

and 

  
  

  
                                                                             

Using equations (2.2F.2) and (2.2F.3) we obtain 

 
  

  
                                                                                                                                  

Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 

     
  

  
                                         

   

  
  

                                                                                                     

and 

  
  

  
                                         

   

  
   

                                                                                                     

From equation (2.2F.1) we have, 
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Using equations (2.2F.3) and (2.2F.4) we obtain  

  
   

 
 
 

             
 

 
 
      

                                                                     

Using equations (2.2F.4), (2.2F.5), (2.2F.6) and (2.2F.8) we obtain 

equations (2.2F.9) and (2.2F.10) as derived below. 

         
 

      
 

            
 

 
 

      

 
   

   

  
                                   

and 

         
 

      
   

        
 

 
 

      

 
  

     
   

  
                              

From equations (2.2F.4), (2.2F.7) and (2.2F.9) we obtain 

 
  

 
 

 

 
         

 

      
 

            
 

 
 

      

 
                                  

In the steady-state growth equilibrium, 

 
  

 
 

 

 
         

 

      
   

            
 

 
 

      

 
                      

 
  

 
   

 

   
 
   

 
 

 
 
      

 
 

 
 

 

 
                                                                  

and 

 
  

 
 

 

 
    

 

   
 
   

 
 

 
 
        

                                                              

From equation (2.2F.12) we obtain 

 
 

 
         

 
 

           
 

   

                
 

 

             
 

           

                                                                                                     

Now using equations (2.2F.4), (2.2F.7), (2.2F.10) and (2.2F.15) we obtain 
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This is same as equation (2.2.19) in section 2.2.4. 

 

APPENDIX 2.3A 

DERIVATION OF EQUATION (2.3.2) IN SECTION 2.3.2 

 The dynamic optimization problem of the representative household is to 

maximize                
 

 
   with respect to   subject to equation (2.2.4) and 

given     . Here   is the control variable satisfying           ; and   is 

the state variable. 

The Hamiltonian to be maximized at each point of time is given by 

                                 . 

Here λK is the co-state variable representing the shadow price of 

investment. Maximizing the Hamiltonian with respect to   and assuming an 

interior solution, we obtain 

                                                                                                                    

Also the optimum time path of λK satisfies the following. 

 
   

  
                                                                                                       

Using equations (2.2.1), (2.2.2), (2.2.3) and (2.3A.2) we have 

 
   

  
              

   

  
 

 
 

      

 
                                                                     

 Using equations (2.2.1) to (2.2.3), (2.2.5) and the two optimality 

conditions (2.3A.1) and (2.3A.3), we have 
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This is same as equation (2.3.2). 

 

APPENDIX 2.3B 

DERIVATION OF EQUATION (2.3.6) IN SECTION 2.3.2.1 

Using equations (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.5), (2.3.2) and (2.2.8), 

we have  

    
  

 
 

 

    
            

   

  
 

 
 

      

   

                                
   

  
 

 
 

      

 
  

                                     

    
  

 
           

   

  
 

 
 

      

 
 

 

 
                                                            

and 

    
  

 
           

   

  
 

 
 

        

 
                                                                 

From equation (2.3B.3) we have, 

 
 

 
  

  

          
   
 

 

 

        

                                                                                           

Using equations (2.3B.1) and (2.3B.4) we derive the following equation. 

   
                 

                                            , 
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This is same as equation (2.3.6) in section 2.3.2.1. 

 

APPENDIX 2.3C 

DERIVATION OF EQUATIONS (2.3.7) AND (2.3.8) AND THE SECOND ORDER 

CONDITIONS IN SECTION 2.3.2.2 

We denote the L.H.S. and the R.H.S. of equation (2.3.6) by L.H.S.(2.3.6) 

and R.H.S.(2.3.6) respectively. Maximizing the R.H.S. of equation (2.3.6) with 

respect to τ, we obtain the following first order condition. 

                                                  

or,      

                                                                                          

Maximizing the R.H.S. of equation (2.3.6) with respect to  , we obtain the 

following first order condition. 

                                          

or, 

                                                                                                                    

Using equations (2.3C.1) and (2.3C.2) we obtain the following 

expressions.  

                    ; 

and 

                . 

These are same as equations (2.3.7) and (2.3.8). 

To check the second order conditions for optimality we twice differentiate 

equation (2.3.6), with respect to   and   respectively. At the equilibrium point 

                            . We arrive at the following two second order conditions. 
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 . 

and 

           
                              

    
   

  
 
 

 

           
                             

   
    

   
 

    
 

      
 

 

      
 .                   

Now we evaluate the above two second order conditions at      and 

     where 
   

  
  

   

  
  , at the optimum. Hence we obtain the followings. 

          
                             

   
    

   
 

   
                                               

                                     
  

and 

          
                             

   
    

   
 

   
                             

               
  

When    ,          
                             

    is always 

positive; and the R.H.S. of each of these two equations is negative. Thus the 

sign of each of the two second order derivatives is negative. 
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APPENDIX 2.3D 

DERIVATION OF EQUATION (2.3.10) IN SECTION 2.3.2.2 

Here the social welfare functional is given by              
 

 
  . From 

equations (2.3.3) and (2.3.5), we have 

           
   

  
 

 
 

      

 
 

         

 
                                                                 

Using equations (2.3.4) and (2.3.5), we have 

 
 

 
 

         

 
    

 

 
                                                                   

Along the steady state equilibrium growth path,           ; where      

is the initial value of  . Thus equation (2.3D.2) can be written as 

   
 

 
                  

                                                                         

Using equations (2.3.1) and (2.3D.3) and the social welfare functional, we 

have 

        
                             

   

 

 
                          

or, 

   
                    

   
             

            
 

 
    

For convergence we assume        . Thus, 

   
                    

   
             

         
                                     

or, 

   
                    

   
 
             

     
 
  
       

                                    

This is same as equation (2.3.10) in section 2.3.2.2. 
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APPENDIX 2.3E 

DERIVATION OF THE DETERMINANT OF THE JACOBIAN MATRIX IN 

SECTION 2.3.3 

We consider the following equations from the body of the paper. 

 
  

 
  

 

    
             

   

  
      

  

       
      

    
          

   

  
      

 
     

 

    
                                            

and 

 
  

 
           

   

  
        

            
   

  
      

                          

We obtain the following partial derivatives corresponding to these two 

equations. 

 
  

  

 
 

  
    

 
  

  

 
 

  
 

      

 
 

 

    
             

   

  
      

 
  

 

            
      

 
   

      

    
          

   

  
      

 
  

; 

 
  

  

 
 

  
    

and 

 
  

  

 
 

  
  

        

 
          

   

  
      

 
  

 

           
      

 
          

   

  
      

 
  

. 

So the determinant of the Jacobian matrix can be written as follows. 
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. 

Here          and        . So the determinant of the Jacobian 

matrix takes a positive (negative) sign if the following inequality is satisfied. 

  
        

 
  

   

    
           

   

  
      

 
  

 

     
      

    
          

   

  
      

 
    

or, 

           
        

       
            

Using the steady state equilibrium value of   given by equation (2.3B.4) 

in the inequality mentioned above we have, 

   
                         

       

        
 
        

 
     

   
 
        

   

                                                                                                     

The trace of the Jacobian matrix is given by  

         
        

 
           

   

  
      

 
  

 

           
      

 
          

   

  
      

 
    

Again using equation (2.3B.4), we can show that the trace can take 

positive (negative) sign if 
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APPENDIX 2.3F 

DERIVATION OF EQUATION (2.3.13) IN SECTION 2.3.4 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

                                                       

                                             

The state variables are K and E. The three control variables are  ,   and 

 .    and    are two co-state variables. 

Maximising   with respect to  ,   and  , we have 

                    

or,      

            
   

  
                                                                                                         

  
  

  
         

   

 
 
  

 
 

 
 
        

 
  

  
                                                         

and 

  
  

  
         

   

 
 
  

 
 

 
 
        

                                                             

Using equations (2.3F.2) and (2.3F.3) we obtain 

 
  

  
                                                                                                                                  

Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 

     
  

  
            

   

 
 
   

 
 

 
 
            

   
   

  
                      

and 
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Using equations (2.3F.3) and (2.3F.4), we have 

 
   

 
             

 

  
 

 
 

        

 
                                                                        

From equation (2.3F.1) we have, 

       
  

 
       

  

 
 

   

  
                                                                                    

Using equations (2.3F.1) and (2.3F.6) we obtain 

 
      

  
 
 

 
  

  

  
   

  

  
          

   

 
 
   

 
 

 
 
        

   
   

  
   

                                                                                                     

From equations (2.3F.4), (2.3F.5) and (2.3F.8) we obtain 

 
  

 
 

 

    
                 

   

 
 
   

 
 

 
 
            

         
  

 
          

                                                                                                        

In the steady state growth equilibrium, 

 
  

 
 

 

    
                 

   

 
 
   

 
 

 
 
            

        
  

 
     

                                                                                                 

 
  

 
  

   

 
 
   

 
 

 
 
          

 
 

 
 

 

 
                                                             

and 

 
  

 
 

 

 
   

   

 
 
   

 
 

 
 
        

                                                                      

From equations (2.3F.11) and (2.3F.13), we have 

                          
   

 
 
   

 
 

 
 
            

 

                                 

or, 
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Manipulating equation (2.3F.12) we obtain  

  
 

 
 
  

    
   

 
 
   

 
 

 
 
        

 
 

 
 

 

 
                                                           

Adding equations (2.3F.13) and (2.3F.15) we have 

   
 

 
 
  

            
   

 
 
   

 
 

 
 
        

  
   

 
  

 

 
  

or, 

 
 

 
       

   

 
 
   

 
 

 
 
        

  
   

 
    

 

 
 
  

                            

Using equations (2.3F.7) and (2.3F.16), we have 

 
 

 
             

 

  
 

 
 

        

               
 

 
 
  

       

                                                                                                     

Using equations (2.3F.7) and (2.3F.14), we obtain 

      
 

                
   

  
 

 
 

      

 
                                 

Thus from equation (2.3F.18), we have 

  
 

 
   

         

     
 
                

   
 

 

 

      

                                                                     

Now, using equations (2.3F.4), (2.3F.8), (2.3F.11) and (2.3F.13) in 

equation (2.3F.9), we obtain 

 
      

  
 
 

 
              

   

 
 
   

 
 

 
 
        

              

                                                                                                     

Again, using equations (2.3F.7), (2.3F.17), (2.3F.19) and (2.3F.20), we 

finally arrive at the following equation that solves for   . 
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This is same as equation (2.3.13) in section 2.3.4. 
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CHAPTER 3 

3. ALTERNATIVE SOURCES OF POLLUTION 

 

3.1 INTRODUCTION  

Models developed by Greiner (2005), EP (2008), etc., do not consider 

sources of pollution to be any other than output. Our basic model developed in 

chapter 2 also assumes level of production to be the only source of pollution. In 

this chapter, we develop a model of endogenous economic growth where 

pollution is generated by two alternative sources – consumption and capital 

usage. We explore the properties of optimal fiscal policy in the presence of 

productive public expenditure and environmental degradation caused by these 

two alternative sources of pollution.  

 

3.2 CONSUMPTION AS THE SOURCE OF POLLUTION36  

In this section we consider consumption to be the only source of 

pollution. Otherwise, the model developed in this section is identical to that 

developed in section 2.2 of chapter 2. Consumption of natural resources and 

consumption of energy-intensive luxury goods are important sources of 

pollution. Consumption of automobile services leads to air and sound 

pollution. Consumption of various electronic appliances leads to radiation and 

sound pollution. Household wastes and municipal sewages causing pollution of 

water bodies are by-products of consumption activities. Fossil fuels like coal, 

wood, kerosene oil, etc., are burnt for consumption in the rural areas. Some 

                                                
36 A related version of this model is published in Economic Modelling. 
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models in the existing literature adopt this consumption-caused-pollution 

hypothesis. Liddle (2001) develop a simulation model to explore trade and 

environment in the context of development where natural resource is an 

internationally traded good. He considers both production and consumption as 

sources of pollution; to counter this pollution abatement policy is explicitly 

modelled in an open economy thus allowing for differences in pollution-

intensive technology across countries.  

The many interesting results derived from this model are summarized as 

follows. The optimum ratio of productive public expenditure to national income 

is equal to the competitive share of the public input in the output of the final 

good; and this optimum ratio is independent of the rate of pollution. This result 

is different from that derived in chapter 2, section 2.2, where this optimum 

ratio is dependent on the rate of pollution. However, the optimum proportional 

income tax rate in this model is greater than this competitive output share of 

public input because a positive fraction of output is spent as abatement 

expenditure. Also, this optimum tax rate and the abatement expenditure rate 

depend on the rate of pollution. In Barro (1990) and in FMS (1993), there is no 

environmental pollution and abatement cost; and hence this ratio of productive 

public expenditure to national income is always equal to the proportional 

income tax rate, whose optimum value, in turn, is equal to the competitive 

output share of the public input. In Greiner (2005), this ratio depends on the 

pollution-output coefficient. Secondly, in this model, the optimal tax rate and 

the optimal abatement expenditure rate are functions of the steady-state 

equilibrium growth rate. So, in this model, the optimal values of the fiscal 

instruments and the steady-state equilibrium growth rate are determined 

simultaneously. However, in Barro (1990) and in FMS (1993), the optimum tax 

rate is determined independent of the growth rate and the same is true for 

Greiner (2005). Thirdly, our model exhibits transitional dynamic properties 

though it follows Barro (1990) to assume productive public expenditure to be a 

flow variable. Environmental quality like that in the basic model of section 2.2 

is an accumulable input in this model; and this protects it from being trapped 
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into an AK model. Fourthly, like Barro (1990) and FMS (1993), and like the 

basic model, there is no conflict between the growth rate maximizing solution 

and the social welfare maximizing solution in the steady-state growth 

equilibrium in our model. Greiner (2005) does not find such a conflict in the 

case of an income tax policy but finds it in the case of a pollution tax policy 

because pollution directly affects the utility of the household in his model. 

Fifthly, the competitive equilibrium growth rate in this model does not 

necessarily fall short of the socially efficient growth rate which is unlike in 

Barro (1990) or in FMS (1993). This is so because we consider externalities of 

conflicting nature on production - positive externalities resulting from the 

public expenditure and the environmental quality and negative externalities 

resulting from capital accumulation and environmental pollution. Barro (1990) 

as well as FMS (1993) consider only a positive externality in their models.  

Section 3.2.1 describes the basic model of the market economy; and its 

steady-state equilibrium properties related to fiscal policies are presented in 

section 3.2.2. Section 3.2.3 shows transitional dynamic results and section 

3.2.4 describes working of the command economy.   

 

3.2.1 THE MODEL  

We borrow equations (2.2.1) to (2.2.4) and (2.2.6) from the basic model, 

keeping in mind that         in equation (2.2.2). Equation (2.2.5) of the 

basic model is modified as equation (3.2.1) because consumption of the final 

good is the only source of environmental pollution. Thus, the equations below 

together summarize this extended model.  
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and 

              
    

   
                                                                                                                  

Equation (3.2.1) shows how environmental quality improves over time 

depending upon the magnitudes of pollution and abatement expenditure. 

Abatement activities bring improvements in environmental quality.    is the 

abatement expenditure made by the government. Environmental pollution is 

assumed to be a flow variable and to be proportional to the level of 

consumption of the final good; and   is the constant pollution-consumption 

coefficient.  

Stocks of   and   are exogenous at a particular point of time.   is a non 

rival stock and   is a non rival flow. Given the stocks of capital and 

environmental quality, and given the fiscal instrument rates, equations (2.2.1), 

(2.2.2) and (2.2.3) together determine   and   at each point of time. The 

household then chooses   and this determines the absolute rate of private 

capital accumulation,   , given by equation (2.2.4). Then equation (3.2.1) 

determines the absolute rate of improvement in the environmental quality, 

denoted by   . 

 

3.2.2 DYNAMIC EQUILIBRIUM AND STEADY-STATE 

The representative consumer’s optimization problem in this extension is 

identical to that in the basic model in section 2.2.2. The demand rate of 

growth37 of consumption is given by  

 
  

 
 

 

 
   

 

           
   

  
 

 
 

      

 
                                                                       

                                                
37 Derivation of demand rate of growth of consumption here is identical to that of equation (2.2.7) in Appendix 

2.2A of chapter 2. 
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A steady-state growth equilibrium is considered where all 

macroeconomic variables grow at the same rate,   . Thus, we again consider 

the steady-state condition given by equation 2.2.8 in chapter 2.  

We now turn to analyze the existence of unique steady-state equilibrium 

growth rate in the market economy. Using equations (2.2.1), (2.2.2), (2.2.3), 

(2.2.4), (3.2.1), (3.2.2) and (2.2.8) we obtain following equations.  

         
 

 
   

 

           
   

  
 

 
 

      

 
                                                                        

          
 

           
   

  
 

 
 

      

 
 

 

 
                                                                               

and 

          
 

       
   

  
 

 
 

        

 
   

 

 
  

 

 
 
  

                                                                  

Using equations (3.2.3), (3.2.4) and (3.2.5) we obtain the following 

equation38 to solve for   . 

                    
        

     

      
 

 

 
            

       

 

                                                                                                                       

The solution is unique if 
 

     
   because the L.H.S. of equation (3.2.6) is 

a positive function of    in that case; and its R.H.S. is a parametric constant, 

given the income tax rate and the abatement expenditure rate.                                                                                     

Equations (3.2A.4) and (3.2A.5) in Appendix 3.2A express 
 

 
 and 

 

 
 in 

terms of   ; and thus we can prove the uniqueness of steady-state equilibrium. 

We have the following proposition. 

Proposition 3.2.1: There exists unique steady-state equilibrium 

growth rate in the market economy given the income tax rate and the 

abatement expenditure rate, if  
 

     
  . 

                                                
38 The derivation of equation (3.2.6) is worked out in Appendix 3.2A. 
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In equation (3.2.6), the existence of unique balanced growth path is 

ensured if 
 

     
  . Here        is the effective pollution-output coefficient 

when pollution arises from consumption. This is so because consumption 

depends on disposable income,       . Also, the abatement expenditure rate, 

 , must exceed the effective pollution-output coefficient. 

 

3.2.2.1 Optimal Taxation 

The government maximizes growth rate in the steady-state equilibrium 

with respect to fiscal instruments,   and  . The L.H.S. of equation (3.2.6) is a 

monotonically increasing function of   , because, by assumption, 
 

     
  . 

Since the equality between the L.H.S. and the R.H.S. is always ensured in the 

steady-state growth equilibrium, maximization of    means maximization of 

the R.H.S. of equation (3.2.6). Maximizing the R.H.S. of equation (3.2.6) with 

respect to   and   respectively, we obtain the following two equations39.   

         
     

      
 

 

 
            

       

      
      

                 

 
  

                                                                                                                     

and 

                  
     

      
 

 

 
            

       

      
                                  

Using these two equations we obtain the optimum income tax rate and 

the optimum abatement expenditure rate. 

    
                                

                    
 

                                  

                    
    

                                                                                                                     

and 

    
                           

                    
                                                                              

                                                
39 The derivation of equations (3.2.7) and (3.2.8) is worked out in Appendix 3.2B. 
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Using equations (3.2.9) and (3.2.10), the sufficient condition for the 

existence of unique steady-state equilibrium can be expressed as 

                                                       ; 

or, 

             
            

                            
. 

So the optimum income tax rate and the optimum abatement 

expenditure rate are functions of the steady-state equilibrium growth rate,   ; 

and equations (3.2.6), (3.2.9) and (3.2.10) solve for   ,    and    

simultaneously. In Barro (1990) and in FMS (1993),    , by assumption. So, 

       and hence is independent of the growth rate. 

It can easily be shown that  

 
   

   
  

             

                       
 

   

   
 

By assumption,             . Hence,          . This ensures 

that    and    varies negatively with   . A higher steady-state equilibrium 

growth rate is associated with lower optimum values of   and  . 

Using equations (3.2.9) and (3.2.10) we have 

                                                                                                                               

This result, illustrated by equation (3.2.11), is different from that in the 

basic model. The pollution rate,  , does not affect the optimum ratio of 

productive public expenditure to national income when consumption is the 

source of pollution. This is so because the expenditure on public intermediate 

good is proportional to the level of income and not to the level of consumption. 

However, the optimum income tax rate and the optimum abatement 

expenditure rate are sensitive to the pollution rate. 

The pollution rate,  , does not affect the optimum ratio of productive 

public expenditure to national income when consumption is the source of 

pollution. This is so because the expenditure on public intermediate good is 

proportional to the level of income and not to the level of consumption. 
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However, the optimum income tax rate and the optimum abatement 

expenditure rate are sensitive to the pollution rate.  

Using equations (3.2.6) and (3.2.8) we obtain following equation solving for 

the steady-state equilibrium growth rate. 

   
                                                               

                                                                                                             

Further, we use equations (2.2.14), (2.2.15) and (2.2.12) of chapter 2 and 

obtain 

   
                                                                

                                                                                                  

Both equations (3.2.6a) and (2.2.12a) are otherwise identical except the 

presence of additional multiplicative term                   in the R.H.S. of 

equation (2.2.12a). Here                   is a positive fraction. Thus 

comparing the two equations we can conclude that the steady-state 

equilibrium growth rate derived in section 2.2 is less than that derived in 

section 3.2, given the income tax rate  . This is so because, it is not the entire 

output but only a part of that, which is consumed, is the source of pollution. 

Hence expenditure required to abate this pollution is also less in this case; and 

hence, a higher fraction of output is available to meet other productive 

expenditures. Therefore, the equilibrium growth rate is higher in this model 

compared to that obtained in section 2.2 of chapter 2. 

The next exercise is to check whether there is any conflict between the 

growth rate maximizing tax rate and the social welfare maximizing tax rate in 

the steady-state equilibrium. The social welfare function is given by 

                
    

   

 

 
                                                                                                                 

Using equations (3.2.3) and (3.2.4) and assuming that the economy is on 

the steady-state equilibrium growth path, we can show that 
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Using equations (3.2.12) and (3.2.13) we have 

           
       

   
               

             
                                             

or, 

               
       

   
 
         

         
            

    

  varies positively with   . 

Thus the level of social welfare in the steady-state growth equilibrium is 

maximized when the steady-state equilibrium growth rate is maximized40. We 

now have the following proposition. 

Proposition 3.2.2: (i) The optimum income tax rate and the optimum 

abatement expenditure rate in the steady-state growth equilibrium are given by 

   
                                

                    
, 

and 

   
                           

                    
. 

These fiscal policy rates in the steady-state growth equilibrium are 

simultaneously determined with the growth rate; and a higher growth rate 

involves lower optimum values of the fiscal instruments. 

(ii) The optimum ratio of productive public expenditure to national 

income is equal to the competitive output share of the public input; and hence 

this optimum ratio does not depend on the rate of pollution.  

The presence of congestion effect making     and the presence of 

environmental pollution causing     make our result different from those of 

Barro (1990) and FMS (1993). If we assume      , we obtain        and 

      and these results are identical to those of Barro (1990) and FMS (1993). 

In Greiner (2005), pollution is proportional to the level of output of the final 

goods sector; and the optimum ratio of productive public investment to 

                                                
40 We do not analyze social welfare maximization including transitional dynamics. FMS (1993) does that. 
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national income is not independent of the value of the pollution-output 

coefficient. 

 

3.2.3 STABILITY PROPERTY 

We now analyze the transitional dynamic properties of this model. 

Equations of motion of the growth model are given by (2.2.4), (3.2.1) and 

(3.2.2). We consider the following ratio variables from the previous chapter.  

   
 

 
  and   

 

 
  

Using equations (2.2.4), (3.2.1) and (3.2.2), we have 

 
  

 
  

 

  
 

 
             

   

  
      

    
 

 
                                                        

and 

 
  

 
  

 

       
   

  
      

 
          

 

           
   

  
      

      

                                                                                                           

The determinant of the Jacobian matrix 41  corresponding to the 

differential equations (3.2.15) and (3.2.16) is given by 

      
        

 
 
 

       
   

  
      

 
    

          
 

 
       

 

           
   

  
      

 
         

           
      

 
 
 

 
    

 

           
   

  
      

 
  

. 

Here the social elasticity of output with respect to private capital is 

positive by assumption, i.e.,           . Also         when   and   

are optimally chosen and when    . The determinant is negative42 if 

                                                
41 Derivation of the determinant is worked out in Appendix 3.2C. 
42Derivation of in-equation (3.2.T) is worked out in Appendix 3.2C. Condition (3.2.T) is sufficient but not 

necessary. 
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The two latent roots of the Jacobian matrix must be real and of opposite 

signs in that case; and the unique steady-state equilibrium is a saddle-point 

with only one transitional path converging to this point. Therefore we can state 

the following proposition. 

Proposition 3.2.3: It is sufficient to show that   

    
                                            

                                                 
 

for the unique steady-state growth equilibrium to be saddle-point stable with 

unique saddle path converging to that equilibrium point. 

         Figure 3.2.2 shows the saddle path converging to the steady-state 

equilibrium point in the special case with    .      locus is itself the saddle 

path in this case. In-equation (3.2.T) satisfies 
 

   
   for      and      when 

   . This can be easily understood comparing in-equations (3.2C.3) and 

(3.2C.4) in Appendix 3.2C. 
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The transitional path to the steady-state equilibrium in this model is not 

unambiguously unique as is the case in the basic model in chapter 2, section 

2.2.3. In this model, restriction on the value of the steady-state growth rate 

defines a sufficient condition for this transitional path to be unique. 

 

3.2.4 COMMAND ECONOMY 

The command economy solution removes distortion of the market 

economy caused by proportional income tax and due to failure of the private 

individuals to internalize externalities in the system. Positive externality is 

caused by the presence of two non rival productive inputs - public intermediate 

FIGURE 3.2.2 

  

     

  

     

  

E 
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good and environmental quality; and environmental pollution, caused due to 

private consumption, and congestion effect of private capital accumulation give 

rise to negative externality. So we solve the planner’s problem to obtain the first 

best solution. The planner’s social welfare function is identical to that of the 

representative household’s lifetime utility function. Equations (2.2.1), (2.2.2) 

and (2.2.6) remain unchanged; equations (2.2.3) and (2.2.4) are re-written as 

(2.2.3.1) and (2.2.4.1) respectively, for the command economy. Equation (3.2.1) 

is modified as follows.  

                                                                                                                                      

 , as before, denotes planner’s total expenditure including public 

intermediate input and abatement activities; and the abatement expenditure is 

denoted by  . 

The planner wants to maximize      
    

   

 

 
   with respect to  ,   and   

subject to equations (2.2.3.1), (2.2.4.1) and (3.2.1.1). A steady-state growth 

equilibrium is considered and the growth rate is denoted by   . The equation 

that solves for the steady-state equilibrium growth rate 43  in the command 

(planned) economy is given by the following. 

        
                                                              

          The L.H.S. of equation (3.2.17) is a positive function of    and the R.H.S. 

is a parametric constant. Figure 3.2.3 shows how the unique value of    is 

determined. It is worth noticing that the socially efficient growth rate 

determined from equation (3.2.17) is independent of the emission-consumption 

coefficient. Thus a higher value of this coefficient does not lower the socially 

efficient growth rate. This is because consumption of final output generates 

pollution in this extended model; and the social planner allocates resources for 

abatement so as to lower consumption and use resources from lowered 

consumption to negate pollution, in the process, keeping growth rate 

unaffected by pollution-consumption coefficient. However, the market economy 

                                                
43Equation (3.2.17) is derived in the Appendix 3.2D. 
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growth rate, as is illustrated below, is not independent of this coefficient. In the 

decentralized economy, government has income tax as the only fiscal 

instrument to allocate resources for productive public expenditure and for 

abatement.  

 

 

 

 

 

 

 

 

 

Now we turn to compare the market economy solution to the command 

economy solution by comparing equation (3.2.17) to equation (3.2.6) when 

     and     . We modify equation (3.2.6) with      and      as follows. 

   
       

 

 
        

 

 
            

        

 

                                                                                     

To aide comparison we also modify equation (3.2.17) as follows. 

                
             

         

                                                                                    

The R.H.S. of equations (3.2.17.1) and (3.2.6.1) are identical. Hence 

comparing equation (3.2.6.1) to equation (3.2.17.1) we find that    exceeds 

(falls short of)    when the technology parameter   takes a low (high) value. 

L.H.S. of (3.2.17), 

R.H.S. of (3.2.17) 

 

   

  
  

L.H.S. of (3.2.17) 

 

R.H.S. of (3.2.17) 

  

FIGURE 3.2.3 
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This is shown in Figure 3.2.4. The L.H.S. of equations (3.2.6.1) and (3.2.17.1) 

are plotted as positively sloped curves and the R.H.S. is depicted by horizontal 

straight lines for exogenous values of the technology parameter  . The L.H.S. 

curve of equation (3.2.6.1) starts from origin but the L.H.S. curve of equation 

(3.2.17.1) starts from a point on the vertical axis. When   takes a very low 

value, the points of intersection of the two L.H.S. curves with the lower 

horizontal line show that   
  fall short of   

 . When   takes a high value, similar 

mechanism shows that   
    

 .  

 

 

 

 

 

 

 

 

 

 

We can state the following proposition. 

Proposition 3.2.4:         may take a positive (negative) sign when 

the technology parameter   takes a high (low) value. 

L.H.S. of (3.2.17.1) 

 

L.H.S. of (3.2.6.1), 

L.H.S. of (3.2.17.1), 

R.H.S. 

 

      

  
    

    
    

  

L.H.S. of (3.2.6.1) 

 

R.H.S. (with high value of  ) 

 

R.H.S. (with low value of  ) 

 

  

FIGURE 3.2.4 
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The result in proposition 3.2.4 when 
 

   
  , is similar to that in the 

basic model in section 2.2.4 of chapter 2. However, this result is valid only for 

 

   
   unlike in the basic model, where no such restriction is required. 

 

3.3 CAPITAL AS THE SOURCE OF POLLUTION  

In this section, capital usage is treated as the only source of pollution. 

Pollution is not necessarily an unavoidable feature of production. There exist 

pollution-free production technologies. Pollution is generated when some 

special types of machineries, energy resources or chemical inputs are used in 

production. Several authors have considered physical capital or one of the 

intermediate inputs as the source of environmental pollution44. Mohtadi (1996) 

and Oueslati (2002) analyse the properties of environmental fiscal policy in 

endogenous growth model with level of pollution being an increasing function 

of the amount of capital used and a decreasing function of abatement activity. 

Itaya (2008) considers the effect of environmental taxation in a Romer type of 

learning-by-doing model with endogenous labour supply where pollution enters 

as a negative externality in utility; and the level of pollution varies positively 

with the amount of capital used. Smulders and Gradus (1996) and Byrne 

(1997) treat pollution as an accumulable by-product that varies positively with 

the level of capital use. Dirty varieties of intermediate inputs cause pollution in 

Benarroch and Weder (2006) and Elbasha and Roe (1996). Bertinelli, Strobl 

and Zou (2008) use a capital vintage model to show how environmental 

pollution decreases with the usage of capital of newer vintage in production. In 

their model investment in the production sector generates pollution, part of 

which is absorbed by nature’s self regeneration capacity. The utility of 

consumers is enhanced by consumption of the final good as well as by 
                                                

44See the works of Benarroch and Weder (2006), Itaya (2008), Oueslati (2002), Bertinelli, Strobl and Zou (2008), 

Smulders and Gradus (1996), Byrne (1997), Mohtadi (1996), Bovenberg and Smulders (1995), Elbasha and Roe 

(1996), Cassou and Hamilton (2004), Hart (2004), etc. 
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environmental quality. In the planning problem output, consumption and 

investment grow at a constant rate. At the social optimal environmental quality 

improves, however, not at a constant rate.  

We treat environmental pollution to be a flow variable in this model and 

to be caused by the use of physical capital. 

We derive following results from this model. The optimum ratio of 

productive public expenditure to national income is equal to the competitive 

share of the public input in the output of the final good and is independent of 

the rate of pollution. However, the optimum proportional income tax rate in 

this model is greater than this competitive output share of public input 

because a positive fraction of output is spent on abatement activity. Also this 

optimum tax rate and the optimum abatement expenditure rate depend on the 

rate of pollution. In Barro (1990) and in FMS (1993), there is no environmental 

pollution and abatement cost; and hence this ratio of productive public 

expenditure to national income is always equal to the proportional income tax 

rate whose optimum value is equal to the competitive output share of the 

public input. In Greiner (2005), the optimum public investment to national 

income ratio depends on the pollution-output coefficient. Secondly, in this 

model, the optimal tax rate and the optimal abatement expenditure rate are 

functions of the growth rate in the steady-state equilibrium. So, in this model, 

the optimal values of the fiscal instruments and the steady-state equilibrium 

growth rate are determined simultaneously. However, in Barro (1990) and in 

FMS (1993), the optimum tax rate is determined independently of the growth 

rate and the same is true for Greiner (2005). Thirdly, our model exhibits 

transitional dynamic properties though it follows Barro (1990) to assume 

productive public expenditure to be a flow variable. Environmental quality is an 

accumulable input in this model; and this protects our model from being 

trapped into an AK model. Fourthly, like Barro (1990) and FMS (1993), there is 

no conflict between the growth rate maximizing solution and the social welfare 

maximizing solution in the steady-state growth equilibrium in our model. 

Greiner (2005) does not find such a conflict in the case of an income tax policy 
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but finds it in the case of a pollution tax policy because pollution directly 

affects the utility of the household in his model. Fifthly, the competitive 

equilibrium growth rate in this model does not necessarily fall short of the 

socially efficient growth rate which is unlike in Barro (1990) or in FMS (1993). 

This result is obtained because there are two conflicting types of externalities 

on production - a positive externality resulting from the public expenditure and 

technology and a negative externality resulting from capital accumulation and 

environmental pollution. Barro (1990) as well as FMS (1993) considers only a 

positive externality.  

Following sections are organized in this way; the basic model of the 

market economy is described in section 3.3.1 and its steady-state equilibrium 

properties related to fiscal policies are presented in section 3.3.2. Section 3.3.3 

shows transitional dynamic results; and section 3.3.4 describes the working of 

the command economy.   

 

3.3.1 THE MODEL  

Equations (2.2.1) to (2.2.4) and (2.2.6) are borrowed from section 2.2 in 

chapter 2 and equation (3.2.1) is modified as follows. 

                                                                                                                           

Environmental quality improves over time depending upon the 

magnitudes of pollution and abatement expenditure.    is the abatement 

expenditure made by the government. Here environmental pollution is 

assumed to be proportional to the use of capital stock.    is the constant 

pollution-capital coefficient.  

Stocks of   and   are exogenous at a particular point of time.   is a non 

rival stock and   is a non rival flow. Given the stocks of capital and 

environmental quality, and given the fiscal instrument rates, equations (2.2.1), 

(2.2.2) and (2.2.3) together determine   and   at each point of time. Thus 
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equation (3.3.1) determines the absolute rate of improvement in the 

environmental quality, denoted by   , given abatement expenditure rate and 

capital stock. The household then chooses   and this determines the absolute 

rate of private capital accumulation,   . 

 

3.3.2 DYNAMIC EQUILIBRIUM AND STEADY-STATE 

The dynamic analysis of this model and its steady-state growth 

equilibrium condition are identical to section 3.2.2 of the present chapter. 

We, therefore, turn to show the existence of unique steady-state 

equilibrium growth rate in the market economy; and so we use equations 

(2.2.1) to (2.2.4), (3.3.1), (3.2.2) and the steady-state equilibrium condition 

given by equation (2.2.8) to obtain following equations.  

         
 

 
   

 

           
   

  
 

 
 

      

 
                                                                        

          
 

           
   

  
 

 
 

      

 
 

 

 
                                                                               

and 

          
 

       
   

  
 

 
 

        

 
   

 

 
 
  

                                                                          

Here   , as before, denotes the steady-state equilibrium growth rate in 

the market economy. Using equations (3.3.2), (3.3.3) and (3.3.4) we obtain the 

following equation45 to solve for   . 

           
        

     

      
   

       

                                      

The solution is unique when its L.H.S. is an increasing function of    if  

  

      
  ; and the R.H.S. is a positive parametric constant, given the income 

tax rate and the abatement expenditure rate satisfying            

                                                
45The derivation of equation (3.3.5) is worked out in Appendix 3.3A. 
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  We can state the following proposition. 

Proposition 3.3.1: Unique steady-state equilibrium growth rate 

exists in the market economy given the income tax rate and the abatement 

expenditure rate if  
  

      
   and if        . 

The existence of unique steady-state equilibrium growth rate depends on 

the condition  
  

      
  , which means that the discount rate,  , must exceed 

the ratio of the rate of pollution, (generated from the fraction of disposable 

income going to physical capital accumulation),        , to the abatement 

expenditure rate,  , for capital is the source of pollution here. 

 

3.3.2.1 Optimal Taxation 

Government maximizes growth rate in the steady-state equilibrium with 

respect to fiscal instruments,   and  . The L.H.S. of equation (3.3.5) is a 

monotonically increasing function of   , because, by assumption, 
  

      
  . 

Thus, solving the growth rate maximization problem of the government at the 

steady-state equilibrium subject to equation (3.3.5) with respect to fiscal 

instruments,   and  , we obtain following two equations46.   

         
     

      
   

       

      
      

                 

 
                                        

and 

         
     

      
   

       

      
                                                                  

Using these two equations we obtain following expressions of the 

optimum income tax rate and of the optimum abatement expenditure rate. 

    
                    

          
 

                        

          
                                                

                                                
46Derivation of equations (3.3.6) and (3.3.7) is worked out in Appendix 3.3B. 
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and 

    
               

  

          
                                                                                                         

So       and    are simultaneously determined by equations (3.3.5), 

(3.3.8) and (3.3.9). It can be easily shown that 

         
   

   
  

             

             
 

   

   
. 

By assumption,             ; and hence                

            . This ensures          . Also this ensures that    as well 

as    varies negatively with   . A higher steady-state equilibrium growth rate is 

associated with lower optimum values of   and  . 

Using equations (3.3.8) and (3.3.9) we have  

                                                                                                                               

       is the optimum ratio of productive public expenditure to national 

income, which is equal to the competitive output share of productive public 

input,    . 

The pollution rate,  , does not affect the optimum ratio of productive 

public expenditure to national income when capital use is the source of 

pollution. This is so because the expenditure on public intermediate good is 

proportional to the level of income and not to the level of capital use. However, 

the optimum income tax rate and the optimum abatement expenditure rate are 

sensitive to the pollution rate.  

Using equations (3.3.5) and (3.3.7) of chapter 3 we obtain an equation 

exactly identical to (3.2.6a). Thus comparing equations (3.2.6a) to (2.2.12a) we 

can conclude that the steady-state equilibrium growth rate derived in section 

2.2 is less than that derived in the present section, given the income tax rate  . 

Here, the entire output is not the source of pollution but only a part which is 

used to create additional capital. Hence, expenditure required to abate this 

pollution is less than that required in the model in section 2.2; and, 

consequently, a higher fraction of output is available to meet other productive 
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expenditures. This is why the equilibrium growth rate is found to be higher in 

this case compared to that obtained in section 2.2 of chapter 2. 

The next exercise is to check whether there is any conflict between the 

growth rate maximizing tax rate and the social welfare maximizing tax rate. The 

social welfare function is identical to equation (3.2.12) in section (3.2.2.1) and 

its expression is identical to that in section 3.2.2.1 when expressed in terms of 

steady-state equilibrium growth rate. Hence   varies positively with   . Thus, 

in this case too, the level of social welfare in the steady-state growth 

equilibrium is maximized when the steady-state equilibrium growth rate is 

maximized. We now have the following proposition. 

Proposition 3.3.2: (i) The optimum income tax rate and the optimum 

abatement expenditure rate in the steady-state growth equilibrium are 

simultaneously determined with the growth rate; and a higher growth rate 

involves lower optimum values of fiscal instruments.  

(ii) Optimum ratio of productive public expenditure to national income is 

equal to the competitive output share of the public input in the final goods 

sector; and hence is independent of the pollution rate per unit of capital. 

 

3.3.3 STABILITY PROPERTY 

We now analyze the transitional dynamic properties of this model. 

Equations of motion of the growth model are given by (3.2.2), (2.2.4) and 

(3.3.1). We consider the ratio variables,   and   from section 3.2.3 and using 

equations (3.2.2), (2.2.4) and (3.3.1), we have 

 
  

 
  

 

 
             

   

  
 

  
      

    
 

 
                                                         

and 
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The determinant of the Jacobian matrix 47  corresponding to the 

differential equations (3.3.11) and (3.3.12) is given by 

       
        

 
 
 

       
   

  
         

  

              
 

 
       

 

           
   

  
        

      . 

Here, by assumption,           . Also         when   and   

are optimally chosen and when    . So the determinant is unrestricted in 

sign. It is negative48 if  

             
                                     

                                
                                                                     

The two latent roots of the Jacobian matrix must be real and of opposite 

signs in that case; and the unique steady-state equilibrium is a saddle-point 

with only one transitional path converging to this point. Therefore, we can state 

the following proposition.  

Proposition 3.3.3: The steady-state equilibrium is saddle point stable 

with unique saddle path converging to that equilibrium point if 

             
                                     

                                
. 

Figure 3.3.1 shows the saddle path converging to the steady-state 

equilibrium point in the special case with    .      locus is itself the saddle 

path in this case. In-equation (3.3.T) satisfies 
  

      
   for      and      

when    49.  

 

 

                                                
47Derivation of the determinant is worked out in Appendix 3.3C. 
48 Derivation of in-equation (3.3T) is worked out in Appendix 3.3C. Condition (3.3T) is sufficient but not 

necessary. 
49This can be easily understood comparing in-equations (3.3C.3) and (3.3C.4) in Appendix 3.3C. 



118 
 

 

                                         

                                                 

  

 

 

    

 

 

 

 

 This result is similar to that in section 3.2.3 when consumption of final 

good is the source of pollution. 

 

3.3.4 COMMAND ECONOMY 

Sub-optimality of the market economy solution due to distortion caused 

by the proportional income tax and the failure of the private individuals to 

internalize externalities in the system are well known. Equation (3.3.1) is 

modified for the planned economy as follows. 

                                                                                                                                     

Here    denotes planner’s expenditure on abatement activities while total 

expenditure including expenditure on public intermediate input and on 

  

     

  

     

  

E 

 

 
 

 
FIGURE 3.3.1 
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abatement activities is denoted by  , as before. Thus, equations (2.2.1), (2.2.2), 

(2.2.6), (2.2.3.1), (2.2.4.1) and (3.3.1.1) describe the model in the planned 

economy. 

The planner wants to maximize      
    

   

 

 
   with respect to  ,   and    

subject to equations (2.2.3.1), (2.2.4.1) and (3.3.1.1). A steady-state growth 

equilibrium is considered and the growth rate is denoted by   . The equation 

for the steady-state equilibrium growth rate50 in the planned economy is given 

by the following. 

                  
                        

                                                                                       

The L.H.S. of equation (3.3.13) is a positive function of    and the R.H.S. 

is a positive parametric constant because           .  

Now we turn to compare the market economy solution to the command 

economy solution by comparing equation (3.3.13) to equation (3.3.5) when 

     and     . We modify equation (3.3.5) with      and      as follows. 

           
       

 

 
          

        

                             

                                                                                                        

Comparing the L.H.S. of equation (3.3.5.1) to that of equation (3.3.13) we 

find that for all values of      , the term  
 

 
          

        

 is greater 

than the term                  . When       
 

   
, the term   

       is 

greater than the term        
      . Thus for all values of       

 

   
, the 

L.H.S. of equation (3.3.5.1) exceeds that of equation (3.3.13). So for some value 

of       
 

   
, the L.H.S. of both the equations are equal; and, for all 

sufficiently small values of       
 

   
, the L.H.S. of equation (3.3.13) 

exceeds that of equation (3.3.5.1). The R.H.S. of both the equations is identical. 

                                                
50 Equation (3.3.13) is derived in the Appendix (3.3D). 
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The comparison is shown in Figure 3.3.2. The L.H.S. curve of equation (3.3.5.1) 

starts from the origin and the same of equation (3.3.13) starts from a point on 

the vertical axis. The R.H.S. curve of both the equations is denoted by the 

horizontal line. When the parameter   takes a sufficiently low value, the points 

of intersection of the two L.H.S. curves with the R.H.S. horizontal curve show 

that   
    

 . However, we find   
    

  when   takes a high value. Hence 

comparing equation (3.3.5.1) to equation (3.3.13) we find that    exceeds (falls 

short of)    when the parameter   takes a low (high) value. We can state the 

following proposition. 

Proposition 3.3.4:         may take a positive (negative) sign when 

the technology parameter   takes a high (low) value. 

 

 

 

 

 

 

 

 

 

 

 

L.H.S. of (3.3.13) 

 

L.H.S. of (3.3.5.1), 

L.H.S. of (3.3.13), 

R.H.S. 

 

      

  
     

    
    

  

L.H.S. of (3.3.5.1) 

 

R.H.S. (with high value of  ) 

 

R.H.S. (with low value of  ) 

 

  

FIGURE 3.3.2 
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APPENDIX 3.2A 

DERIVATION OF EQUATION (3.2.6) IN SECTION 3.2.2 

Using equations (2.2.1), (2.2.2), (2.2.3), (2.2.4), (2.2.8), (3.2.1) and (3.2.2) 

we have the following equations. 

    
  

 
 

 

 
           

   

   
 

  
 

 
 

      

 
                                                  

    
  

 
  

 

           
   

  
 

 
 

      

 
 

 

 
                                                        

and 

    
  

 
       

   

  
 

  
 

 
 

        

 
   

 

 
  

 

 
 
  

                                            

From equation (3.2A.1) we have, 

 
 

 
            

   

   
 

           
 

 

      
                                                   

Using equations (3.2A.1) and (3.2A.2), we have 

 
 

 
 

 

 
                                                                                                            

          Using equations (3.2A.3), (3.2A.4) and (3.2A.5) we derive the following 

equation. 

      
     

      
 

 

 
             

                
 

 

              
 

           
 

  
 

      , 

or, 

          
 

         
     

      
 

 

 
             

                                      
 

           
 

  
 

      , 

or, 
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This is same as equation (3.2.6) in section 3.2.2. 

 

APPENDIX 3.2B 

DERIVATION OF EQUATIONS (3.2.7) AND (3.2.8) AND THE SECOND ORDER 

CONDITIONS IN SECTION 3.2.2.1 

We denote the L.H.S. and the R.H.S. of equation (3.2.6) as L.H.S. (3.2.6) 

and R.H.S. (3.2.6) respectively. Differentiating equation (3.2.6) with respect to τ, 

we obtain the following first order condition.    

                                    
   

          
     

      
 

 

 
            

  

 
  

      
 

      

 
  

   

  
   

                       
     

      
 

 

 
            

  

 
     

       
 

                                                                                     

          At the equilibrium point                             ; and 
   

  
   at the 

optimum. 

Thus equation (3.2B.1) takes the following form. 

         
     

      
 

 

 
            

  

 
     

       
 

                        , 

or, 

         
     

      
 

 

 
            

       

      
      

                 

 
  

                                                                                                     

This is the same as equation (3.2.7) in section 3.2.2.1. 
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Again, differentiating the R.H.S. of equation (3.2.6) with respect to  , we 

obtain the following first order condition. 

                                    
   

           
     

      
 

 

 
            

  

 
  

      
 

      

 
  

   

  
 

                       
     

      
 

 

 
            

  
     

      
 

                                                                                                        

Similar to Equation (3.2B.2), (3.2B.3) can be written as equation (3.2B.4). 

        
     

      
 

 

 
            

  

 
     

      
             , 

or, 

         
     

      
 

 

 
            

       

      
                        

This is same as equation (3.2.8) in section 3.2.2.1. 

To check the second order conditions for optimality we differentiate both 

sides of equation (3.2B.2) with respect to   and both sides of equation (3.2B.4) 

with respect to  .  

We arrive at the following two second order conditions. 
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.                   

Now we evaluate the above two second order conditions at      and 

     where 
   

  
  

   

  
  . Hence we obtain the followings. 

          
    

   
  

         
                                   

 
                      

                       
 

                                                                 

                               

 

and 
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The R.H.S. of each of these two equations is negative. Thus the sign of 

both the second order derivatives are negative. 

 

APPENDIX 3.2C 

DERIVATION OF THE DETERMINANT AND IN-EQUATION (3.2.T) IN SECTION 

3.2.3 

We consider the following equations from section 3.2.3. 

 
  

 
  

 

 
             

   

  
 

  
      

    
 

 
                                                   

and 

 
  

 
       

   

  
 

  
        

                    
   

  
 

  
      

     

                                                                                                      

We obtain the following partial derivatives corresponding to the above 

two equations. 

 
  

  

 
 

  
    

 
  

  

 
 

  
 

      

 
 
 

 
             

   

  
 

  
      

 
  

; 

 
  

  

 
 

  
         

and 

 
  

  

 
 

  
  

        

 
      

   

  
 

  
      

 
   

      

 
          

   

  
 

  
      

 
  

 

                         . 

So the determinant of the Jacobian matrix can be written as follows. 
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or, 

                   
        

 
      

   

  
 

  
      

 
  

 

                 
      

 
          

   

  
 

  
      

 
  

 

                  
      

 
 
 

 
             

   

  
 

  
      

 
  

. 

Now, we use equations (3.2.15) and (3.2.16) and the steady-state 

equilibrium condition,        , to obtain the following equation. 

 
 

 
          

   

  
 

  
      

        
   

  
 

  
        

        
 

 
  

                                                                                                     

Thus, using equation (3.2C.1) in the R.H.S. expression of the 

determinant, we find that     is positive (negative) if 

  
      

 
  

 

 
   

 

 
            

   

  
 

  
      

  

              
      

 
  

 

 
   

 

 
    

      

 
    

   
      

 
  

 

 
   

 

 
    

      

 
 
 

 
                                                           

Now using equations (3.2A.4), (3.2.6) and the value of         given by 

(3.2.11), we find that the in-equation (3.2C.2) takes the following form. 
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Here, 
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   ; 

and 

        
      

 
             

 

 
  

    
     

      
 

 

 
                    

as 

    . 

Again, 

                      
 

 
     

     

      
 

 

 
                    ; 

and 

        
      

 
             

 

 
  

    
     

      
 

 

 
                  

                                                                                             
      

 
       

as 

             . 

Hence, the upper bound of the L.H.S. of in-equation (3.2.T) is                

      
 

 
   

 

      
    and the lower bound of its R.H.S. is  

      

 
      . 

Thus the determinant will be negative in sign if  
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or, 

 
 

     
  

      

 

       

 
                                                                                           

or, 
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or, 

 

     
 

                      

  
, 

or, 
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Using equation (3.2.9) and in-equation (3.2C.3) we obtain the following 

in-equation. 

   
                                            

                                                 
 

This is the same as in-equation (3.2.T) in section 3.2.3. 

APPENDIX 3.2D 

DERIVATION OF EQUATION (3.2.17) IN SECTION 3.2.4 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

       
    

   
                                       

                        . 

The state variables, as before, are K and E. The control variables are  ,   

and  .     and    are the two co-state variables. 

Maximising   with respect to  ,   and   we have 

                                                                                                                              

                                                                                            

and 

                              
  

  
                                                                 

Using equations (3.2D.2) and (3.2D.3) we obtain 

  
  

  
                                                                                                                                

          Also, along the optimum path, time behaviour of co-state variables 

satisfies equations (3.2D.5) and (3.2D.6) as defined below. 

                                         
   

  
                             

and 
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            From equations (3.2D.4), (3.2D.5) and (3.2D.6) we obtain the following 

equation. 

 
 

 
 

      

        
                                                                                                                    

Using equations (3.2D.1) and (3.2D.4) we obtain the following equation. 

           , 

or, 

   
  

 
 

   

  
                                                                                                                         

Using equations (3.2D.5), (3.2D.7) and (3.2D.8) we obtain 

                   
 

   
 
   

 
      

        
 
      

                                    

Using equations (3.2D.2) and (3.2D.7) we have 

 
 

   
   

 

       
 

  
      

        
 
 
      

 
                                                                   

Using equations (3.2D.9) and (3.2D.10) we obtain the following equation. 

         
 

      
     

           
          

         
      

 , 

or, 

        
                                              

                                                                                                    

This is same as equation (3.2.17) in section 3.2.4.        
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APPENDIX 3.3A 

DERIVATION OF EQUATION (3.3.5) IN SECTION 3.3.2 

Using equations (2.2.1), (2.2.2), (2.2.3), (2.2.4), (3.3.1), (3.2.2) and (2.2.8) 

we obtain the following equations. 

    
  

 
 

 

 
           

   

   
 

  
 

 
 

      

 
                                                 

    
  

 
  

 

           
   

  
 

 
 

      

 
 

 

 
                                                        

and 

    
  

 
       

   

  
 

  
 

 
 

        

 
   

 

 
 
  

                                                    

From equation (3.3A.1) we have 

 
 

 
            

   

   
 

           
 

 

      
                                                  

Using equations (3.3A.3) and (3.3A.4) we derive the following equation. 

     
     

      
          

 
 

              
 

           
 

  
 

      , 

or, 

         
 

         
     

      
           

 

           
 

  
 

      , 

or, 

           
        

     

      
   

       

                    

                                                                                                      

This is same as equation (3.3.5) in section 3.3.2. 
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APPENDIX 3.3B 

DERIVATION OF EQUATIONS (3.3.6) AND (3.3.7) IN SECTION 3.3.2.1 

We denote the L.H.S. and the R.H.S. of equation (3.3.5) as L.H.S. (3.3.5) 

and R.H.S. (3.3.5) respectively. Differentiating equation (3.3.5) with respect to τ, 

we obtain the following first order condition.      

                                            
   

                 
     

      
   

    

      
 
   

  
 

                             
     

      
   

  

 
     

       
 

                                                                                   

In equilibrium,                             ; and 
   

  
   at the optimum. 

Thus equation (3.3B.1) takes the following form. 

                 
     

      
   

  

 
     

       
                          

or, 

                 
     

      
   

       

      
      

                 

 
                            

This is same as equation (3.3.6) in the body of the paper. 

Again, differentiating the R.H.S. of equation (3.3.5) with respect to T, we 

obtain the following first order condition. 
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Equation (3.3B.3) can be written as  

                 
     

      
   

  

 
     

       
               

or, 

                 
     

      
   

       

      
                                                         

This is same as equation (3.3.7). 

To check the second order conditions for optimality we differentiate 

equation (3.3B.1) with respect to   and equation (3.3B.3) with respect to  .  

We arrive at the following two second order conditions. 
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and 

              
                          

     

      
   

  

 
  

      
 
 

  
   

  
 
 

 

                                 
            

     

      
   

  

 
  

      
  

    

   
 

                     
     

      
   

   

      
     

     

      
   

  

 
  

      
 
     

      
 
   

  
 

                   
     

      
   

  

 
     

      
 
 

  
     

      
.                   

Now we evaluate the above two second order conditions at      and 

     where 
   

  
  

   

  
  . Hence we obtain the followings. 
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and 

         
    

   
  

     

      

                                                                 

                               

  

The R.H.S. of each of these two equations is negative. Thus second order 

conditions are also satisfied. 

 

APPENDIX 3.3C 

DERIVATION OF THE DETERMINANT AND IN-EQUATION (3.3.T) IN SECTION 

3.3.3 

We consider following equations from section 3.3.3. 

          
  

 
  

 

 
             

   

  
 

  
      

    
 

 
                                                   

and 

          
  

 
       

   

  
 

  
        

                   
   

  
 

  
      

    

                                                                                                                

We obtain the following partial derivatives corresponding to the above 

two equations. 
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and 
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So the determinant of the Jacobian matrix can be written as follows. 

                  
        

 
      

   

  
 

  
      

 
  

 

                        
      

 
          

   

  
 

  
      

 
  

 

                        
      

 
 
 

 
             

   

  
 

  
      

 
  

, 

or, 

              
        

 
      

   

  
 

  
      

 
   

      

 
          

   

  
 

  
      

 
  

 

                              . 

Now, at the steady-state equilibrium point, we use equations (3.3.11) and 

(3.3.12) with         and obtain the following equation. 

 
 

 
          

   

  
 

  
      

        
   

  
 

  
        

       
 

 
              

Thus, using equation (3.3C.1) in the determinant, we find that it is 

positive (negative) if 

          
        

 
           

   

  
 

  
      

  
 

 

      

 
                                               

Now using equations (3.3A.4), (3.3.5) and the value of         given by 

(3.3.10), we simplify in-equation (3.3C.2) into the following form. 
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Here, 
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Again, 

                
        

 
  

 

 

      

 
  

     

      
     

   
        

 
 ; 

and 

                 
     

     
                                                                                               

as 

             . 

Hence, the upper bound of the L.H.S. of in-equation (3.3C.3) is                

        

 
  and the lower bound of its R.H.S. is  

  

     
. 

Thus the determinant will be negative in sign if  

        

 
   

  

     
, 

or, 

         
 

     
 

        

  
                                                                                                

or, 

         
       

     
 

        

  
   , 

or, 

         
 

     
 

              

  
, 

or, 

                                                                                                      

Using equation (3.3.8) and in-equation (3.3C.4) we obtain the following 

in-equation. 
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. 

This is same as in-equation (3.3.T). 

 

APPENDIX 3.3D 

DERIVATION OF EQUATION (3.3.13) IN SECTION 3.3.4 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

       
    

   
                                       

                            . 

The state variables are K and E. The control variables are C,   , and  . λK 

and λE are two co-state variables. 

Maximising   with respect to  ,  , and   we have 

                                                                                                                                                                                              

                                                                                                          

and 

                                       
  

  
                                                             

Using equations (3.3D.2) and (3.3D.3) we obtain 

         
  

  
                                                                                                                                   

Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 

                                                   
  

  
   

   

  
                   

and 
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From equation (3.3D.1) we obtain the following equation.  

           
  

 
 

   

  
                                                                                                                          

         From equation (3.3D.2) we obtain 

          
 

 
  

 
 

    
 
  

      
 

 

      

                                                                                                         

Using equations (3.3D.4), (3.3D.7), (3.3D.6) and (3.3D.8) we obtain 
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or, 

         
 

   
        

      

                
 

      

         
 

 

             
 
        

           

                                                                                                              

Again, from equations (3.3D.4), (3.3D.7), (3.3D.5) and (3.3D.8) we obtain 

                                   
 

   
 
  

                                             

Using equations (3.3D.9) and (3.3D.10) we obtain the following equation. 

                
                                  

                                                                                         

This is same as equation (3.3.13) in section 3.3.4.    
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CHAPTER 4 

4. HEALTH INFRASTRUCTURE AND 

ENVIRONMENTAL POLLUTION 

 

 

4.1 INTRODUCTION51  

We extend the basic model of section 2.2 in chapter 2 to include health 

infrastructure as an additional productive public input which is adversely 

affected by environmental pollution. AM (2006) and Agenor (2008) extend Barro 

(1990) model introducing productive health expenditure in addition to the 

infrastructural expenditure, where financing of both types of expenditure is 

made by the allocation of income tax-revenue. However, neither AM (2006) nor 

Agenor (2008) deals with environmental pollution in their models. Greiner 

(2005) and EP (2008), who deal with the interaction between economic growth 

and environmental pollution when public expenditure is the engine of economic 

growth, do not introduce health as a productive public input in their models. 

We follow AM (2006) and Agenor (2008) to introduce health capital as an 

input in the production function. However, we assume health capital to be an 

accumulable input in the production function following the second model of 

Agenor (2008); in his first model, it is in the form of a flow variable. We also 

consider the negative role of environmental pollution on the depreciation of 

public health capital.    

We obtain interesting results analyzing this model. The optimum ratio of 

combined public expenditure on infrastructure and health to national income 

is equal to the sum of competitive shares of public infrastructural input and 

health capital in the unpolluted output of the final good; and hence this 
                                                

51 A related version of this model is published in Journal of Macroeconomics. 
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optimum ratio varies inversely with the rate of pollution per unit of production. 

However, in Barro (1990) and in FMS (1993), there is neither any 

environmental pollution nor any productive health capital; hence this ratio is 

always equal to the competitive output share of the public infrastructural 

input. In Greiner (2005), the optimum share of investment to national income 

is also independent of the rate of pollution per unit of production because 

pollution, being a flow variable in his model, enters the utility function and it is 

countered by a separate pollution tax. However, neither environmental quality 

nor health infrastructure enters production function as an accumulable input 

in his model. Secondly, in the model in this chapter, optimum income tax rate 

is higher than that predicted by Barro (1990) and FMS (1993); and this rate 

varies positively with the pollution-output coefficient. This is so because a part 

of the income tax revenue is spent as abatement expenditure and health 

expenditure in this model. However, this is not necessarily so in Greiner (2005) 

who considers pollution tax as an alternative instrument of financing 

abatement expenditure. In both AM (2006) and Agenor (2008), the optimum tax 

rate is lower than that in our model but is higher than the Barro-FMS optimum 

tax rate because both these models have a tax financed health expenditure but 

no abatement expenditure. Thirdly, this extended model exhibits transitional 

dynamic properties though it follows Barro (1990) to assume public 

expenditure to be a flow variable. By introducing environmental quality and 

health capital as accumulable inputs in the production function, we protect 

this model, from being an AK model and thus get back transitional dynamic 

properties. AM (2006) show the balanced growth path to be unique in their 

model; however, the model of Agenor (2008) shows (does not show) transitional 

dynamic properties when health expenditure is a stock (flow) variable. 

However, steady-state equilibrium is a saddle-point when health expenditure is 

a stock variable in his model. In our model, with both health capital and 

environmental quality being stock variables, steady-state equilibrium never 

satisfies saddle-point stability. But we find a possibility of indeterminacy of the 

transitional growth path, that which neither AM (2006) nor Agenor (2008) find 



141 
 

in their models. FMS (1993) and Greiner (2005) also find the saddle-point 

stability property of the steady-state equilibrium in their models. Fourthly, like 

in the basic model, we do not find any conflict between the growth rate 

maximizing solution and the social welfare maximizing solution along the 

steady-state equilibrium growth path because neither health nor pollution 

affects utility in this model. Agenor (2008) finds a conflict between these two 

goals because health affects the utility function of the household in his model. 

Greiner (2005) also finds a similar conflict because environmental pollution 

affects the utility function in his model. Fifthly, the competitive equilibrium 

growth rate in this model is not necessarily less than the socially efficient 

growth rate which is similar to the basic model of section 2.2 in chapter 2. This 

is so because, here too, we have two conflicting types of externalities on 

production - positive externality arising from the gross public expenditure and 

negative externality arising from capital accumulation and environmental 

pollution. Market economy growth rate may exceed socially efficient growth rate 

when the pollution-output coefficient takes a high value. Barro (1990) and FMS 

(1993) consider only the positive externality of public expenditure. Agenor 

(2008) also considers two sources of positive externality from health 

expenditure and infrastructural expenditure. So market economy growth rate 

falls short of the socially efficient growth rate in their models.  

Following sections are organized as follows. Section 4.2 describes the 

basic model of the household economy. Section 4.3 analyses its dynamic 

equilibrium properties. Subsection 4.3.1 shows the existence of unique steady-

state equilibrium growth rate in the market economy and subsection 4.3.2 

analyses the properties of optimal fiscal policy along the steady-state 

equilibrium path. Section 4.4 shows transitional dynamic results; and section 

4.5 compares the market economy steady-state equilibrium growth rate to the 

command economy steady-state equilibrium growth rate.  
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4.2 THE MODEL  

Health capital, a productive input, is a stock variable in this model. The 

basic model does not consider health infrastructure as a productive input. The 

government imposes a proportional tax on income of the representative 

household who consumes a part of the post-tax income and saves (invests) the 

other part. Government allocates a part of the tax revenue to build up the 

infrastructure on health and provides it free of charge to the representative 

household. However, health capital deteriorates with pollution. Environmental 

quality is also considered a stock variable; and it deteriorates with pollution 

and is improved by abatement activities undertaken by the government. 

Environmental quality is non-rival and is a free good. The budget of the 

government is again, balanced; and the allocation of tax revenue in this 

extension is made among three expenditure heads - public infrastructural 

expenditure, health expenditure and abatement expenditure. 

Following equations describe this model. Here equations (2.2.4) and 

(2.2.6) are borrowed from the model developed in section 2.2 in chapter 2. 

       
     

                                                                                                

        
                                                                                                           

                                                                                                                               

                                                                                                                   

                                                                                                               

                                                                                             

                                                                                                                     

and 

              
    

   
                                                                                                                  

Equation (4.1) describes the Cobb-Douglas production function in the 

final good sector. It satisfies constant returns to scale in terms of  ,   and  .   
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is the level of output produced,   is the stock of physical capital, and    is the 

congestion effect adjusted effective benefit derived from the public 

infrastructural input.   is the stock of health capital; and this is the new input 

whose presence makes equation (4.1) different from equation (2.2.1) of chapter 

2. Elasticities of output with respect to physical capital, public infrastructural 

input, and health capital are denoted by  ,         and   respectively. If 

   , equation (4.1) is identical to (2.2.1) with     and     . 

Equation (4.2) is identical to equation (2.2.2) of chapter 2 when      .  

Equation (4.3) shows how environmental quality changes over time 

depending upon the magnitudes of pollution and abatement activity. It is 

identical to equation (2.2.5) when    , i.e., there is no self-regeneration of 

environmental quality.  

Accumulation of the stock of health capital,  , is given by equation (4.4). 

The government spends an amount    on health infrastructure. Pollution 

causes depreciation of this stock; and this relationship is assumed to be 

proportional for the sake of simplicity.   is the resulting depreciation of health 

capital per unit of pollution.  

Besides causing damage to public infrastructure as previously discussed 

in chapter 2, degradation of environmental quality also reduces the effective 

benefit of health expenditure in various ways. For example, water and air 

pollution create a disease-friendly environment and hence public health 

expenditure programme cannot provide the maximum benefit to workers. This, 

in turn, lowers the efficiency of the workers. 

Equation (4.5) describes government budget constraint. The government 

finances the public infrastructural expenditure and health expenditure with its 

tax revenue after meeting its expenditure on abatement.   is the ratio of 

abatement expenditure to income; and   is the income tax rate. A fraction    of 

the tax revenue net of abatement expenditure is used to finance infrastructural 

expenditure,   ;    is the fraction of the net tax revenue, net of abatement 
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expenditure, allocated to health expenditure. Public expenditure allocation 

ratios are given by equation (4.6).  

Equation (2.2.6) shows that neither health nor environment is considered 

as an argument in the utility function. AM (2006), AN (2011) and Agenor (2008) 

introduce health as an argument in the utility function and Greiner (2005) 

introduces pollution as an argument in the utility function. We ignore these 

complications in this model for the sake of simplicity. 

 

4.3 DYNAMIC EQUILIBRIUM  

The representative household maximizes      
 

 
       with respect to 

  subject to equations (4.1), (2.2.4) and (2.2.6). The demand rate of growth52 of 

consumption is derived from this maximizing problem as follows. 

 
  

 
 

 

 
                

     

    
 

 
 

          

   
 
 

 
 

 

   
                                            

A steady-state growth equilibrium is again considered where all 

macroeconomic variables grow at the same rate,   . Hence, the steady-state 

condition is given by  

 
  

 
 

  

 
 

  

 
 

  

 
 

  

 
 

  

 
                                                                                                   

 

4.3.1 Existence of Steady-State Growth Equilibrium 

Using equations (4.1) to (4.6), (2.2.4), (4.7) and (4.8), we obtain the 

following equations.  

 
 

 
                

     

    
 

 
 

          

   
 
 

 
 

 

   
                                           

               
     

    
 

 
 

          

   
 
 

 
 

 

   
 

 

 
                                                

                                                
52 The demand rate of growth of consumption is derived in Appendix 4A. 
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and 

                      
     

    
 

 
 

          

   
 
 

 
 
 

 

   
                                   

We obtain equation (4.13) below53 that solves for    by using equations 

(4.9) to (4.12). 

   
                                                       

                                                                               

The L.H.S. of equation (4.13) is an increasing function of    since 

              (social elasticity of private physical capital is positive) and 

its R.H.S. is a constant term, given  ,   and   . Figure 4.1 diagrammatically 

shows the existence of unique value of   .     

                

 

 

 

 

                                                                                        

 

 

 

                                                                         

 

 

 

 

 

                                                
53 Derivation of equation (4.13) is worked out in Appendix 4B. 

L.H.S. of (4.13), 

R.H.S. of (4.13) 

L.H.S. of (4.13) 

R.H.S. of (4.13) 

 

 

   

  
  0 

FIGURE 4.1 
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We have the following proposition. 

Proposition 4.1: There exists unique steady-state equilibrium growth 

rate in the market economy given the income tax rate, the abatement 

expenditure rate and the public expenditure allocation ratio. 

Equations (4B.7), (4B.8) and (4B.9) in Appendix 4B show that 
 

 
, 
 

 
 and 

 

 
 

in the steady-state equilibrium are functions of   . This proves that the steady-

state equilibrium is also unique. The existence of unique steady state 

equilibrium growth rate is guaranteed under two conditions given       

   . These are (i)             , which means that the social elasticity of 

private physical capital is positive and (ii)             , which means that 

public expenditure on health capital must exceed the magnitude of damage on 

health caused by pollution.  

 

4.3.2 Optimal Taxation 

In this section, government’s growth maximization fiscal policy at the 

steady-state equilibrium is examined vis-à-vis the welfare maximization policy 

at the same equilibrium. The government maximizes the steady-state 

equilibrium growth rate with respect to fiscal instruments,  ,   and   . The 

L.H.S. of equation (4.13) is a monotonically increasing function of   , because, 

by assumption,           . Since the L.H.S. is always equal to the R.H.S. 

in the steady-state growth equilibrium, maximization of    implies 

maximization of the R.H.S. of equation (4.13).  

Maximizing the R.H.S. of equation (4.13) with respect to  ,   and    

respectively, we obtain following expressions of their optimum values54.           

                                                                                               

                                                
54 The derivation of equations (4.14), (4.15) and (4.16) is worked out in Appendix 4C. 
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and 

   
  

               

                
                                                                                                            

Using equations (4.14) and (4.15), we have 

                                                                                                      

To ensure that the growth rate is non-negative deterioration of the two 

accumulable inputs - environmental quality and health infrastructure - due to 

pollution is neutralized by allocating   and    fractions of the total output to 

abatement expenditure,    and aggregate productive public expenditure,  

      , respectively. The optimum net abatement expenditure rate is then 

       and                  is the competitive unpolluted output share 

of environmental quality. So the net optimum ratio is equal to the competitive 

share of environmental input in the unpolluted output. Analyzing, similarly, 

           is the optimum ratio of net aggregate of public expenditure on the 

intermediate public good and health infrastructure to the national income; and 

              is the net competitive unpolluted output share of the two 

inputs taken together which is financed by government’s tax revenue. So the 

net optimum ratio is equal to the competitive share of the public intermediate 

good in the unpolluted output. In Barro (1990), FMS (1993), and in AN (2011) 

entire output is pollution free and this ratio is equal to the competitive share of 

the public input in the total output. 

We now examine whether the growth rate maximizing solution is 

consistent with the social welfare maximizing solution in the steady-state 

equilibrium. The social welfare function is given by 

        
    

   

 

 
                                                                                                                 

Using equations (4.9) and (4.10) and assuming that the economy is on 

the steady-state equilibrium growth path, it can be shown that 
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Using equations (4.18) and (4.19) we arrive at the same equation as 

(2.2.16) from the basic model in chapter 2, which shows   to vary positively 

with   . 

Thus the level of social welfare in the steady-state equilibrium is 

maximized when the steady-state equilibrium growth rate is maximized55. We 

now can state the following proposition. 

Proposition 4.2: (i) The optimum income tax rate, the optimum 

abatement expenditure rate and the optimum public infrastructural 

expenditure allocation ratio in the steady-state growth equilibrium are given by 

                         , 

                , 

and 

  
  

               

                
. 

(ii) The net optimum ratio of combined public expenditure on 

infrastructure and health to national income in the steady-state equilibrium is 

equal to the combined competitive share of these two inputs in the unpolluted 

output of the final good; and hence this optimum ratio varies inversely with the 

magnitude of the pollution-output coefficient.  

The presence of three different effects makes our result different from 

those available in the existing literature. These are (i) congestion effect on 

public expenditure that makes    , (ii) environmental pollution effect causing 

    and (iii) effect of pollution on health capital causing    . Health capital 

and damage to it caused by pollution are what differentiates this model from 

the basic model. Tax revenue, net of abatement expenditure, now has two 

productive public inputs to finance – public infrastructure and public health 

expenditure. If we assume      , we obtain        and       and these 

                                                
55  As with analysis of the basic model in chapter 2, here too, we abstain from analyzing social welfare 

maximization along the transitional path. 



149 
 

results are identical to those of Barro (1990) and FMS (1993). The net optimum 

ratio of combined public expenditure on infrastructure and health to national 

income in this model, with         and    , appears to be lower than that 

obtained in Barro (1990) and in FMS (1993). This is obvious because 

production of the final good generates environmental pollution. This, in turn, 

lowers the rate of accumulation of environmental quality and of health capital. 

Thus producer’s effective benefit derived from public expenditure is reduced. So 

it is optimal for the government to allocate a smaller fraction of tax revenue to 

meet this expenditure. However, 

                               . 

Here,        because        ,      , and    . So the optimum 

income tax rate in the present model is higher than the corresponding rate 

obtained in the models like Barro (1990), FMS (1993), AM (2006) and Agenor 

(2008). This is so because income tax is the only source of public revenue in 

this model and a part of that revenue is used to meet the abatement 

expenditure. This is not so in the models of Barro (1990), FMS (1993), AM 

(2006), Agenor (2008), etc., because there is no environmental pollution in 

those models. Moreover, in AN (2011) optimum tax rate is higher than the 

growth maximizing tax rate as one of the productive public inputs affects 

household’s utility. In the present model the optimum fiscal policy is identical 

to the growth rate maximizing fiscal policy. This is because utility is a function 

of only consumption. 

In this model too, aggregate productive public expenditure, i.e., excess of 

tax revenue over abatement expenditure, as well as level of environmental 

pollution is proportional to the level of income. So         varies inversely with 

the pollution-output coefficient,  . If    , then Barro (1990) - FMS (1993) - 

Agenor (2008) result comes back in this model in this special case. 

Comparing the values of the growth rate maximizing fiscal instruments of 

this section to those in section 2.2 of chapter 2, we find that the abatement 
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expenditure rates are identical in both the models. However, the share of 

expenditure on public intermediate good in chapter 4, given by  

  
                        ,  

is less than the corresponding share obtained in section 2.2 of chapter 2 which 

is given by 

                  .  

This is so because income tax revenue net of pollution abatement expenditure  

is now spent not only on public intermediate good but also on health capital.  

If                             , then the steady-state equilibrium 

growth rate maximizing income tax rate derived here is greater than (equal to) 

(less than) that derived in section 2.2 of chapter 2. Now, comparing equation 

(2.2.12) with     to equation (4.13) of chapter 4, we find that L.H.S. of 

equation (4.13) is greater than that of equation (2.2.12) with      . Here,  

   
                                                       

                                                                               

However, such conclusions cannot be unambiguously drawn about the R.H.S. 

of these two equations. Only if we assume that     and      (which, in turn, 

implies     ) , then this equation (4.13) is identical to equation (2.2.12) in the 

special case with    . 

 

4.4 TRANSITIONAL DYNAMICS 

We now turn to investigate the local stability properties of the unique 

steady-state equilibrium point in the market economy. Equations of motion of 

the dynamic system are given by (2.2.4), (4.3), (4.4) and (4.7). We use the ratio 

variables,   and  , from previous chapters and define a new one,   
 

 
. 

Using equations (2.2.4), (4.3), (4.4) and (4.7), we have 
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and 

 
  

 
                      

     

    
          

    
 

 

    

                     
     

    
          

    
 

                                                                   

The determinant of the Jacobian matrix 56  corresponding to the 

differential equations (4.20), (4.21) and (4.22) is given by 

     
          

   
              

 
     

                
 
          

   
  
 
  

 

     

        
 

 

        

   
              

 
     

                
 
          

    
  

 

    

        
 

 

 

   
                   

 
     

    
 
          

    
 

 

   
  

. 

Here             . Also         when   and   are optimally 

chosen and when    . Also             . So,       in this case when it 

is evaluated at the steady-state equilibrium point. So either all the three latent 

roots of J matrix are positive or two of them are negative with the third one 

being positive. Hence the steady-state equilibrium cannot be a saddle point. 

Either it is unstable with all latent roots being positive or there exists 

indeterminacy in the transitional growth path converging to the equilibrium 

point. 

Trace of the Jacobian matrix is given by  

        
          

   
              

     

    
          

   
  
 

 

    

           
          

   
              

     

    
          

    
 

    

                                                
56 Derivation of the determinant is worked out in Appendix 4D. 



152 
 

           
 

   
                     

     

    
          

    
 

 

   
  

 

           
 

   
              

     

    
          

    
 

 

   . 

Using equations (4.14), (4.15), (4.16) and the expression of the steady- 

state equilibrium values of  ,   and   in terms of    from equations (4B.7), 

(4B.8) and (4B.9) in Appendix 4B, we find that the trace of the Jacobian matrix 

is negative57 if 

   
 

 

             

   

 

        

  

       
 

 

 

        

 
  

 

 

            

   
  

          

   
 

   
 

 

           

             

       

  
         

 

          
       

    

  
 

        
 

 

               
  

            

    
 

        
 

            

   
 

  
  

       
 

            

   
                                                                                                                

If the determinant of the Jacobian matrix takes a positive sign and its 

trace takes a negative sign, then there are one positive and two negative latent 

roots of this matrix 58 . It means that there exists indeterminacy in the 

transitional growth path converging to the unique equilibrium point. So we 

have the following proposition. 

Proposition 4.3: The unique steady-state equilibrium point never 

satisfies saddle-point stability; but there exists indeterminacy in the 

transitional growth path converging to the steady-state equilibrium point if the 

steady-state equilibrium growth rate satisfies the following condition:  

   
 

 

             

   

 

        

  

       
 

 

 

        

 
  

 

 

            

   
  

          

   
 

                                                
57 This derivation is worked out in Appendix 4D. 
58 It is a sufficient condition but not a necessary one. There may be one positive and two negative roots even if 

the trace takes a positive sign. However, all the roots may also be positive implying that no trajectory converges to 

the equilibrium point. See Benhabib and Perili (1994). 
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. 

This sufficient condition is always satisfied for low values of 
  

       
; and 

the value of    is determined by the exogenous values of the parameters. Here 

very low values of   and   will ensure that          is positive; and this is 

necessary for the inequality to be satisfied. Note that 
  

       
 is low when    is 

high; and figure 4.2 shows that    is high when   and   take very low values59. 

This is an important result. Barro (1990) model, with a flow public 

expenditure, does not exhibit any transitional dynamic properties. FMS (1993) 

brings back transitional dynamic properties in Barro (1990) model introducing 

durable public input but shows saddle-point stability property of the unique 

steady-state equilibrium. AM (2006) also find the steady-state growth 

equilibrium to be saddle-point stable. Agenor (2008) shows saddle-point 

stability property of the steady-state equilibrium when health expenditure is a 

stock variable but does not exhibit transitional dynamic properties when health 

expenditure is a flow variable. AN (2011), however, find the steady-state 

equilibrium in their benchmark model to be unstable. Greiner (2005), 

Dasgupta (1999), etc., also prove saddle-point stability property of the long-run 

equilibrium in their models. However, we show that saddle-point stability 

property of the steady-state equilibrium is never satisfied in our model. On the 

contrary, we find a possibility of indeterminacy of the transitional growth path 

without introducing physical capital stock or public expenditure into the utility 

                                                
59 Since it is a sufficient condition and not a necessary one, a low value of    does not rule out the possibility of 

indeterminacy. 
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function 60 . This is so because both the environmental quality and health 

infrastructure are stock variables in our model generating externalities in the 

productivity of the system. Also, physical capital stock generates a negative 

externality through congestion effect. That the externality of physical capital 

may generate indeterminacy in the transitional growth path has been explained 

by Benhabib and Farmer (1993), Chen and Lee (2006), Mino (2001), Benhabib, 

Meng and Nishimura (2000); and the interaction between conflicting type of 

externalities may generate indeterminacy in the transitional growth path. 

 

4.5 COMMAND ECONOMY 

The presence of three non rival inputs in the production function - public 

infrastructure, health capital and environmental quality - causes positive 

externalities in this extension to the basic model. Also, physical capital 

generates negative externality through congestion effect as considered in 

chapters 2 and 3. Moreover, environmental pollution now degrades health 

capital and hence introduces an additional source of negative externality. 

Therefore, we next turn to solve the planner’s problem in order to obtain the 

first best solution. The planner, who maximizes a social welfare function 

identical to that of the representative household’s lifetime utility function, can 

internalize the externalities. Equations (4.1), (4.2), (4.4) and (2.2.6) remain 

unchanged; equations (2.2.4) and (4.3) are replaced by equations (2.2.4.1) and 

(4.3.1). Equations (4.5) and (4.6) are modified as follows.  

                                                                                                                                

                                                                                                                                       

                                                                                                                        

and 

                                                
60  Cazzavillan (1996), Chang (1999), Chen (2006), Zhang (2000), Raurich-Puigdevall (2000), etc., explain 

indeterminacy when public expenditure enters as an argument in the utility function. 
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Here   now denotes planner’s combined lump sum expenditure on public 

intermediate input, health infrastructure and abatement activities; and the 

abatement expenditure, as before, is denoted by  . 

The planner maximizes      
    

   

 

 
   with respect to  ,  ,   and    

subject to equations (2.2.4.1), (4.3.1), (4.4), (4.5.1) and (4.6.1). We again 

consider a steady-state growth equilibrium with the growth rate being denoted 

by   ; and the following equation solves for the steady-state equilibrium growth 

rate61 in the command (planned) economy. 

        
                                             

                                                                                                                  

The L.H.S. of equation (4.23) is an increasing function of    and the 

R.H.S. is a parametric constant. 

We compare the market economy solution to the socially efficient 

solution by comparing equation (4.23) to equation (4.13) when     ,       

and      
 . We modify equation (4.13) with     ,      and      

  as follows. 

       
   

       
 
          

                                  

                                                                                      

           The R.H.S. of equations (4.23) and (4.13.1) are identical. However, the 

L.H.S. of equation (4.13.1) is greater than that of equation (4.23) for all values 

of 

      
 

 
          
            

. Hence comparing equation (4.13.1) to equation (4.23) we 

find that    exceeds (falls short of)    when the parametric term          

takes a low (high) value. This is shown in figure 4.2. The L.H.S. of equations 

(4.13.1) and (4.23) are plotted as positively sloped curves and the R.H.S. is 

depicted by horizontal straight lines for exogenous values of the parameters. 

                                                
61 Equation (4.23) is derived in the Appendix 4E. 
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The L.H.S. curve obtained from equation (4.13.1) starts from the origin but the 

L.H.S. curve obtained from equation (4.23) starts from a point on the vertical 

axis. The intersection point of the two L.H.S. curves shows that       

 

 
          
            

. The points of intersection of the two L.H.S. curves with the lower 

horizontal line in figure 4.2 show that   
  falls short of   

  when          

takes a very low value. When          takes a high value we find that 

       .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L.H.S. of (4.13.1), 

L.H.S. of (4.23), 

R.H.S. 

 

      

      
    

      

  
 

 
          
            

    

L.H.S. of (4.13.1) 

 L.H.S. of (4.23) 

 R.H.S. (with low  ) 

 

R.H.S. (with high  ) 

 

  

FIGURE 4.2 
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We can state the following proposition. 

Proposition 4.4: If    , then         takes a positive (negative) 

sign when          takes a high (low) value62. 

 

The market economy growth rate in the steady-state equilibrium falls 

short of the socially efficient growth rate in Barro (1990) and FMS (1993). 

Agenor (2008) does not find out the socially efficient solution but the 

implication should be same as those of Barro (1990) and FMS (1993). Each of 

them considers the role of a positive externality. The result obtained from the 

present model in this chapter, may be different from theirs’. Since the planner 

internalizes two conflicting externalities - negative externality arising due to 

pollution of the environment as well as due to congestion effect of capital 

accumulation and positive externality caused by the presence of public 

infrastructure, health capital and environmental quality - the net benefit of 

internalization of externalities is ambiguous. Socially efficient growth rate 

should exceed (fall short of) the competitive equilibrium growth rate when the 

positive (negative) externality dominates.  

The relationship between the market economy equilibrium growth rate 

and the socially efficient growth rate in this model depends on the value 

        . This term takes a high (low) value if the pollution-output 

coefficient,  , takes a low (high) value or if the pollution produces a weak 

(strong) negative effect on the depreciation of health capital. When          

takes a low value, the negative externality of environmental pollution 

dominates all other positive externalities; and the opposite happens when 

         takes a high value.  

 

                                                
62 We assume the existence of unique point of intersection of two L.H.S. curves in figure 4.2. If they never 

intersect,    is always greater than   . If they intersect twice,         takes a positive sign for very low and 

very high values of          but is negative for its intermediate values. 
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APPENDIX 4A 

DERIVATION OF EQUATION (4.7) IN SECTION 4.3 

 The dynamic optimization problem of the representative household is 

identical to that discussed in the basic model in appendix 2.2A of chapter 2.   

The Hamiltonian to be maximized at each point of time is given by 

       
    

   
                 . 

Here λK is the co-state variable representing the shadow price of investment. 

Maximizing the Hamiltonian with respect to   and assuming an interior 

solution, we obtain 

                                                                                                                                         

Also the optimum time path of λK satisfies the following. 

 
   

  
                                                                                                        

Using equations (4.1), (4.2), (4.5), (4.6) and (4A.2) we have 

 
   

  
                  

     

    
 

 
 

          

   
 
 

 
 

 

   
                                            

 Using the two optimality conditions (4A.1) and (4A.3), we have 

 
  

 
 

 

 
                

     

    
 

 
 

          

   
 
 

 
 

 

   
                                          

This is same as equation (4.7). 
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APPENDIX 4B 

DERIVATION OF EQUATION (4.13) IN SECTION 4.3.1 

Using equations (4.1) to (4.6), (2.2.4), (4.7) and (4.8) we have the following 

equations. 

    
  

 
 

 

 
                

     

    
 

 
 

          

   
 
 

 
 

 

   
                             

    
  

 
               

     

    
 

 
 

          

   
 
 

 
 

 

   
 

 

 
                                   

    
  

 
               

     

    
 

 
 

          

   
 
 

 
 

 

   
                                           

and 

    
  

 
                      

     

    
 

 
 

          

   
 
 

 
 
 

 

   
                     

From equation (4B.1) we have, 

 
 

 
                 

       

      
 
    

 
 

 
 
 

 
 

 

          

                                             

Again, from equation (4B.3) we have, 

 
 

 
                 

  

   
 
    

 
 

 
 
 

 

 

          

                                                       

Using equations (4B.5) and (4B.6) we derive the following equation. 

 
 

 
                 

   

  
 
          

 
      

       
 
          

 
 
 

 

                           

Using equations (4B.6) and (4B.7) we obtain the following equation. 

 
 

 
 

       

  

     

      
                                                                                                                  

Similarly using equations (4B.1) and (4B.2) we can show that 
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Now, using equations (4B.4), (4B.7) and (4B.8) we derive the following 

equation. 

                         
     

    
       

  

     

      
 

          

   
 

                        
   

  
 
          

 
      

       
 
          

 

 

      

, 

or, 

   
                                                       

                                                                                          

This is same as equation (4.13). 

 

APPENDIX 4C 

DERIVATION OF EQUATIONS (4.14), (4.15) AND (4.16) AND THE SECOND 

ORDER CONDITIONS IN SECTION 4.3.2 

Maximizing the R.H.S. of equation (4.13) with respect to τ, we obtain the 

following first order condition. 

                                                                    

  
                                         

               
     

or, 

                                            

                                                                                                                 

Maximizing the R.H.S. of equation (4.13) with respect to  , we obtain the 

following first order condition. 
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or, 

                                        

                                                                                                                 

Maximizing the R.H.S. of equation (4.13) with respect to   , we obtain the 

following first order condition. 

                                                                    

                                 
                                               

Using equations (4C.1), (4C.2) and (4C.3) we arrive at the following 

expressions for the optimal tax rate, optimal abatement expenditure rate and 

the optimal public expenditure allocation ratio. 

                         ; 

                      ; 

and 

   
  

               

                
. 

These are same as equations (4.14), (4.15) and (4.16) in section 4.3.2. 

To check the second order conditions for optimality we twice differentiate 

equation (4.13), with respect to  ,   and    respectively and arrive at the 

following three second order conditions. 
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and 

                 
  
                          

   

   
 
 

 

                 
                          

    

   
  

                                   
                                                

Now we evaluate the above three second order conditions at     ,      

and       
  where 

   

  
  

   

  
 

   

   
  . Hence we obtain the followings. 

 
    

   
  

                                          
                

  

                                         
  

 
    

   
  

                                      
                

  

                                         
  

and 

 
    

   
   

               
                     

    

                                         
. 

The R.H.S. of each of these three equations is negative. Thus the second 

order conditions are also satisfied. 

 

APPENDIX 4D 

DERIVATION OF THE DETERMINANT AND THE TRACE OF THE JACOBIAN 

MATRIX IN SECTION 4.4 

We define the following variables. 
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and 

                        
     

    
          

    
 

 

                                              

Thus, using equations (4D.1), (4D.2) and (4D.3) we modify equations 

(4.20), (4.21) and (4.22) in the section 4.4 as follows. 

 
  

 
  

 

 
       

 

 
                                                                                                        

 
  

 
                                                                                                                             

and 

 
  

 
                                                                                                                                    

We obtain the following partial derivatives corresponding to three 

modified differential equations. 
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; 

and 
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. 

So the determinant of the Jacobian matrix can be written as follows. 
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or, 

     
          

   
              

 
     

                
 
          

   
  
 
  

 

     

         
 

 

        

   
              

 
     

                
 
          

    
  

 

    

         
 

 

 

   
                   

 
     

    
 
          

    
 

 

   
  

. 

Here             . Also,         and              when 

  and   are optimally chosen and when    . So       in this case, when 

evaluated at the balanced growth equilibrium point. So either all the three 

latent roots of J matrix are positive or, two of them are negative with the third 

one being positive.  

The trace of the Jacobian matrix is given by, 

       
          

   

 

 
 

          

   

 

 
 

 

   

 

 
 

 

   

 

 
. 

Using equations (4D.4), (4D.5) and (4D.6) the trace can be written as 

follows. 

        
            

     

 

 

 

 
 

            

     

 

 
 

 

 

 

 
   

            

     

 

 

 

 
 

 

 

 

 
. 
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Now,        if 

   
            

     

 

 

 

 
 

 

 

 

 
  

            

     

 

 

 

 
 

            

     

 

 
 

 

 

 

 
   

At the balanced growth equilibrium, 
  

 
 

  

 
 

  

 
  . Using 

  

 
   and the 

optimal values of the policy variables given by equations (4.14), (4.15) and 

(4.16) we have,  

   
          

   
 

 

        
                                                                                                  

Now using equations (4B.5), (4D.7) and the optimal values of the policy 

variables, the condition for the trace of the Jacobian matrix to be negative can 

be written as 

   
              

             

 

 

  

       
 

 

 

        

 
 

   
            

     

 

 
 

            

     
 

 

 

           

              

       

  
  

            
 

    
 

    
          

          
     

             
            

    

                
          

    
  

       
 

          

   
. 

This is same as condition (4.T) in section 4.4. If the trace of the Jacobian 

matrix is negative, then all the latent roots cannot be positive. 

 

APPENDIX 4E 

DERIVATION OF EQUATION (4.23) IN SECTION 4.5 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 
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                                                                 . 

The state variables are  ,   and  . The control variables are  ,  ,   and 

  ; and   ,   , and λE are three co-state variables. 

Maximising   with respect to  ,  ,   and    we have 

                                                                                                                                        

  
  

  
          

 

   
 

  

  
                 

 

   
  

  

  
                   

  
  

  
          

 

   
 

  

  
                 

 

   
                        

and 

  
  

  
          

 

  
 

  

  
                

 

  
                                      

Using equations (4E.2) and (4E.3) we find that 

 
  

  
                                                                                                                                         

Using equations (4E.3) and (4E.5) we obtain the following. 

 
  

  
 

              
 

  

                
 

   

                                                                                                      

Using equations (4E.4), (4E.5) and (4E.6) we obtain the following 

equation. 

                
 

  
                                                                                   

Now, using equations (4E.6) and (4E.7) we find that, 

 
  

  
                                                                                                                                         

Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 
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Equations (4E.5) and (4E.8) imply that 
   

  
 

   

  
 

   

  
. Thus using equations 

(4E.5), (4E.8), (4E.9) and (4E.10) we obtain the following equation. 

 
 

 
 

        

          
                                                                                                                     

Again using, equations (4E.5), (4E.8), (4E.10) and (4E.11) we obtain, 

 
 

 
 

 

        
                                                                                                                          

Using equations (4.1), (4.2) and (4.6.1) we have 

 
 

       
                                                                                   

Now, using equations (4E.7) and (4E.14) we derive the following. 

                                                  
 

              

From equation (4E.1), we have 

  
  

 
 

   

  
                                                                                                                                  

Using equations (4E.5), (4E.8), (4E.9), (4E.15) and (4E.16) we obtain the 

following 

  

 
 

 

 
                     

 

         

             
     

    
 

 
 

          

   
 
 

 
 

 

   
                                                               

In the steady state growth equilibrium, 
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Therefore, using equations (4E.12), (4E.13) and (4E.19) we obtain the 

following equation. 

       
                                            

                                                                                                                                                                                       

This is same as equation (4.23) in section 4.5. 
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CHAPTER 5 

5. DEPRECIATION OF PUBLIC CAPITAL AND 

MAINTENANCE EXPENDITURE 

 

5.1 INTRODUCTION 

The basic model developed in section 2.2 of chapter 2 is extended in this 

chapter to include maintenance of public infrastructure capital that 

depreciates due to pollution and usage. So in this chapter we make a departure 

from the Barro (1990) assumption that public infrastructure is a flow variable 

and follow FMS (1993) to introduce durable public capital in place of perishable 

public input. The special feature of this extended model is that the public 

capital depreciates over time and the rate of depreciation is endogenous. This 

rate of depreciation can be reduced by increasing the maintenance 

expenditure; and hence the government faces an additional problem of 

allocating the budget, net of abatement expenditure, between public 

investment and maintenance expenditure. 

Greiner (2005) as well as EP (2008), though deals with the interaction 

between economic growth and environmental pollution using the Barro-FMS 

framework, he does not analyze the problem of endogenous depreciation of 

public capital and the role of maintenance expenditure. 

In this chapter, the problem of depreciation is worsened by 

environmental pollution caused by industrial production. In DK (2008) and KK 

(2004), depreciation rate of public capital is endogenous; and is a positive 

function of the level of production and a negative function of the level of 

maintenance expenditure. In Agenor (2009) it is a negative function of the ratio 

of maintenance expenditure to the stock of public capital. Neither of these 
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models considers environmental pollution. In our model, the level of net public 

capital investment, defined as the gross investment minus depreciation, is 

assumed to vary inversely with the size of private capital and directly with the 

level of maintenance expenditure and with the environmental quality. 

Environmental quality enters as an additional argument in the depreciation 

function in the present model. Environmental quality accumulates over time 

through abatement activities of the government and degrades through pollution 

generated as a by-product of industrial production. Income tax revenue is used 

to finance public investment, maintenance expenditure and abatement 

activities.   

We derive following results analyzing our model. The optimum income 

tax rate and the abatement expenditure rate depend on the pollution-output 

coefficient in the steady-state equilibrium. However, the share of maintenance 

expenditure in the budget is independent of the pollution-output coefficient. In 

DK (2008), KK (2004) and also in Agenor (2009), there is no environmental 

pollution; and hence the proportional income tax rate and the ratio of public 

investment to national income do not depend on pollution-output coefficient. 

Secondly, optimum ratio of combined expenditure on net public investment 

and maintenance expenditure to national income is not unambiguously greater 

than the competitive output share of the public capital in this steady-state 

equilibrium. Moreover, this optimum ratio is dependent on the pollution-output 

coefficient. Both DK (2008) and KK (2004) show that the optimum ratio of 

combined expenditure on net public investment and maintenance expenditure 

to national income to be always greater than the competitive output share of 

public capital, while it is equal to the latter in Agenor (2009). This is so because 

the abatement expenditure is an additional expenditure of the government in 

this model but not in the other models. Thirdly, we find a possibility of 

indeterminacy of the transitional growth path converging to the unique steady-

state equilibrium point in our model. However, the possibility of saddle-point 

stability of the steady-state equilibrium never arises here. In models of Greiner 

(2005), DK (2008), KK (2004) and Agenor (2009) the saddle-point stability of 
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the unique steady-state equilibrium point is always ensured. Fourthly, we 

compare the decentralized solution to the socially optimum solution and find 

that the competitive equilibrium growth rate is not necessarily higher than the 

socially efficient growth rate. 

The rest of the chapter is organized as follows. Section 5.2 presents the 

basic model of the market economy. Properties of the steady-state equilibrium 

and optimal fiscal policies are analyzed in section 5.3. Stability properties of 

the steady-state equilibrium are analyzed in section 5.4 and section 5.5 

presents the planned economy solution.  

 

5.2 THE MODEL 

Following equations describe the model.  

                                                                                                                    

                                                                                                                               

                                                                                                                                      

                                                                                                                           

    
 

 
                                                                                                                                                

                                                                                                        

                                                                                                                   

and  

      
    

   
                                                                                                                

Equation (5.1) describes the Cobb-Douglas production function of the 

final good. Congestion effect of private capital and positive externality effect of 

environmental quality on public capital considered in earlier chapters are not 

considered here. Instead, we consider these effects on the depreciation of 

public capital, as is described by equation (5.5). So equation (5.1) looks 



172 
 

marginally different from equation (2.2.1) of chapter 2 and equation (2.2.2) of 

chapter 2 does not exist here. However, we get back to equation (5.1) from 

equations (2.2.1) and (2.2.2) using        .  

Equations (2.2.4) and (2.2.6) are borrowed from chapter 2; and equation 

(4.3) is taken from chapter 4. 

Equations (5.2) to (5.5) describe the public sector. Government finances 

investment in new public capital with its tax revenue net of the abatement 

expenditure. Equation (5.2) shows the fraction of non-abatement expenditure 

used to finance public investment.   and   hold same interpretation as 

described in previous chapters; and   is the fraction of non-abatement 

expenditure used to finance public investment. Here   stands for the level of 

gross public investment. Equation (5.3) shows fraction of non-abatement 

expenditure going to maintenance of public capital. 

Accumulation of public capital takes place according to equation (5.4). 

Here    is the net public capital investment.      is the level of depreciation of 

public capital. Thus using equation (5.4) we have  

          
 

 
   

Hence this equation combined with equation (5.5) shows that the level of 

depreciation of public capital varies positively with the stock of private capital 

and inversely with the level of maintenance expenditure and the stock of 

environmental quality63. Here   stands for the stock of environmental quality 

and   stands for the level of maintenance expenditure.  

Increased usage of public infrastructure made by private firms lowers the 

durability of public capital; and thus the depreciation of public capital varies 

positively with the scale of operation of the private economy. Maintenance of 

public investment goods raises its durability and thus lowers the depreciation 

rate. Degradation of environmental quality hastens the depreciation process in 

                                                
63Total depreciation of public capital may not be positive always. Here, depending upon the ratios of maintenance 

expenditure to private capital and environmental quality to private capital, total depreciation can take a negative 

value. This can be interpreted as an efficiency gain or a virtual expansion of the existing public capital stock brought 

about by maintenance expenditure as well as the stock of environmental quality.  
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public capital. For example, public irrigation programme uses canal and river 

water to irrigate fields of crops. With pollutants in the water government has to 

bear the cost to treat and cleanse it before it can release the water to the fields. 

Industrial pollutants, emitted as smoke react with air forming oxides, which 

precipitate in the form of acid rain. This causes severe damage to heritage 

buildings as well as other public properties increasing their maintenance cost. 

Industrial effluents also contaminate water posing serious health hazards to 

workers. In turn such loss of health takes a heavy toll on public health 

insurance payments; and thus government has to spend more to maintain 

proper health among the population. Global warming leads to natural disasters 

like floods, earthquakes, cyclones, etc.; and these, in turn, cause severe 

damages to infrastructural capital like roads, electric lines, power plants, 

buildings, industrial plants, etc.  

 

5.3 THE DYNAMICS 

5.3.1 Steady-State Equilibrium  

The representative household’s problem is to maximize      
 

 
       

subject to equations (5.1), (2.2.4) and (2.2.6). 

The demand rate of growth 64  of consumption is derived from this 

maximizing problem as follows.   

 
  

 
 

 

 
        

 

 
 
   

 
 

 
 
   

                                                                                       

The growth rates of the three state variables,  ,   and  , can be 

expressed as follows. 

 
  

 
       

 

 
 
   

 
 

 
 
   

 
 

 
                                                                                            

                                                
64The derivation is shown in Appendix 5A. 
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and 

 
  

 
       

 

 
 
  

 
 

 
 
   

                                                                                                      

We again consider steady-state growth equilibrium, hence, we have 

condition (2.2.8).  

 
  

 
 

  

 
 

  

 
 

  

 
 

  

 
                                                                                                          

Using equations (5.6) to (5.9) and (2.2.8) we arrive at the following 

equation65 to solve for     

            
                                                           

                                                                                                 

We assume that               . This implies that the positive 

marginal technological contribution of private capital on output exceeds its 

negative marginal external effect that works through depreciation of public 

capital. Thus the L.H.S. of equation (5.10) is a monotonically increasing 

function of   ; and the R.H.S. is independent of   . Hence the existence of 

unique steady-state equilibrium growth rate is guaranteed when       and 

       .  

We summarize the result analyzed above in the following proposition. 

Proposition 5.1: There exists unique steady-state equilibrium growth 

rate in the decentralized economy given the interior values of the income tax 

rate, the abatement expenditure rate and the public investment allocation 

share when        . 

The existence of unique steady-state equilibrium growth rate is ensured 

if the condition                holds. This implies that the positive 

                                                
65Equation (5.10) is derived in Appendix 5B. 
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marginal technological contribution of private capital on output exceeds its 

negative marginal effect that works through depreciation of public capital.  

 

5.3.1 Optimal Fiscal Policy  

At first, we assume that government maximizes the steady-state 

equilibrium growth rate with respect to fiscal instruments. The L.H.S. of 

equation (5.10) is a monotonically increasing function of   . Thus maximizing 

the growth rate with respect to the policy variables subject to equation (5.10) is 

synonymous to maximizing the R.H.S. of equation (5.10) with respect to those 

policy variables.   

Maximizing the R.H.S. of equation (5.10) with respect to  ,   and  , we 

obtain the following equations. 

                                                                                                    

                                                                                                                   

and 

    
 

   
                                                                                                                                     

Using equations (5.11) and (5.12), we have 

                                                               

Here       is the optimum combined share of public investment 

expenditure and maintenance expenditure in the total output; and it is greater 

(less) than the competitive output share of the public capital when        

    . Here,      
 

   
  and hence          implies that the pollution-

output coefficient,  , is smaller than the share of maintenance expenditure, 

      . This result is obtained because depreciation of public capital is now 

negatively affected by environmental quality; and pollution resulting from 

production degrades environment.   fraction of final output is polluted. So 

      fraction of the output is used to meet gross public investment 
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expenditure. Hence, if the effect of pollution is strong, i.e., if   takes a high 

value, then it will cause the optimum combined share of public investment and 

maintenance expenditure in national income to scale down sufficiently so that 

it falls short of the competitive output share of the public capital. This result is 

different from that found in KK (2004) and DK (2008) where this optimum 

combined share is unambiguously greater than the competitive output share of 

public capital. This is so because     in these models. The result also differs 

from that found in Agenor (2009) where this optimum share is equal to the 

competitive share of public capital in total output. This is so in Agenor (2009) 

because of absence of pollution as well as the dual role of maintenance 

expenditure. In Greiner (2005), however, the growth rate maximizing income 

tax rate is equal to the competitive output share of the public capital because 

there is no depreciation of public capital. If      , then            ; and 

thus, in this model we get back the result of Barro (1990) and of Futagami et 

al. (1993). Here,     implies that depreciation is independent of maintenance 

expenditure and     implies the absence of environmental pollution. 

Here equations (5.11) and (5.13) imply that the income tax rate,   , and 

the share of maintenance expenditure,     , are positively related. Such a 

positive relationship is also found in KK (2004), DK (2008) and in Agenor 

(2009). However, the optimum abatement expenditure rate,   , is independent 

of the share of maintenance expenditure in this model.  

                             is the social elasticity of unpolluted output with 

respect to private capital; and equation (5.11) implies that the optimum income 

tax rate is equal to one less of this social elasticity. In FMS (1993),         

because there is neither any external effect of private capital accumulation on 

depreciation of public capital nor any environmental pollution resulting from 

industrial production. So there is no difference between social elasticity of 

unpolluted output and private elasticity of total output each with respect to 

private capital. So, optimum income tax rate is equal to the competitive output 

share of public capital in that model. The same is true in Greiner (2005). In the 
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present model, private elasticity of total output with respect to private capital 

always exceeds the corresponding social elasticity of unpolluted output. Hence 

the optimum income tax rate exceeds the competitive output share of public 

capital in this model. In KK (2004), the optimal income tax rate exceeds the 

social elasticity of output with respect to public capital due to the positive 

external learning-by-doing effect of private capital accumulation. 

The exercise to analyze whether growth rate maximizing tax rate 

maximizes the level of social welfare in the steady-state equilibrium is identical 

to the same exercise carried out in the basic model in section 2.2 of chapter 2. 

Therefore, by similar intuition, here too,   varies positively with   . 

Thus the level of social welfare along the steady-state equilibrium growth 

path is maximized when the steady-state equilibrium growth rate is maximized. 

We, therefore, state the following proposition. 

Proposition 5.2: (i) Optimum income tax rate, optimum abatement 

expenditure rate and optimum public investment allocation share in the 

steady-state growth equilibrium are given by 

                                  , 

                          , 

and  

             
 

   
  

(ii) Optimum ratio of combined expenditure on net public investment and 

maintenance of public capital to national income in the steady-state growth 

equilibrium varies inversely with the magnitude of the pollution-output 

coefficient.  It is greater (less) than the competitive output share of public 

capital if the pollution-output coefficient is smaller (greater) than the share of 

maintenance expenditure.  

 Using equations (5.10) to (5.13) we have 
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This equation solves for the unique value of    when the fiscal 

instruments are optimally chosen. 

Comparing optimum values of fiscal instruments of this section to those in 

section 2.2 and without imposing any additional parametric restrictions we can 

conclude that the growth rate maximizing expenditure share on public 

intermediate good given by   

                                                                                        

is unambiguously greater than that given by equation (2.2.15) in section 2.2 of 

chapter 2. This is so because public intermediate good here is a stock variable 

with a positive depreciation rate; and, therefore, income tax revenue net of 

abatement expenditure now finances not only new investment but also 

maintenance of existing public capital.   

Further, if we assume that            , then the balanced growth rate 

maximizing income tax rate given by equation (5.11) is greater than (equal to) 

(less than) that given by equation (2.2.13) of chapter 2. In all these three cases, 

the abatement expenditure rate given by equation (5.12) is less than that given 

by equation (2.2.14) in chapter 2 as long as    . Here,  

                                                                                                       

and 

                                                                                                                     

In the special case with    ,     and    , equation (5.10) takes the 

following form. 

   
                                                                                                                                 

                                                                                                            

Now, comparing equation (5.10a) to equation (2.2.12) with    , we find 

that the R.H.S. of both these equations are identical. However, the L.H.S. of 
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equation (5.10a) is greater than that of equation (2.2.12) of chapter 2. Thus, it 

can be said that, under the assumptions that    ,    ,     and    , the 

steady-state equilibrium growth rate in the present model is greater than that 

in section 2.2. 

 

5.4 TRANSITIONAL DYNAMICS 

We now turn to investigate transitional dynamic properties of the model. 

Equations of motion of the dynamic system are given by (5.6), (5.7), (5.8) and 

(5.9). We reconsider the ratio variables   and   from the previous chapters 

while redefine the ratio variable   as follows. 

             
 

 
  

Using equations (5.6) to (5.9), we have 

          
  

 
  

 

 
                   

 

 
                                                                             

          
  

 
                                                                                             

and 

          
  

 
                                                                   

The determinant of the Jacobian matrix 66  corresponding to the 

differential equations (5.15), (5.16) and (5.17) is given by 

                                                 

                                                  
 

 
                            

                                         
 

 
                        . 

Here               , by assumption. Also         and 

      when  ,   and   are optimally chosen. So       in this case. So either 

                                                
66 The derivation of the determinant is worked out in Appendix 5D. 
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all the three latent roots of J matrix are positive or two of them are negative 

with the third one being positive. Hence, the steady-state equilibrium cannot 

be a saddle point. Either it is unstable with all positive latent roots or there 

exists indeterminacy of the transitional growth path converging to the 

equilibrium point. 

The trace of the Jacobian matrix is given by  

                                                   

                                                                

                       . 

Using equations (5.15) to (5.17) and using the expressions of steady- 

state equilibrium values of  ,   and   in terms of    obtained from equations 

(5B.7), (5B.8) and (5B.9) in Appendix 5B, we find that the trace of the Jacobian 

matrix is negative67 if 

             
                 

 
               

and if 

            
       

  
                    

Both these inequalities are likely to be satisfied for high values of   .                                                                                        

If the determinant of the Jacobian matrix takes a positive sign and its 

trace takes a negative sign, then there are one positive and two negative latent 

roots of this Jacobian matrix68. It means that there may exist indeterminacy of 

the transitional growth path converging to the unique steady-state growth 

equilibrium when the rate of growth is sufficiently high. So we have the 

following proposition. 

                                                
67The derivation is worked out in Appendix 5D. 
68It is a sufficient condition but not a necessary one. There may be one positive and two negative roots even if 

the trace takes a positive sign. However, all the roots may also be positive in that case implying that no trajectory 

converges to the equilibrium point. See Benhabib and Perili (1994). 



181 
 

Proposition 5.3: The unique steady-state growth equilibrium never 

satisfies saddle-point stability. Either there exists indeterminacy of the 

transitional growth path converging to the steady-state growth equilibrium or 

the steady-state growth equilibrium is unstable. 

This result is different from what is found in FMS (1993), Greiner (2005), 

KK (2004), DK (2008), Agenor (2009) models and in the basic model in section 

2.2 of chapter 2. All these models prove the saddle-point stability of the steady-

state growth equilibrium. Here we show that saddle point stability of the 

steady-state growth equilibrium point can never be satisfied in this extended 

model. On the contrary there is a possibility of indeterminacy of the 

transitional growth path converging to the unique steady-state growth 

equilibrium. That externality of private capital accumulation explains 

indeterminacy of transitional growth path is well established in the literature of 

growth theory69. A negative external effect of private capital enters into the 

depreciation function in this model. However, the external effect of 

environmental quality in the depreciation function also explains indeterminacy 

in this model. Such externality effects do not appear in the endogenous 

depreciation functions in KK (2004), DK (2008) and Agenor (2009) models. 

  

5.5 PLANNED ECONOMY 

The market economy solution may not coincide with the socially efficient 

solution in the steady-state growth equilibrium due to distortions caused by 

proportional income tax and by the failure of private individuals to internalize 

externalities. The presence of two non rival inputs in the production function - 

public capital and environmental quality - causes positive externalities. This is 

no different from the basic model. Also, private capital accumulation generates 

negative externalities through congestion effects leading to the increase in the 

                                                
69 See, for example, Benhabib and Farmer (1994, 1996), Chen and Lee (2007), Mino (2001), etc. 
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depreciation of public capital. Congestion externality now drives an additional 

wedge between the market economy solution and the planned economy 

solution through a route which is intuitively similar but analytically different 

from that in the basic model. Here, this negative externality reduces total 

available public capital stock for productive usage while in the basic model it 

reduces effective benefit derived from public input expenditure. Environmental 

pollution, as a by-product of production, degrades environmental quality which 

in turn raises depreciation of public capital. Pollution externality too, acts 

through the same route as congestion externality in this extended model. The 

internalization of negative externalities is not within the scope of individual 

firms. Therefore, we next turn to solve the centralized planner’s problem in 

order to obtain the first best solution. The centralized planner maximizes a 

social welfare function identical to that of the representative household’s 

lifetime utility function, and internalizes these externalities. Equations (5.1), 

(5.4), (5.5) and (2.2.6) remain unchanged. Equations (2.2.4.1) and (4.3.1) are 

planned economy versions of equations (2.2.4) and (4.3) respectively. Equations 

(5.2) and (5.3) are modified as follows. 

                                                                                                                                               

and 

                                                                                                                                     

        Here   denotes planner’s combined lump sum expenditure on investment 

of public capital, maintenance of existing public capital and abatement 

activities. Abatement expenditure is, as usual, denoted by  . 

The planner’s problem is to maximize      
    

   

 

 
   with respect to  ,  ,   

and   subject to equations (2.2.4.1), (5.4), (5.5) (5.2.1), (5.3.1) and (4.3.1). We 

again consider a steady-state growth equilibrium and the growth rate is 

denoted by   ; the following equation solves for the steady-state equilibrium 

growth rate70 in the command economy. 

                                                
70Equation (5.18) is derived in the Appendix 5E. 
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However, we cannot make any analytical comparison of    and    using 

equations (5.18) and (5.10.1) when    . We consider a special case71 where 

   . In this special case, we obtain the following modified version of equation 

(5.10.1) given by 

           
                                         

  

        
 
   

 

                                                                                  

                                                                                                                  . 

To facilitate comparison we modify equation (5.18) with     as follows. 

           
                                         

  

        
 
   

 

                                                                  
                           

                          
 

                                                                                                                    

Thus comparing equations (5.10.2) and (5.18.1) we find that       if  

                                     
                           

                          
. 

So the relationship between the competitive equilibrium growth rate,   , 

and the socially efficient growth rate,   , is conditional on the exogenously 

given values of parameters of the model. If    , then       because 

     . If    , then socially efficient growth rate may fall short of or may 

exceed the competitive equilibrium growth rate. 

Here, external effects of environmental quality and government 

expenditure on maintenance of public capital positively affect the rate of 

accumulation of public capital reducing its depreciation rate. However, 

accumulation of private capital and environmental pollution have negative 

                                                
71 We do not assume that    . We are aware of the problem that, with    , the integral            

 

 
 

may not converge. We want to mean that the result valid with     is likely to be valid with a very low but 

positive value of  .  



184 
 

external effects on the durability of public capital and hence on its rate of 

accumulation. These two sets of external effects act in opposite directions. 

Whenever the positive externality outweighs the negative externality,    exceeds 

  ; but falls short in the reverse case. In Barro (1990), FMS (1993), etc., only 

public expenditure generates a positive externality on production and there is 

no negative externality. In DK (2008), KK (2004) there is only a positive 

externality on the durability of public capital arising from the public 

expenditure on its maintenance. So the competitive equilibrium growth rate 

always falls short of the socially efficient growth rate. 

 

APPENDIX 5A 

DERIVATION OF EQUATION (5.6) IN SECTION 5.3.1 

 The dynamic optimization problem of the representative household is to 

maximize      
    

   

 

 
   with respect to C subject to equation (2.2.4) and given 

    . Here   is the control variable satisfying           ; and K is the state 

variable. 

The Hamiltonian to be maximized at each point of time is given by 

      
    

   
                 . 

Here λK is the co-state variable representing the shadow price of 

investment. Maximizing the Hamiltonian with respect to   and assuming an 

interior solution, we obtain 

                                                                                                                                         

Also the optimum time path of λK satisfies the following. 

 
   

  
                                                                                                               

         Using equations (5.1) and (5A.2) we have 
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Using the two optimality conditions (5A.1) and (5A.3), we have 

 
  

 
 

 

 
        

 

 
 
   

 
 

 
 
   

                                                                                    

This is same as equation (5.6) in section 5.3.1. 

 

APPENDIX 5B 

DERIVATION OF EQUATION (5.10) IN SECTION 5.3.1 

Using equations (5.1) to (5.6), (2.2.4), (4.3) and (2.2.8) we have the 

following equations.  

    
  

 
 

 

 
        

 

 
 
   

 
 

 
 
   

                                                                       

 

   
  

 
       

 

 
 
   

 
 

 
 
   

 
 

 
                                                                              

 

   
  

 
       

 

 
 
  

 
 

 
 
   

                                                                                       

and 

    
  

 
                 

 

 
 
              

 
 

 
 
            

                       

From equation (5B.1) we have, 

 
 

 
  

       

      
 

 

   
 
 

 
 
  

                                                                                                        

Again, from equation (5B.3) we have, 

 
 

 
  

  

   
 
 
 

 
 
 

 
 

   

 
                                                                                                               

Using equations (5B.5) and (5B.6) we derive the following equation. 
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Using equations (5B.6) and (5B.7) we obtain the following equation. 

 
 

 
 

       

  

     

      
                                                                                                                  

Similarly using equations (5B.1) and (5B.2) we can show that 

 
 

 
 

         

 
                                                                                                                         

Now, using equations (5B.4), (5B.7) and (5B.8) we derive the following 

equation. 

                    
       

  

     

      
 
              

   

           
  

   
  

       

      
 

 

   
 

            

, 

or, 

   
                                                           

                                                                                                 

This is same as equation (5.10). 

 

APPENDIX 5C 

DERIVATION OF EQUATIONS (5.11), (5.12) AND (5.13) AND THE SECOND 

ORDER CONDITIONS IN SECTION 5.3.2 

We denote the L.H.S. and the R.H.S. of equation (5.10) by L.H.S.(5.10) and 

R.H.S.(5.10) respectively. Maximizing the R.H.S. of equation (5.10) with respect to 

τ, we obtain the following first order condition. 

                                                           

or, 
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Maximizing the R.H.S. of equation (5.10) with respect to T, we obtain the 

following first order condition. 

                                                        

or, 

                                                                                   

Maximizing the R.H.S. of equation (5.10) with respect to  , we obtain the 

following first order condition. 

                                                                  

or, 

                                                                                                        

Using equations (5C.1), (5C.2) and (5C.3) we obtain the following 

expressions.  

                         ; 

                 ; 

and 

    
 

   
. 

These are same as equations (5.11), (5.12) and (5.13) in section 5.3.2. 

To check the second order conditions for optimality we twice differentiate 

equation (5.10), with respect to  ,   and   respectively and arrive at the 

following three second order conditions. 
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and 

               
  
                            

   

  
 
 

 

               
  
                          

    

   
 

                                                                                                     

Now we evaluate the three second order conditions mentioned above at 

    ,      and      where 
   

  
  

   

  
 

   

  
  . Hence we obtain the 

followings. 

 
    

   
  

                                          

             
  
                          

    

 
    

   
  

                                  

             
  
                          

    

and 

 
    

   
  

        
  
                

             
  
                          

  . 

The R.H.S. of each of these three equations is negative. Thus the second 

order conditions are also satisfied. 

 

APPENDIX 5D 

DERIVATION OF THE DETERMINANT AND THE TRACE OF THE JACOBIAN 

MATRIX IN SECTION 5.4 

We define the following variables. 

                                                                                                                                                          

                                                                                                                          

and 
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Now we consider following equations from section 5.4. 

 
  

 
  

 

 
                   

 

 
                                                                             

 
  

 
                                                                                              

and 

 
  

 
                                                           

                                                                                                           

Thus using equations (5D.1), (5D.2) and (5D.3) we modify equations 

(5.15), (5.16) and (5.17) as follows. 

 
  

 
  

 

 
       

 

 
                                                                                                        

 
  

 
                                                                                                                             

and 

 
  

 
                                                                                                                                    

We obtain the following partial derivatives corresponding to three 

modified differential equations. 

 
  

  

 
 

  
    

 
  

  

 
 

  
       

 

 
   

 

 
; 

 
  

  

 
 

  
       

 

 
   

 

 
; 

 
  

  

 
 

  
    

 
  

  

 
 

  
   

 

 
      

 

 
  

 
  

  

 
 

  
      

 

 
      

 

 
; 
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  ; 

 
  

  

 
 

  
                 

 

 
  

 

 
; 

and 

 
  

  

 
 

  
                

 

 
      

 

 
. 

So the determinant of the Jacobian matrix can be written as follows. 

        
 

 
      

 

 
                 

 

 
      

 

 
  

                          
 

 
  

 

 
       

 

 
      

 

 
  

               
 

 
   

 

 
                

 

 
      

 

 
  

               
 

 
   

 

 
                 

 

 
  

 

 
   

or, 

                   
 

 

 

 
 

 

 
      

 

 

 

 
 

 

 
     

 

 

 

 
  

or, 

                                        

                                         
 

 
                            

                                         
 

 
                        . 

Here             ,         and      . Thus the determinant 

is positive in sign. 

The trace of the Jacobian matrix is given by, 

                  
 

 
      

 

 
               

 

 
      

 

 
. 

At the steady-state equilibrium, 
  

 
 

  

 
 

  

 
  . Using this condition and 

equations (5D.4), (5D.5) and (5D.6) the trace can be written as follows. 
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. 

Now,        if 

    
 

 

 

 
           

 

 

 

 
   

 

 

 

 
      

 

 
           

 

 

 

 
  . 

Using the optimal values of the policy variables given by equations (5.11), 

(5.12) and (5.13) we have 

     
 

 
 
 

 
             

                 
                                                                                         

     
 

 
 
 

       
 

    
  

      
  

       

               
 

 

   
                                               

Now using equations (5D.7) and (5D.8) and the optimal values of the 

policy variables, the condition for the trace of the Jacobian matrix to be 

negative can be written as 

   
 

 

                  

             
 

 

 
           

      

  
      

 

    
               

       
 

 

   
 

    
  

 
       

                 

             
  

   
 

 
           

      

  
      

 

    
               

       
 

 

   
 
       

 
 
           

  
 
 

, 

or, 
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or, 
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  . 

This will be satisfied if  

     
                 

 
               

and if 

   
       

  
                    

 

APPENDIX 5E 

DERIVATION OF EQUATION (5.18) IN SECTION 5.5 

The relevant Hamiltonian to be maximized by the planner at each point 

of time is given by 

       
    

   
         

                             

                                       . 

The state variables are  ,   and  . The control variables are  ,  ,    and 

 .   ,   , and    are three co-state variables. 

Maximizing   with respect to  ,  ,    and   we have 

                                                                                                                                        

 
  

  
              

   

 
 
 

 
 

 
 
 

                                                                               

 
  

  
              

   

 
 
 

 
 

 
 
 

                                                                               

and 

   
 

   
                                                                                                                                     

Using equations (5E.2) and (5E.3) we find that 
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Using equations (5E.3) and (5E.5) we obtain the following. 

 
  

  
  

 

   
 
 

 
   

 
 
 

 
 

 
 
 

                                                                                                    

Also, along the optimum path, time behaviour of co-state variables 

satisfies the followings. 

        
 

 
 
   

 
 

 
 
   

 
  

  
             

   

 
 
   

 
 

 
 
 

   
   

  
  

                                                                                                                                        

         

 
  

  
           

 

 
 
  

 
 

 
 
  

   
   

  
                                                                      

and 

 
  

  
         

   

 
 
   

 
 

 
 
   

   
   

  
                                                                     

We assume steady-state equilibrium where all the variables grow at the 

same rate,   . Thus equations (5E.5) and (5E.6) imply that 

   

  
 

   

  
 

   

  
                                                                                                                             

Using equations (5E.1) and (5E.10) we have 

   
  

 
      

   

  
 

   

  
 

   

  
                                                                                            

Again, using equations (5.2), (5.2.1), (5.4) and (5.3.1) we have 

 
  

 
            

   

 
 
   

 
 

 
 
   

 
 

 
 
  

  

or, 

 
 

 
         

   

 
 
   

 
 

 
 
   

  
                                                                            

Using equations (5E.6), (5E.7), (5E.11) and (5E.12) we obtain the 

following equation. 
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Again using equations (5E.6), (5E.8), (5E.11) and (5E.12) we obtain the 

following equation. 

                             
   

 
 
        

 
 

 
 
      

  
         

                                                                                                         

Using equations (5E.5), (5E.6), (5E.9), (5E.11) and (5E.12) we obtain the 

following equation. 

 
 

   
 
   

 
  

 

 
 
  

        

or, 

 
 

 
 

 

   
 
   

 
        

                                                                                                 

Using equations (5E.14) and (5E.15) we obtain the following. 

                                     
   

 
 
            

         
  

         
                  

or, 

  
   

 
 
            

 

                                                  
         

                                                                                                                   

Again, using equations (5E.13) and (5E.16) we obtain the following 

equation. 
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Finally we use equations (5E.4), (5E.16) and (5E.17) to obtain the 

following equation that solves for the planned economy growth rate. 

  
                  

                                 
              

        
  

        
 
   

                                                      

This is same as equation (5.18) in section 5.5. 
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CHAPTER 6 

6. INFORMAL SECTOR WITH ENVIRONMENTAL 

POLLUTION AND PUBLIC EXPENDITURE 

 

6.1 INTRODUCTION   

In all the previous chapters we have developed one sector aggregate 

models. However, one-sector framework is not the appropriate one to analyze 

dynamics of the economy and the optimality of fiscal policy when a substantial 

part of economic activities remains untaxed. The aggregate of various untaxed 

economic sectors is known as informal sector or the shadow economy in the 

literature. The present chapter extends the single-sector basic model developed 

in section 2.2 in chapter 2 to a two-sector model consisting of a formal sector 

and an informal sector where both the sectors now generate environmental 

pollution but government can tax only the formal sector output to finance 

pollution abatement activity and public expenditure. 

In this chapter, we develop a two-sector endogenous growth model 

consisting of both formal sector and informal sector and analyze the role of 

public infrastructural expenditure and environmental pollution. The 

representative household allocates capital between the formal sector and the 

informal sector. Pollution is generated by both the sectors. Though both sectors 

pollute the environment, emission-output coefficients in the formal and 

informal sectors are different. Public infrastructure is a non-rival public good 

and hence, informal sector cannot be excluded from using it. Government 

imposes proportional income tax on the formal sector only and finances the 

abatement expenditure as well as public infrastructural expenditure from this 

tax revenue. The informal sector avails the benefits of infrastructure without 

paying for it as government cannot tax this sector. Congestion of public capital 
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or productive role of public health capital from earlier chapters are not 

considered in this chapter. 

We derive following results from this model. First, we prove the existence 

of the unique steady-state equilibrium growth path in the market economy 

when the formal and the informal sectors exist side by side. Secondly, the long-

run growth rate maximizing income tax rate is dependent upon the emission-

output coefficient of the formal sector only; and this result is independent of 

whether two sectors have identical production technologies or not. The 

emission-output coefficient of the informal sector does not affect this income 

tax rate. Thirdly, if there is identical production technologies in the two sectors, 

the growth rate maximizing abatement expenditure rate and the growth rate 

maximizing ratio of productive public expenditure to formal sector’s output 

depend not only on the emission-output coefficient of the formal sector but also 

on that of the informal sector. Fourthly, with identical production technologies 

in these two sectors, the decentralized steady-state growth equilibrium appears 

to be saddle-point stable. This result is different from that of Loayza (1996) 

model that does not show any transitional dynamic property. Lastly, the growth 

rate maximizing relative size of the informal sector in the steady-state growth 

equilibrium of the competitive economy exceeds its socially efficient size when 

this sector pollutes the environment.  

Following sections are organized as follows. Section 6.2 describes the 

basic competitive equilibrium model. Section 6.3 shows the existence of unique 

steady-state growth equilibrium and analyzes the properties of the long-run 

growth rate maximizing fiscal policies. Stability property of the decentralized 

steady-state equilibrium is analyzed in section 6.4. Section 6.5 deals with the 

properties of steady-state equilibrium in the planned economy.  
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6.2 THE MODEL  

There are two production sectors - formal and informal. Both sectors use 

private capital, public infrastructure and environmental quality as inputs. The 

benevolent government imposes a proportional tax on the income of the 

representative household earned only from the formal sector. The 

representative household does not pay any tax on her income earned from the 

informal sector. No penalty72 is imposed by the government even if tax evasion 

is detected. The instantaneous utility of the individual is derived from 

consumption of two goods. The individual also allocates private physical capital 

between the formal sector and the informal sector while maximizing utility.  

We assume a small open economy. We consider trade in final goods only 

but do not consider international capital mobility. Private physical capital is 

perfectly immobile between countries. Thus the interest rate is determined 

internally by the mobility of private capital between the informal sector and the 

formal sector. The relative price of the formal good in terms of the informal 

good is exogenous because we assume a small open economy. It is normalized 

to unity. However, one can explicitly model the determination of the relative 

price in a closed economy at the cost of additional complications because 

change in relative price will produce additional effects. A two sector open 

economy with one traded good sector and one non-traded good sector functions 

like a closed economy. 

Let the subscripts   and   stand for the formal sector and the informal 

sector respectively. Following equations describe the model. 

                                                                                                        

                                                                                                

                                                                                                                   

                                                
72Introduction of an exogenous penalty rate does not affect the results of this model if the revenue earned from 

penalty is not used to finance the public expenditure. However, even in this case, results may be different when the 

penalty rate is made endogenous. Loayza (1996) introduces endogenous penalty rate. 
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Equation (6.1) describes the Cobb-Douglas production function in the 

formal sector which satisfies constant returns to scale in terms of private 

capital, public capital and environmental quality.    is the level of output 

produced in the formal sector.   and   are stocks of private capital and 

environmental quality respectively.   is non-rival flow of public productive 

input.   is the fraction of private capital allocated to the formal sector. 

Elasticities of output with respect to private capital, public capital and 

environmental quality are denoted by  ,   and         respectively. 

Equation (6.2) describes the Cobb-Douglas production function in the 

informal sector.       is the fraction of private capital allocated to the informal 

sector. Elasticities of output of this sector with respect to private capital, public 

capital and environmental quality are denoted by  ,   and         

respectively.  

The budget constraint of the representative household is given by 

equation (6.3). We do not consider depreciation of private capital. Government 

taxes income of the formal sector only and this proportional income tax rate is 

denoted by  . The representative household’s income from the informal sector 

is not taxed. Here    and    represent the levels of consumption of the formal 

good and of the informal good respectively;       is total consumption 

expenditure and       is the value of total production of both the sectors73. 

Equation (6.4) describes government’s budget constraint. The 

government finances public infrastructure expenditure and abatement 

expenditure from the formal sector income tax revenue.   is the abatement 

expenditure rate defined as the ratio of abatement expenditure to formal 

sector’s output.  

                                                
73We consider a small open economy with the terms-of-trade being assumed to be equal to unity for simplicity of 

technical analysis.  
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 Equation (6.5) shows how environmental quality changes over time 

depending upon the magnitudes of emission and abatement activity. Here 

emission is assumed to be a flow variable and each of the two sectors generates 

emission as a by-product of its production. Emission level is proportional to the 

level of production in each of the two sectors; and    and    are the constant 

emission-output coefficients in the formal sector and in the informal sector 

respectively.     is the total abatement expenditure made by the government in 

this model, which is proportional to formal sector output.  

Instantaneous utility of the representative consumer being a positive and 

concave function of the consumption level of each of the two goods is given by 

equation (6.6).            and                represent the constant 

elasticities of marginal utility with respect to    and    respectively. Here we 

assume                          to ensure diminishing marginal utility 

of consumption of each of these two goods. 

 

6.3 DYNAMIC EQUILIBRIUM  

The representative household maximizes          
 

 
       with respect to  

  ,    and   subject to equations (6.1), (6.2), (6.3) and (6.6). Optimum capital 

allocation between the two sectors is given by  

  
            

            
 

 

     
   
   

     
 
 

 
 

            

   
                                                         

If we assume     and    , then equation (6.7) is reduced to 

  
   

 
 
   

 
 

     
                                                                                                                      

The demand rate of growth74 of consumption is derived as follows. 

 
   

  
 

   

  
 

 

 
            

 

    
     

    
 

 
 

     

   
                                                       

                                                
74Equations (6.7) and (6.8) are derived in Appendix 6A. 
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Using equations (6.6) and (6A.3) obtained from Appendix 6A, we have 

           
 

   
 
      

 
  

   

   
                                                                                           

We consider a steady-state growth equilibrium where all macroeconomic 

variables grow at the same rate,   . Hence, we have  

 
   

  
 

   

  
 

   

  
 

   

  
 

  

 
 

  

 
 

  

 
                                                                                     

 

6.3.1 Existence of the Steady-State Growth Equilibrium 

We now turn to show the existence of unique steady-state equilibrium 

growth rate in the competitive economy; and so we use equations (6.1), (6.2), 

(6.3), (6.4), (6.5), (6.8) and (6.9) to obtain the following equations.  

 
   

  
 

   

  
 

 

 
   

     

             
 

    
 

 
 

     

   
                                             

 
  

 
    

 

 

   

 
  

 

             
 

    
 

 
 

     

   
 

 

   

  

 
                                  

and 

 
  

 
              

 

 

   

 
  

 

        
 

    
 

 
 
 

 

   
                                       

Using equations (6.7), (6.10), (6.11) and (6.12) we obtain the following 

equation75 to solve for   . 

          
 

              
 

          
 

              

                 
 

           
 

        

                 
             

                   
             

              

                                                                                                       

The L.H.S. of equation (6.13) is an increasing function of   . Its R.H.S. is 

a decreasing function of    if                , given the income tax rate, 

                                                
75The derivation of equation (6.13) is worked out in Appendix 6B. 
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 , and the abatement expenditure rate,  . However, this R.H.S. is independent 

of    when              . Thus the existence of the unique    is 

guaranteed if                 and         . Equation (6B.4) in 

Appendix 6B shows that  
 

 
  is a function of   ; and then equation (6B.2) 

shows that  
  

 
  is a function of   . Equation (6.7) then can be used to show 

that   is a function of   . Also we must have       because R.H.S. of 

equation (6.7) is always non zero. An equilibrium with       implies 

simultaneous existence of the formal sector and the informal sector. We can 

state the following proposition. 

Proposition 6.1: There exists unique steady state growth equilibrium 

in the competitive economy with coexistence of the formal and the informal 

sector, given the income tax rate and the abatement expenditure rate, if 

                and if         . 

We assume perfect inter-sectoral mobility of private capital along with 

the assumption of diminishing marginal productivity of capital in each of these 

two sectors. So we can explain the coexistence of both sectors in equilibrium 

even without assuming endogenous penalty rate on tax evasion in the informal 

sector. In Loayza (1996), marginal productivity of capital is constant in both 

these sectors even though capital is perfectly mobile between the sectors. So 

the assumption of endogenous rate of penalty on informal sector is necessary 

in that model to ensure the coexistence of these two sectors.   

 

6.3.2 Optimal Fiscal Policy 

We assume that government maximizes the steady-state equilibrium 

growth rate with respect to the fiscal instruments,   and  , subject to the 

steady-state equilibrium equation (6.13). Thus, we obtain following expressions 
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of the optimum tax rate and the optimum abatement expenditure rate76 as 

shown in equations below.           

                                                                                                                             
and 

               
             

                                    

                                 
 

    
 

   
           

 
        

                   
             

              

                                                                                                      

We derive equations (6.14) and (6.15) without assuming identical 

production technologies in the two sectors. Optimum income tax rate is found 

to be independent of the balanced growth rate,   , and of technology 

parameters of the informal sector, because tax is imposed only on income 

earned from the formal sector and because capital income as well as labour 

income are taxed at equal rates. On the contrary, optimum abatement 

expenditure rate is found to depend on the balanced growth rate, and the 

emission-output coefficients of each of the two sectors.  

However, this rate has a complex expression as given by equation (6.15); 

and so we assume identical production technologies77,78 in the two sectors at 

this stage. This implies that     and    . Then equation (6.15) is reduced to 

the following.  

                                
 

 

      
 

   
                                   

 Using equations (6.14) and (6.15.1) we obtain  

                          
 

 

      
 

   
                                                         

                                                
76The derivation of equations (6.14) and (6.15) from the first order conditions of maximization is worked out in 

Appendix 6C. Second order conditions of maximization are also satisfied. 
77Equations (6.13) and (6.15) simultaneously solve for steady-state equilibrium growth rate and optimum value of 

the abatement expenditure rate. Analytically it is extremely difficult to show the existence of unique value of   

lying in the interval (0, 1). The assumption of identical technologies solves this problem. The importance of 

distinction between formal and informal sector still remains valid because informal sector income is not taxed even 

with this simplifying assumption. 
78An identical production technology in the formal sector and the informal sector is assumed by Loayza (1996), 

Sarte (2000), etc. 
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         is the ratio of productive public infrastructural expenditure to 

formal sector’s income that maximizes the steady-state equilibrium growth rate 

in this model. The R.H.S. of equation (6.16) is the competitive share of public 

input in the unpolluted output of the formal sector less a constant term. This 

constant term is the fraction of the formal sector’s output allocated in order to 

nullify the effect of pollution generated by the informal sector. Thus, optimum 

ratio of productive public infrastructural expenditure to taxable income in this 

model is lower than the competitive output share of public input in the formal 

sector. This result is different from those obtained in the models of Barro 

(1990), FMS (1993), Greiner (2005), etc. This is so because the informal sector 

uses public input without paying any tax and causes pollution. The abatement 

expenditure is also financed from the tax revenue obtained from the formal 

sector; and that is why the optimum abatement expenditure rate varies 

positively with the emission rate of the informal sector.  

The model of Loayza (1996) also shows that the ratio of public 

infrastructural expenditure to income falls short of the competitive output 

share of the public input. However, none of the two sectors generates emissions 

in his model. Development of the informal sector there lowers the efficiency of 

the public input used by the formal sector through congestion effect. 

We now state the following proposition. 

Proposition 6.2:  

(i) When production technologies in the two sectors are identical, the 

income tax rate and the abatement expenditure rate obtained as solutions to 

maximization of growth rate in the steady-state equilibrium are given by 

                      , 

and 

                                         
 

 

      
 

   
 .  

(ii) The growth rate maximizing ratio of productive public infrastructural 

expenditure to taxable income in the steady-state equilibrium is equal to the 
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competitive share of the public input in the unpolluted output of the formal 

sector less the share of formal sector’s income used to negate the polluting 

effect of the informal sector; and hence this ratio varies inversely with the 

magnitude of the emission-output coefficient of the formal sector as well as 

that of the informal sector. 

The presence of differential emission-output coefficients in the two 

production sectors in the economy and their differential role on government’s 

revenue generation make our result different from those found in the existing 

literature. If         then we get back the result identical to that of Barro 

(1990) and FMS (1993) models. 

We use equations (6.13), (6.14) and (6.15.1) and obtain 

          
 

                            
 

      

                     
 

 

      
 

   
  

 

     
 

                         
 

 

                                                                             

Equation (6.13.1) solves for    when growth rate maximizing values of 

fiscal policy variables are chosen. A positive value of    is obtained when the 

right hand side of equation (6.13.1) is positive; and thus the condition for long-

run endogenous growth is given by 

 
      

 
     

  
 

 
 

 
     

     
  

Given the value of   this condition is likely to be satisfied when    and     

take very low values. So the economy may not grow at all in the long-run when 

pollution rates are high in these two sectors. 

Again, using equations (6.14) and (6.7.1) we obtain the inter-sectoral 

capital allocation ratio which is given by 
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Equation (6.7.2) clearly shows that this growth rate maximizing inter-

sectoral capital allocation ratio in the market economy is independent of the 

emission-output coefficient of the informal sector. This is so because the 

income tax rate is independent of the emission-output coefficient of the 

informal sector and hence the rate of return on capital in either sector is not 

disturbed by this coefficient. 

 

6.4 STABILITY PROPERTY 

We investigate the stability property of the unique decentralized steady-

state equilibrium with given values of policy parameters when production 

technologies in two sectors are identical79.  

We define   
  

 
 and   

 

 
; and then using equations (6.1), (6.2), (6.3), 

(6.4), (6.5), (6.7) and (6.8), we have 

 
  

 
  

 

 
    

     

             
 

    
     

    
 

 
 

 

   
                                                

and 

 
  

 
              

   

 
  

 

        
 

    
 

 

     
     

             
 

    
     

    

                                                                                      
 

   
                

We then express   in terms of   using equation (6.7.1). The determinant 

of the Jacobian matrix80 corresponding to differential equations given by (6.17) 

and (6.18) is given by 

                                                

79Equation (6.7.1) shows that 
 

   
 is a linear function of 

 

 
 when     and    . So 

  

 
 is linearly dependent on 

  

 
 

and 
  

 
 and is independent of  . Hence we replace the expression of   from equation (6.7.1) in equations (6.10), 

(6.11) and (6.12). However, if identical production technology is not assumed then   can only be expressed as an 

implicit function of 
 

 
 as shown in equation (6.7); and 

  

 
 depends on  . Our dynamic system is a     differential 

system in that case. Hence, for the sake of technical simplicity, we analyze stability property of the steady-state 

equilibrium assuming identical production technologies in these two sectors. 
80 The derivation of the determinant is worked out in Appendix 6D. 
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Here               and              
 

    when values of   and 

  are chosen maximizing the growth rate in the steady-state equilibrium. So 

      in this case; and hence we can state the following proposition. 

Proposition 6.3: If production technologies of the two sectors are 

identical, the unique steady-state equilibrium is saddle-point stable with a 

unique saddle path converging to that equilibrium point when fiscal 

instruments are chosen to maximize the steady-state growth rate.  

In Loayza (1996) model, there exists no transitional dynamic property 

because it behaves like an    model similar to Barro (1990) model with a flow 

public expenditure. Our model also assumes flow public expenditure. However, 

we protect this model from being trapped into the    model by assuming 

environmental quality to be an accumulable input; and obtain saddle-point 

stability property of the long run equilibrium even with a flow public 

expenditure. FMS (1993) brings back transitional dynamic properties in Barro 

(1990) model introducing durable public input. Greiner (2005) model exhibits 

transitional dynamic properties treating environmental pollution as a flow 

variable but treating public input expenditure as a stock variable. 

However, this exercise is not correct when policies are chosen by 

maximizing the household’s intertemporal welfare function subject to the 

decentralized equilibrium conditions. In this case the policies may be state-

dependent and hence may affect dynamic stability. 
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6.5 THE PROBLEM OF THE SOCIAL PLANNER 

The social planner can internalize externalities arising from public 

infrastructure and environmental quality.  

This socially efficient growth rate81 denoted by    and capital allocation 

between the two sectors in the steady-state equilibrium are derived from the 

social planner’s optimization problem and are given by the following equations. 

        
    

         
 

          
 
   

 
 
      

                                                                            

and 

        
             

 

 
        

   

 
  

   
      

   

                 

         
 

 
 
    

    
  

 

               
    

 

 
 
   

 
  

     

               
 
   

 
 

      

               
   

                                                                                                           

Equations (6.19) and (6.20) solve for    and  ; and unique steady-state 

equilibrium may exist82.  

If two sectors have identical production technologies, i.e., if     and 

   , then from equation (6.19), we have 

 
   

 
  

    

    
 

 

   
                                                                                                                      

Equation (6.19.1) shows socially efficient capital allocation between two 

sectors. Equations (6.7.1) and (6.19.1) are identical if     ; and equation 

(6.19.1) solves for a higher value of   when     . This leads to the following 

proposition. 

Proposition 6.4: In the presence (absence) of environmental pollution 

generated by the informal sector, the relative size of the formal sector in the 

                                                
81 Working of the planned economy and derivations of equations (6.19) and (6.20) are described in the Appendix 

6E. 
82 The conditions for this existence are also derived in Appendix 6E. 
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competitive economy in the decentralized steady-state equilibrium falls short of 

(is equal to) its socially efficient size when the two sectors have identical 

production technologies. 

However, the socially efficient growth rate,   , is indeterminate in this 

case because  

        
      for    . 

Loayza (1996) neither compares the competitive economy solution to the 

socially efficient solution nor considers pollution caused by the informal sector. 

However, informal sector activities generate environmental pollution in reality; 

and it is well known that fiscal policies are not effectively designed to control 

informal sector activities and to internalize its negative externalities. This 

present exercise indicates the importance of appropriate environmental policies 

to control pollution generated by informal sector and of removing barriers to 

formalization in order to prevent expansion of informal sector. 

 

APPENDIX 6A 

DERIVATION OF EQUATION (6.7) IN SECTION 6.3 

The dynamic optimization problem of the representative household is to 

maximize      
   

   
    

   

   

 

 
   with respect to   ,    and   subject to equation 

(6.3) and given     . Here   ,    and   are the control variables satisfying   

                 and      ; and   is the state variable. 

The Hamiltonian to be maximized at each point of time is given by 

      
   

   
    

   

   
                         . 
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Here    is the co-state variable representing the shadow price of 

investment. Maximizing the Hamiltonian with respect to    and    and 

assuming an interior solution, we obtain 

    
          

                                                                                                           

and 

        
        

                                                                                                  

Using equations (6A.1) and (6A.2) we have 

 
 

   

  

  
  , 

or,  

    
 

   
                                                                                                                                

Now using equations (6A.2) and (6A.3) we obtain the following optimality 

condition. 

       
 

   
 
      

  
         

   

 
 
            

  
                                  

Also maximizing the Hamiltonian with respect to   and assuming an interior 

solution, we obtain 

       
  

 
  

  

   
                                                                                                         

Using equations (6.1), (6.2), (6.4) and (6A.5), we obtain 

  
            

            
 

 

     
   
   

     
 
 

 
 

             

   
                                                    

Also the optimum time path of λK satisfies the following. 

 
   

  
         

  

 
  

  

 
                                                                                                

         Using equations (6A.5) and (6A.7) we have 

 
   

  
      

   

 
       

  

 
                                                                                         

Now, using equations (6.1), (6.4) and (6A.8), we have 
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            Using the two optimality conditions (6A.4) and (6A.9), we have 

 
   

  
 

   

  
 

 

 
            

 

    
     

    
 

 
 

     

   
                                                   

This equation (6A.10) is same as equation (6.7). 

 

APPENDIX 6B 

DERIVATION OF EQUATION (6.13) IN SECTION 6.3.1 

Using equations (6.1) to (6.5), (6.7) and (6.8) we have the following 

equations.  

 
   

  
 

   

  
 

 

 
   

     

             
 

    
 

 
 

     

   
                                           

 
  

 
    

 

 

   

 
  

 

             
 

    
 

 
 

     

   
 

 

   

  

 
                                 

and 

 
  

 
              

 

 

   

 
  

 

        
 

    
 

 
 
 

 

   
                                      

From equation (6B.1) we have 

  
 

 
 

     

   
  

     

        
 

 

   
       

      
                                                                             

Using equations (6B.3) and (6B.4) we obtain the following equation. 

                 
 

 

     

 
  

 

        
 

     
     

        
 

   
       

      
 
 

 

     

  

or, 
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Using equations (6A.6) and (6B.4) we obtain the following equation. 

  
   

 
 
   

          
             

          
             

            
             

       

                                                                                                          

or, 

   
 

 
 

     

   

where  

            
             

          
             

            
             

                     

Now we use equation (6B.6) to substitute the value of  
   

 
  in equation 

(6B.5) to obtain the following equation. 

          
 

              
 

          
 

              

        
 

           
 

        

                 
             

                   
             

                

                                                                                                          

This equation (6B.8) is same as equation (6.13). 

We use equations (6B.2), (6B.4) and (6B.7) to obtain the following values 

of 
 

 
 and 

  

 
 at the steady-state equilibrium. 

 
 

 
    

 

      
 
     

   

     
 

 

   
       

      
 

   

     

                                                        

and 

 
  

 
       

   
 

 
 

 
    

  
 

      

       

 
                                                                             

From equations (6A.3) and (6B.10) we obtain 
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APPENDIX 6C 

DERIVATION OF EQUATIONS (6.14), (6.15) AND (6.15.1) IN SECTION 6.3.2 

AND SECOND ORDER CONDITIONS 

We denote the L.H.S., the first term               
 

          
 

      and 

the second term    
 

           
  

                 
      

                   
             

             in 

the R.H.S. of equation (6.13) by L.H.S.(6.13), R.H.S.1(6.13) and R.H.S.2(6.13) 

respectively. Maximizing the R.H.S. of equation (6.13) with respect to  , we 

obtain the following first order condition. 

             
  

 

     
 τ       

 

     
   τ     

                         
  

      

            
 τ       

  

            
   τ                 

Maximizing the R.H.S. of equation (6.13) with respect to  , we obtain the 

following first order condition. 

             
        

   
 

     
 τ                     

  
      

            
 τ         

                                 

Using equations (6C.1) and (6C.2) we get the following equation. 

          τ               τ           

     τ             τ           τ                     

or, 

 τ  τ                                                                                                                   

This is same as equation (6.14) in section 6.3.2. 

Using equations (6C.2) and (6C.3) we obtain 
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or, 

              
             

                                 

               
 

    
 

   
           

 
        

                   
             

                           

This is same as equation (6.15) in section 6.3.2. Now if we assume 

identical production technologies in the two sectors then     and    . 

Using this assumption in (6C.4) we obtain 

                         
 

 

    
 

   
       

 
 

       

or, 

                               
 

 

       
 

    
 

   
                       

This equation (6C.5) is same as equation (6.15.1). 

Using equations (6A.3), (6C.3) and (6C.5) in equations (6B.9), (6B.10) and 

(6B.11) and assuming     and     we obtain the following. 

 
 

 
                  

 
 

      
 
     

   

                          
 

 

      
 

   
  

 
 

   
  

                                                                             
       

        
 

   

     
           

 
  

 
       

       

 
                                                                                                 

and 

 
  

 
   

       

 
                                                                                                               

We assume     and     in order to derive the second order 

conditions for growth rate maximization. Twice differentiating equation (6.13) 

with respect to   and   respectively we obtain following two equations. 
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At the balanced growth rate maximizing equilibrium, 
   

  
 

   

  
    Thus 

equations (6C.9) and (6C.10) take the following form. 

 
    

   
 

  
 

     
        

 

     
        

   
 

   
   

 

   
      

 
 

   
  
             

 
 

    
  

     
 

   
     

 
 

   
  
 
 

             
 

 
    

  

 

   
   

  

     
          

  

and 

 
    

   
 

  
 

     
                     

 
 

    
  

 

   
   

  

     
          

. 

The denominator of the R.H.S. of each of the two above mentioned 

equations is positive and the corresponding numerator is negative. Thus the 

second order derivatives are negative in sign. 

 

APPENDIX 6D 

DERIVATION OF THE DETERMINANT IN SECTION 6.4 

We define the following variables. 
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and 

                
   

 
  

 

        
 

    
 

 

                                                         

Using     and     in equation (6A.6) we obtain 

            
 

      

Thus, if we assume identical technology   becomes a function of the income tax 

rate only. 

Thus using equations (6D.1) and (6D.2) we modify equations (6.17) and 

(6.18) in section 6.4 as follows. 

 
  

 
  

 

 
     

 

   
 

 

 
                                                                                                    

and 

 
  

 
     

 

   
                                                                                                                   

We obtain following partial derivatives from equations (6D.3) and (6D.4). 
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and 

 
  

  

 
 

  
   

 

   
 
 

 
  

     

   
 
 

 
  

So the determinant of the Jacobian matrix can be written as follows. 
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or, 

      
 

   
 

 

     
             

   

 
  

 

        
 

    
 

 

   
    

           
     

   
 
 

 
 
     

             
 

    
     

   
  
   

or, 

      
 

   
  

 

   
               

 

           
 

      
 

 

         
 

    
 

 

   
  

 

          
 

 
 
     

   
        

 

      
 
     

   
          

 

    
     

   
  
   

 

APPENDIX 6E 

DERIVATION OF EQUATIONS (6.19) AND (6.20) IN SECTION 6.5 

The social planner’s problem is to maximize      
 

 

   
   

    
   

   
  . Here, 

equations (6.1), (6.2) and (6.6) remain unchanged. Equations (6.3), (6.4) and 

(6.5) are modified as follows.  

                                                                                                                   

                                                                                                                                      

and 

                                                                                                                            

Here   denotes social planner’s combined lump sum expenditure on 

public input and abatement activities; and the abatement expenditure is 

denoted by  . 

The relevant Hamiltonian to be maximized by the social planner at each 

point of time is given by 
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                                          . 

The state variables are   and  . The control variables are   ,   ,  ,   and  

 ; and    and    are two co-state variables. 

Maximizing   with respect to    and   , we obtain equations identical to 

(6A.1) and (6A.2). Now maximizing   with respect to  ,   and    we have 

  
  

  
      

  

   
   

  

  
      

  

   
  

  

  
                                                               

  
  

  
      

  

   
   

  

  
      

  

   
                                                                    

and 

  
  

  
     

  

 
  

  

  
     

  

   
                                                                                      

Using equations (6E.4) and (6E.5) we find that 

 
  

  
                                                                                                                                         

Using equations (6E.6) and (6E.7) we obtain the following. 

          
     

 

 

 
                                                                                                 

Also, along the optimum path, time behaviour of the co-state variables 

satisfies the followings. 

                 
  

  
  

  

 
      

  

  
  

  

 
   

   

  
                                                               

and 

          
  

  
           

  

 
  

  

  
           

  

 
   

   

  
                                

Using equations (6E.5) and (6E.8) we obtain the following equation. 

 
 

 
            

 

 
 
   

 
     

   

 
 
   

 
 

 

     

                                                    

From equation (6E.8) we obtain  
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From equations (6A.1) and (6A.2), we have 

           
   

  
   

   

  
 

   

  
                                                                                                               

Using equations (6E.7), (6E.8), (6E.9) and (6E.13) we obtain the 

following. 

         
   

  
 

   

  
 

 

 
         

    
   

 
 
 

 
 

 
 
     

                                                         

Again, using equations (6E.7), (6E.8), (6E.10) and (6E.13) we obtain the 

following. 

 
   

  
 

   

  
 

 

 
           

   

 
 
 

 
               

  
   

 
 
 

 
 

 
 
    

    

                                                                                                          

In the steady state growth equilibrium, 
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Assuming               and using equations (6E.11), (6E.12) and 

(6E.16) we obtain the following equation 

        
    

         
 

          
 
   

 
 
      

                                                                          

Again, using equations (6E.11), (6E.12) and (6E.15) we arrive at the 

following equation. 
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Equations (6E.20) and (6E.21) are same as equations (6.22) and (6.23) in 

section 6.5. 

We derive the Jacobian determinant of equations (6E.20) and (6E.21) 

where    and  
   

 
  are the two variables and arrive at the following. 

            
   

                
 

 
 
    

    
  

 

               
 

 

   

    
 

 
 
   

 
  

     

               
  

       
   

 
 

      

               
 
 

 
        

         
 

 
        

   

 
  

                    
 
        

 

 

   
 

 
 
   

 
 
 

      

 
   

 
 
   

         
         

 

          
      

     
 
   

 
 

      

     
  

  

The Jacobian determinant should be non-zero for the existence of a 

unique solution of    and  
   

 
 ; and this is true if 
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CHAPTER 7 

7. HUMAN CAPITAL ACCUMULATION AND 

ENDOGENOUS POLLUTION RATE 

 

7.1 INTRODUCTION  

In this chapter we develop two extensions to the basic model introducing 

human capital accumulation in both cases. The first extension done in section 

7.2 focuses on human capital accumulation jointly financed by private 

expenditure and public expenditure; and human capital here is used as a 

productive input like that in Lucas (1988), Rebelo (1991), etc. The second 

extension developed in section 7.3 emphasizes the role of human capital in the 

improvement of the stock of environmental quality when pollution rate is 

endogenous.  

Models of Lucas (1988), Rebelo (1991), Glomm and Ravikumar (2001), CL 

(2006), Agenor (2011), etc deal with the role of human capital on economic 

growth and these contributions are surveyed in chapter 1. However, none of 

these models deals with the problem of environmental pollution and its 

interconnections with human capital accumulation. Only HK (2005) considers 

human capital as a pollution free productive input in a dynamic model 

developed to explain the features of environmental Kuznet’s curve where 

pollution is a by-product of the final output and where pollution can be 

reduced only by sacrificing the use of physical capital from production. HK 

(2005), however, neither analyzes the problem of allocation of tax revenue to 

human capital accumulation nor analyzes the role of productive public 

expenditure on economic growth. 
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The objective of the present chapter is to fill the gap, i.e., to develop two 

models of endogenous economic growth with congestible public good which 

would enable us to analyze the properties of optimal fiscal policy in the 

presence of human capital accumulation and environmental pollution when 

each affects the other.  

 

7.2 PUBLIC EXPENDITURE ON HUMAN CAPITAL AND 

ENVIRONMENTAL POLLUTION 

This section develops the model where human capital accumulation is 

financed by private expenditure as well as by public expenditure and where 

human capital is used as a productive input. However, it does not affect 

environmental quality. This section is organized as follows. Subsection 7.2.1 

describes the model. Subsection 7.2.2 analyzes its dynamic equilibrium 

properties. Subsection 7.2.2.1 shows the possibility of existence of unique 

steady-state equilibrium growth path in the market economy; and subsection 

7.2.2.2 analyzes the properties of optimal fiscal policy along the steady-state 

equilibrium growth path.  

 

7.2.1 THE MODEL  

The human capital is used as a productive input to produce the final 

good. Human capital accumulation is financed by private expenditure and 

public expenditure. Government spends a part of its tax revenue on public 

education while the representative consumer spends a part of her disposable 

income on education. The rest of government’s tax revenue is spent on public 

infrastructure investment and on abatement activity. Productive public 

expenditure is considered to be a flow variable.  There is neither any role of 

health expenditure nor any informal sector in this model. 
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Following equations describe the model.   

                                                                                                          

                                                                                                                        

         
     

                                                                     

                                                                                                                        

                                                                                                                                      

                                                                                                                                          

                                                                                                                               

and 

      
    

   
                                                                                                                

Equation (7.2.1) describes the Cobb-Douglas production function of the 

final good.   is the level of output produced.   is the stock of physical capital 

and   is the stock of human capital. Elasticities of output with respect to 

physical capital and human capital are denoted by   and   respectively.   is 

the effective benefit derived from public input with its output elasticity being 

     .  

Equation (7.2.2) describes the nature of the combined effect of 

congestion and environment on the effectiveness of public productive input.  

Equation (7.2.3) describes the law of motion of human capital. The stock 

of human capital is augmented by expenditure made by the government on 

public educational amenities and by private educational spending.     is the 

part of tax revenue spent on human capital investment.    is expenditure that 

the representative consumer makes on education to augment human capital.   

and       are the appropriate elasticity parameters. CL (2006) and Agenor 

(2011) also consider public expenditure as an argument in the human capital 

accumulation function.  

Equation (7.2.4) describes the budget constraint of the household who 

allocates its post tax disposable income between consumption,  , education 
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expenditure,   , and savings (investment); and there is no depreciation of 

physical capital. 

Equation (4.3) is taken from chapter 4 and is interpreted similarly.  

Equation (7.2.5) shows how public productive input is financed.     is 

the part of total tax revenue that is spent on public input. Government budget 

constraint is described by equation (7.2.6). The left hand side of this equation 

stands for the sum of income shares on productive public input, public 

education and abatement while its right hand side represents the income tax 

rate.  

Equation (2.2.6) is borrowed from section 2.2 of chapter 2.  

 

7.2.2 DYNAMIC EQUILIBRIUM  

The representative household maximizes      
 

 
       with respect to C 

subject to equations (7.2.1), (7.2.3), (7.2.4) and (2.2.6). The demand rate of 

growth of consumption83 is derived from this maximizing problem as follows. 

 
  

 
 

 

 
         

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                                  

The steady-state growth equilibrium is defined as  

 
  

 
 

   

  
 

  

 
 

  

 
 

  

 
 

  

 
                                                                                                

 

7.2.2.1 Existence of Steady-State Growth Equilibrium 

We use equations (7.2.1) to (7.2.5), (4.3), (7.2.7) and (7.2.8) to obtain the 

following equations.  

 
 

 
         

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                               

                                                
83 The derivation is worked out in Appendix 7.2A. 
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and 

        
     

    
 

 
 

        

   
  

 
 

 
 

 

   
                                                                       

We solve for    using equations (7.2.9), (7.2.10) and (7.2.12) and obtain 

the following equation. 

   
  

  

               
               

             
    

         
          

          
 

   
  

         

                                                           
               

                  

                                                                                                                                                                                                   

The existence of unique steady-state equilibrium growth rate84 can be 

shown using equation (7.2.13) given  ,  ,    and   , under the condition that 

physical capital is socially productive, i.e.,             . Then equations 

(7.2.9) to (7.2.12) can be used to show that equilibrium values of 
 

 
, 
 

 
, 
  

 
 and 

 

 
 

are also uniquely determined in this case.  

 We can state the following proposition. 

Proposition 7.2.1: There exists unique positive steady-state 

equilibrium growth rate in the market economy only if the fiscal instruments 

satisfy               and             .  

 

7.2.2.2 Optimal Taxation 

We call taxes and expenditures to be optimal when they ensure growth 

rate maximization at the steady-state growth equilibrium in a decentralized 

                                                
84 The complete derivation is shown in Appendix 7.2B. 
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economy85 . The government maximizes the steady-state equilibrium growth 

rate given by equation (7.2.13) with respect to fiscal instruments,  ,  ,    and 

  . We obtain following expressions of these four fiscal instruments when they 

are chosen optimally86.           

                                                                                      

                                                                                                            

   
                                                                                                                

and  

   
                                                                                                                            

Using equations (7.2.14) and (7.2.15), we have 

                                                                                                                                            

These are interpreted as follows. To ensure that the growth rate is non-

negative deterioration of environmental quality due to pollution is neutralized 

by allocating   fraction of the total output to abatement expenditure. The 

optimum net abatement expenditure rate is then       ; and            

   is the competitive unpolluted output share of environmental quality. So 

equation (7.2.15) implies that the optimum net abatement expenditure rate is 

equal to the competitive share of environmental input in the unpolluted output. 

Equation (7.2.6) shows that           
    

  is the optimum ratio of net 

aggregate public expenditure to national income where net aggregate public 

expenditure consists of expenditure on productive public input and educational 

expenditure. Similarly,                 is the sum of the competitive 

unpolluted output shares of productive public input and public expenditure on 

human capital. So the ratio of net optimum aggregate expenditure to national 

income is equal to the aggregate of the competitive shares of each of these 

public inputs in the unpolluted output. If     and    , then equation 

(7.2.18) is identical to equation (2.2.15). If      , we get back the result 

                                                
85 This tax system may not implement the Ramsey optimum solution in the decentralized economy.  
86 The detailed derivation is worked out in Appendix 7.2 C. 
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obtained in models of Barro (1990), FMS (1993), etc. If    , we find, from 

equation (7.2.18), that         varies positively with  . Here   represents the 

elasticity of human capital accumulation with respect to public expenditure on 

education.  

We now examine whether growth rate maximizing solution also achieves 

maximum social welfare in the steady-state equilibrium. Using equations 

(7.2.9), (7.2.11) and (7.2B.7) and assuming that the economy is on the steady-

state equilibrium growth path, it can be shown that 

   
 

 
                   

                                                                              

We do not assume human capital to affect utility of the household. 

Therefore, the social welfare function is identical to that in the basic model in 

section 2.2 of chapter 2. It can be shown87 that  

       
       

   
 
            
         

               
                                                    

 , in this extension too, varies positively with   . If    , then equation 

(7.2.20) is identical to equation (2.2.16) obtained in chapter 2. 

Thus the level of social welfare in the steady-state growth equilibrium is 

maximized whenever the steady-state equilibrium growth rate is maximized88. 

We now can state the following proposition. 

Proposition 7.2.2: (i) The optimum income tax rate, the optimum 

abatement expenditure rate and the optimum rates of public expenditure on 

productive public input and human capital, in the steady-state growth 

equilibrium, are given by 

                             ; 

                      

   
                

                                                
87 The detailed derivation is worked out in Appendix 7.2D. 
88  As with analysis of the basic model in chapter 2, here too, we abstain from analyzing social welfare 

maximization along the transitional path. 
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and 

   
         . 

(ii) The optimum ratio of combined net public expenditure on productive 

public input and on human capital to national income in the steady-state 

equilibrium is equal to the combined competitive unpolluted output share of 

public input and public expenditure financed human capital; and hence this 

optimum ratio varies inversely with the magnitude of the pollution-output 

coefficient and directly with the coefficient representing elasticity coefficient of 

human capital accumulation with respect to public expenditure on education.  

The optimal income tax rate derived here is less than that obtained in 

section 2.2 of chapter 2. The productivity of public intermediate input is less in 

this model than that in section 2.2 of chapter 2 because              . 

Human capital accumulation technology requires both public input and private 

input. Thus investment in human capital is not financed by government fund 

alone. The optimal abatement expenditure rate and the optimal share of tax 

expenditure on public intermediate input are less than their corresponding 

values in section 2.2 of chapter 2 due to lower productivity of public input in 

this model. 

 

7.3 HUMAN CAPITAL ACCUMULATION AND ENDOGENOUS 

POLLUTION RATE  

This section develops an alternative extension of the basic model which 

emphasizes the role of human capital on the improvement of environmental 

quality when pollution rate is endogenously determined. Human capital is 

assumed to be a productive input in the final good production in this model 

like that in the model developed in section 7.2. However, accumulation of 

human capital is now wholly funded by private spending. Here also 
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environmental quality is considered to be a stock variable which deteriorates 

over time with pollution caused from the production of the final good and is 

improved by the abatement activities of the government. However, the pollution 

rate per unit of output is assumed to be endogenous in this model; and this 

rate varies positively with the stock of human capital and inversely with the 

stock of physical capital89.  

The following subsections are organized as follows. Subsection 7.3.1 

describes the basic model. Subsection 7.3.2 analyzes its dynamic equilibrium 

properties. Subsection 7.3.2.1 shows the possibility of the existence of unique 

steady-state equilibrium growth path in the market economy; and subsection 

7.3.2.2 analyzes properties of optimal fiscal policy along the steady-state 

equilibrium path.  

 

7.3.1 THE MODEL  

Following equations describe the model. Equations (7.2.1), (7.2.2) and 

(7.2.4) of section 7.2.1 remain unchanged and so does equation (2.2.6) taken 

from chapter 2. The rest of the equations describing the model in this section 

are shown below.  

                                                                                                          

                                                                                                                                             

and 

          
                                                                                                                

                                                
89 Generation of pollution is traced to usage of capital by various authors. The literature includes works of 

Bertinelli, Strobl and Zou (2008), Itaya (2008), Benarroch and Weder (2006), Hartman and Kwon (2005), Cassou 

and Hamilton (2004), Hart (2004), Oueslati (2002), Byrne (1997), Elbasha and Roe (1996), Smulders and Gradus 

(1996), Mohtadi (1996), Bovenberg and Smulders (1995), etc. Only Hartman and Kwon (2005) consider physical 

capital that is used to reduce pollution while Grimaud and Tournemaine (2007) consider knowledge as an input in 

pollution abatement. Gürlük (2009) empirically justifies the hypothesis that there is a significant non-linear 

relationship between modified human development index and biological oxygen demand in the Mediterranean 

countries implying that increased investments in education and health infrastructure produce valuable human 

capital that is less pollution intensive than physical capital as productive input. However, none of these models 

treats pollution rate to be endogenously determined by physical capital nor by human capital; pollution is 

considered to be an exogenous by-product of either production or physical capital. 
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Equation (7.3.1) shows how productive public input is financed. A part of 

the total tax revenue is spent on public input.   is the proportional income tax 

rate and   is the abatement expenditure rate.       is the expenditure rate on 

public input. If     , from equations (7.2.5) and (7.2.6), we obtain equation 

(7.3.1).  

Equation (7.3.2) describes how the stock of human capital grows over 

time. It is a linear function of private expenditure on education only. This 

equation (7.3.2) is a special case of equation (7.2.3) when    . 

Equation (7.3.3) shows how environmental quality changes over time. We 

assume the rate of emission to be endogenous and to depend on stocks of 

private physical capital and human capital. Emission rate increases with 

increase in physical capital stock and is reduced by an increase in human 

capital stock. An educated individual chooses less polluting technologies or 

less-polluting inputs in production. On the other hand, heavier physical capital 

usage has been found to be pollution intensive 90 .    is an exogenous 

parameter.  

 

7.3.2 DYNAMIC EQUILIBRIUM  

The representative household maximizes      
 

 
       with respect to C 

subject to equations (7.2.1), (7.2.4) and (7.3.2). The demand rate of growth of 

consumption91 is derived from this maximizing problem as follows. 

 
  

 
 

 

 
            

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                      

We consider a steady-state growth equilibrium where all macroeconomic 

variables grow at the same rate,   . Hence, we have  

                                                
90 We assume no R&D sector which uses both physical capital and human capital as inputs. Hence we assume 

away non-polluting usage of private physical capital when it is used as input only in final good production. For 

example, Aloi and Tournemaine (2011), Grimaud and Tournemaine (2007), Ricci (2004), etc., treat R&D activity as 

clean and non pollution-generating in their models. 
91 The derivation is shown in Appendix 7.3A. 



231 
 

 
  

 
 

  

 
 

  

 
 

  

 
 

  

 
                                                                                                          

 

7.3.2.1 Existence Of Steady-State Growth Equilibrium 

We now turn to show the existence of unique steady state equilibrium 

growth rate in the market economy; and so we use equations (7.2.1), (7.2.2), 

(7.2.4), (7.3.1), (7.3.2), (7.3.3), (7.3.4) and (7.3.5) to obtain the following 

equations.  

 
 

 
            

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                     

 
  

 
  

  

 
  

 

 
 
  

                                                                                                              

           
     

    
 

 
 

        

   
 
 

 
 

 

   
 

 

 
 

  

 
                                                  

and 

       
 

 
 
  

      
     

    
 

 
 

        

   
  

 
 

 
 

 

   
                                                

Using equations (7.3.6), (7.3.7) and (7.3.9) we obtain the following 

equation92 to solve for   . 

          
            

               
 

 
 
  

  
 

 
 
 
     

 

         
            

          

                                                                                                             

The existence of unique steady-state equilibrium growth rate can be 

shown given income tax rate,  , and abatement expenditure rate,  , with 

        and      
 

 
 
  

. Then equations (7.3.6), (7.3.7), (7.3.8) and (7.3.9) 

show that equilibrium values of 
 

 
, 
 

 
, 
  

 
 and 

 

 
 are also unique in this case.  

 We can state the following proposition. 

                                                
92 Derivation of equation (7.3.10) is worked out in Appendix 7.3B. 
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Proposition 7.3.1: There exists unique positive steady-state 

equilibrium growth rate in the market economy only if the fiscal instruments 

satisfy         and      
 

 
 
  

.  

 

7.3.2.2 Optimal Fiscal Policy 

Maximizing the steady-state equilibrium growth rate with respect to the 

fiscal instrument rates,   and  , we obtain following expressions of optimum 

tax rate and abatement expenditure rate.           

                     
 

 
 
 

                                                                         

and 

                
 

 
 
 

       
 

 
 
 

                                                                          

Using equations (7.3.11) and (7.3.12), we have 

               
 

 
 
 

                                                                                  

The growth rate maximizing tax rate is equal to the sum of competitive 

unpolluted output shares of productive public input and abatement 

expenditure. The abatement expenditure rate is equal to the sum of competitive 

unpolluted output share of environmental quality and a fraction    
 

 
 
 

, which 

is the effective pollution rate adjusted for the cumulative effect of human 

capital and physical capital on total pollution. The fraction    
 

 
 
 

 signifies the 

non-productive use of abatement expenditure; because it is used to negate the 

effect of pollution on environmental quality. If    , then    
 

 
 
 

   . So the 

effective pollution rate is constant. Models developed in chapters 2 to 6 assume 

   . The growth rate maximizing tax rate varies positively with the pollution 

parameter   . Also, the share of unpolluted output now varies inversely not 
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only with the pollution parameter,   , but also with the parameter  . This 

means that the value of   is higher whenever human capital, per unit of 

physical capital, is more effective in reducing pollution. Hence, this implies that 

the fraction of unpolluted output available to allocate to productive uses, i.e., 

to public productive input and to augment environmental quality, is higher 

whenever the value of   is higher.  

We now examine whether steady-state equilibrium growth rate 

maximizing solution is identical to social welfare maximizing solution in the 

steady-state equilibrium.  

 Using equations (7.3.6), (7.3.8) and (7.3B.7) and assuming that the 

economy is on the steady-state equilibrium growth path, we have  

   
 

 
                  

                                                                                 

Here too, the social welfare function is identical to that in the basic 

model in section 2.2. It can be shown93 that  

       
       

   
 
           
         

              
                                                         

Hence,  , in this extended model also varies positively with   . 

Thus the level of social welfare in the steady-state growth equilibrium is 

maximized whenever the steady-state equilibrium growth rate is maximized94. 

We can now state the following proposition. 

Proposition 7.3.2: (i) The optimum income tax rate, the optimum 

abatement expenditure rate and the optimum rate of productive public 

expenditure in the steady-state growth equilibrium are given by 

           
 

 
 
 

               , 

       
 

 
 
 

       
 

 
 
 

            

                                                
93 The derivation is worked out in Appendix 7.3D. 
94 We abstain from analyzing social welfare maximization along the transitional path. 
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and 

             
 

 
 
 

        . 

(ii) The optimum ratio of net public expenditure on productive public 

input to national income in the steady-state equilibrium is equal to the 

competitive unpolluted output share of public input; and hence this optimum 

ratio varies inversely with the magnitude of the parameter representing the 

pollution elasticity with respect to the ratio of human capital to physical 

capital.  

The optimal income tax rate  derived in this model is less than that 

obtained in section 2.2 of chapter 2 if      
 

 
 
 

. Here also productivity of 

public intermediate good is less and accumulation of human capital is fully 

financed by private households. Under the same parametric restriction on 

pollution rate, the optimal abatement expenditure rate and the optimal share of 

expenditure on public intermediate good are also less than their corresponding 

values in section 2.2 of chapter 2.  

 

APPENDIX 7.2A 

DERIVATION OF EQUATION (7.2.7) IN SECTION 7.2.2: 

 The dynamic optimization problem of the representative household is to 

maximize      
    

   

 

 
   with respect to   subject to equation (7.2.4) and given 

    . Here   is the control variable satisfying           ; and   is the state 

variable. 

The Hamiltonian to be maximized at each point of time is given by 

      
    

   
                                 

     
    . 
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Here    and    are the co-state variables representing the shadow price 

of physical capital investment and the shadow price of human capital. 

Maximizing the Hamiltonian with respect to   and    and assuming an interior 

solution, we obtain 

                                                                                                                                       

and 

 
  

  
       

     
                                                                                                             

Using equations (7.2.1), (7.2.2), (7.2.5) and (7.2A.2) we have 

 
  

  
    

   
  

     

   
 
 
 

 
 
  

        

   
 

 
 

 
 

  

   
 
  

 
 
  

                                                     

Also the optimum time paths of    and    satisfy the followings. 

 
   

  
                                                                                                       

and 

 
   

  
   

  

  
                                                                                               

Using equations (7.2.1), (7.2.2), (7.2.5) and (7.2A.4) we have 

 
   

  
           

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                               

Similarly, using equations (7.2.1), (7.2.2), (7.2.5), (7.2A.3) and (7.2A.5) 

we have 

 
   

  
            

   
 
     

   
      

 
 

 
 

             

   
 
 

 
 

    

   
 
  

 
 
  

  

                                                                                                            

 Using the two optimality conditions (7.2A.1) and (7.2A.6), we have 

 
  

 
 

 

 
         

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                             

This is same as equation (7.2.7). 
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APPENDIX 7.2B 

DERIVATION OF EQUATION (7.2.13) IN SECTION 7.2.2.1 

Using equations (7.2.1) to (7.2.5), (4.3), (7.2.7) and (7.2.8) we have the 

following equations. 

    
  

 
 

 

 
         

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                

    
  

 
   

   
  

     

   
 
 
 

 
 
  

        

   
 

 
 

 
 

  

   
  

 
  

 
 
   

                                       

    
  

 
        

     

    
 

 
 

        

   
 
 

 
 

 

   
 

 

 
 

  

 
                                             

and 

    
  

 
        

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                               

From equation (7.2B.1) we have, 

  
 

 
 

        

   
  

     

      
   

 
     

    
 

 
 
 

 

   
                                                                       

At the steady-state equilibrium the ratios 
 

 
, 
 

 
 and 

  

 
 are constants; and 

so are the policy variables. Hence 
  

  
 in equation (7.2A.3) is also constant.  

Thus  

 
   

  
 

   

  
                                                                                                                                     

Using equations (7.2B.2), (7.2B.5), (7.2A.7) and (7.2B.6) we derive the 

following equation. 

 
  

 
 

  

 
                                                                                                                                

Using equations (7.2B.2), (7.2B.5) and (7.2B.7) we get 
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Thus, using equations (7.2B.5) and (7.2B.8) we get 

 
 

 
  

  

 
 
 

      

        
  

 
  

          
 
 

  
     

      
 

      

        
  

  

                                         

Now, using equations (7.2B.4), (7.2B.8) and (7.2B.9) we get  

           
     

     
  

 
 
 

      

        
  

 
  

          
 
 

  
     

      
 

      

          

           
  

         

        

   

  
  

 
 
   

  
  

     

      
 
 

  
   

 

   

, 

or, 

   
  

  

               
               

             
    

         
          

          
 

   
  

         

                                                          
               

                

                                                                                                             

This is same as equation (7.2.13). 

 

APPENDIX 7.2C 

DERIVATION OF EQUATIONS (7.2.14) TO (7.2.17) AND THE SECOND ORDER 

CONDITIONS IN SECTION 7.2.2.2: 

We denote the L.H.S. and the R.H.S. of equation (7.2.13) by L.H.S.(7.2.13) 

and R.H.S.(7.2.13) respectively. Maximizing the R.H.S. of equation (7.2.13) with 

respect to   and using equation (7.2.6), we obtain the following first order 

condition. 

                
 

 
  

   
               

        
            

or,      
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Maximizing the R.H.S. of equation (7.2.13) with respect to   and using 

equation (7.2.6), we obtain the following first order condition. 

                
 

 
  

                      

or, 

 
 

 
  

                                                                                                                        

Maximizing the R.H.S. of equation (7.2.13) with respect to    and using 

equation (7.2.6), we obtain the following first order condition. 

                 
 

 
  

   
  

        
  

       

or,      

 
 

 
  

   
  

        
  

                                                                                                         

Using equations (7.2C.1), (7.2C.2), (7.2C.3) and (7.2.6) we obtain the 

following expressions.  

                                                                                    

                                                                                                           

   
                                                                                                               

and  

   
                                                                                                                           

These are same as equations (7.2.14), (7.2.15), (7.2.16) and (7.2.17) in 

the section 7.2.2.2. 

To check the second order conditions for optimality we twice differentiate 

equation (7.2.13), with respect to  ,   and    respectively. At the equilibrium 

point                               . We arrive at the following three second order 

conditions. 
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         ; 

      
  

        
   

    
               

        
              

   

  
 
 

 

      
  

        
   

    
               

        
            

 

 
   

  
 
 

 

      
  

        
   

    
               

        
            

    

   
 

   
 

 
  

           
 

  
 

 
  

           ;                   

and 

      
  

        
   

    
               

        
              

   

   
 
 

 

      
  

        
   

    
               

        
            

 

 
   

   
 
 

 

      
  

        
   

    
               

        
            

    

     

   
 

 
  

    
  

        
   

   
 

  
 

 
  

    
  

        
   

   .                   

Now we evaluate the above two second order conditions at     ,      

and      
  where 

   

  
  

   

  
 

   

   
   at the optimum, using equations 

(7.2C.1), (7.2C.2) and (7.2C.3). Hence we obtain the followings. 

     
  

        
   

    
               

        
            

    

   
 

     
 

 
   

    
               

        
         ;                                                                                                                                 
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           ;                   

and 

     
  

        
   

    
               

        
            

    

    
 

   
 

 
  

    
  

        
   

   .  

    
  

        
   

    
               

        
               and the R.H.S. of 

each of these three equations is negative. Hence the sign of both the second 

order derivatives is negative. 

 

APPENDIX 7.2D 

DERIVATION OF EQUATION (7.2.19) IN SECTION 7.2.2.2 

Here the social welfare functional is given by            
 

 
  . From 

equation (7.2.9), we have 

         
     

    
 

 
 

        

   
 
 

 
 

 

   
 

     

 
                                                               

Using equations (7.2.11), (7.2B.7) and (7.2D.1), we have 

 
 

 
 

     

 
 

  

 
      

 

 
                                                              

At the steady state equilibrium,           ; where      is the initial 

value of  . Thus equation (7.2D.2) can be written as 

   
 

 
                   

                                                                            

Using equations (2.2.6) and (7.2D.3) and the social welfare functional we 

have 
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or, 

   
         

         
              

                 
 

 
    

For convergence we assume            . Thus, 

   
         

         
              

              
                                    

or, 

       
         

   
 
            

         
               

                                   

This is same as equation (7.2.19). 

We can show that the social welfare functional given by (7.2D.4) is an 

increasing function of   . 

Case 1a:     and       . In this case the social welfare functional 

given by equation (7.2D.4) is unambiguously increasing in the growth rate,   . 

Case 1b:     and       . In this case, since       ,  the effect of 

an increase in    on the denominator of the term  
            

         
                    

dominates that on the numerator. Hence,  
            

         
  increases as    

increases and so does               
  . Thus, the social welfare 

functional, alternatively given by equation (7.2D.4’), increases with the growth 

rate. 

Case 2:     and         . In this case, 
                              

   
 

term in equation (7.2D.4) is an increasing function of    as    . Therefore, in 

this case too, the social welfare function increases with the growth rate. 
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APPENDIX 7.3A 

DERIVATION OF EQUATION (7.3.4) IN SECTION 7.3.2 

 The dynamic optimization problem of the representative household is to 

maximize      
    

   

 

 
   with respect to   subject to equation (7.2.4) and given 

    . Here   is the control variable satisfying           ; and   is the state 

variable. 

The Hamiltonian to be maximized at each point of time is given by 

      
    

   
                               . 

Here    and    are the co-state variables representing the shadow price 

of physical capital investment and the shadow price of human capital. 

Maximizing the Hamiltonian with respect to   and    and assuming an interior 

solution, we obtain 

                                                                                                                                       

and 

 
  

  
                                                                                                                                        

Also the optimum time paths of    and    satisfy the followings. 

 
   

  
                                                                                                       

and 

 
   

  
   

  

  
                                                                                               

Using equations (7.2.1), (7.2.2), (7.3.1) and (7.3A.3) we have 

 
   

  
              

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                     

Similarly, using equations (7.2.1), (7.2.2), (7.3.1), (7.3A.2) and (7.3A.4) 

we have 
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Using the two optimality conditions (7.3A.1) and (7.3A.5), we have 

 
  

 
 

 

 
            

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                    

which is same as equation (7.3.4). 

 

APPENDIX 7.3B 

DERIVATION OF EQUATION (7.3.10) IN SECTION 7.3.2.1 

Using equations (7.2.1), (7.2.2), (7.2.4), (7.3.1), (7.3.2), (7.3.3), (7.3.4) and 

(7.3.5) we have the following equations. 

    
  

 
 

 

 
            

     

    
 

 
 

        

   
 
 

 
 

 

   
                                       

    
  

 
  

  

 
  

 

 
 
  

                                                                                                         

    
  

 
           

     

    
 

 
 

        

   
 
 

 
 

 

   
 

 

 
 

  

 
                                   

and 

    
  

 
           

     

    
 

 
 

        

   
 
 

 
 

 

   
                                                     

From equation (7.3B.1) we have, 

  
 

 
 

        

   
  

     

      
      

 
     

    
 

 
 
 

 

   
                                                              

Using equations (7.3A.1), (7.3A.2), (7.3A.6) and (7.3B.1) we get 

 

 
 

 

 
                                                                                                                                           

Using equations (7.3B.2) and (7.3B.6) we derive the following equation. 
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Thus, using equations (7.3B.5) and (7.3B.6) we get 

 
 

 
  

 

 
 
 

 

        
 
     

    
     

      
                                                                                 

Now, using equations (7.3B.4), (7.3B.6) and (7.3B.8) we get  

              
     

      
 

 
 
 

 

        
 
     

    
     

      
   

        

   

 
 

 
 

 

   
, 

or, 

          
            

          
 

 
 
 

      
 

 
 
  

      
 

         
            

         

                                                                                                            

This is same as equation (7.3.10). 

 

APPENDIX 7.3C 

DERIVATION OF EQUATIONS (7.3.11) AND (7.3.12) AND THE SECOND 

ORDER CONDITIONS IN SECTION 7.3.2.2: 

We denote the L.H.S. and the R.H.S. of equation (7.3.10) by L.H.S.(7.3.10) 

and R.H.S.(7.3.10) respectively. Maximizing the R.H.S. of equation (7.3.10) with 

respect to  , we obtain the following first order condition. 

                
 

 
        

            

        
            

or,      

 
 

 
        

            

        
                                                                                  

Maximizing the R.H.S. of equation (7.3.10) with respect to  , we obtain 

the following first order condition. 
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or, 

 
 

 
              

 

 
 
  

 
  

                                                                                      

Using equations (7.3C.1) and (7.3C.2) we obtain the following 

expressions.  

            
 

 
 
 

                                                                       

and 

       
 

 
 
 

       
 

 
 
 

                                                                        

These are same as equations (7.3.11) and (7.3.12) in section 7.3.2.2. 

To check the second order conditions for optimality we twice differentiate 

equation (7.3.10), with respect to   and   respectively. At the equilibrium point 

                              . We arrive at the following two second order 

conditions. 

     
    

            

        
              

   

  
 
 

 

     
    

            

        
            

 

 
   

  
 
 

 

     
    

            

        
            

    

   
 

   
 

 
        

            

        
        

 

 

       
 

 
          

            

        
         ; 

and  
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 .                  

Now we evaluate the above two second order conditions using equations 

(7.3C.1) and (7.3C.2) at      and      where 
   

  
  

   

  
   at the optimum. 

Hence we obtain the followings. 

    
    

            

        
            

    

   
 

     
 

 
          

            

        
         ;         

and                                                                                                                          

    
    

            

        
            

    

   
 

   
 

 
              

 

 
 
  

 
  

 ;                   

   
    

            

        
                

The R.H.S. of each of these two equations is negative. Hence the sign of 

both the second order derivatives is negative. 

 

APPENDIX 7.3D 

DERIVATION OF EQUATION (7.3.15) IN SECTION 7.3.2.2 

Here the social welfare functional is given by            
 

 
  . From 

equation (7.3.6), we have 

            
     

    
 

 
 

        

   
 
 

 
 

 

   
 

     

 
                                                     

Using equations (7.3.8), (7.3B.7) and (7.3D.1), we have 
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At the steady state equilibrium,           ; where      is the initial 

value of  . Thus equation (7.3D.2) can be written as 

   
 

 
                  

                                                                        

Using equations (2.2.6) and (7.3D.3) and the social welfare functional we 

have 

        
                                  

         

 

 
    

or, 

   
         

         
             

                  

 
    

For convergence we assume            . Thus, 

   
         

         
             

              
                               

or, 

       
         

   
 
           

         
              

                                 

This is same as equation (7.3.15). 

We can show that the social welfare functional given by (7.3D.4) is an 

increasing function of   . 

Case 1a:     and      . In this case the social welfare functional 

given by equation (7.3D.4) is unambiguously increasing in the growth rate,   . 

Case 1b:     and      . In this case, since      ,  the effect of 

an increase in    on the denominator of the term 

 
           

         
                     dominates that on the numerator. Hence, 

 
           

         
  increases as    increases and so does              

  . Thus, 

the social welfare functional, alternatively given by equation (7.3D.4’), increases 

with the growth rate. 
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Case 2:     and        . In this case, 
                             

   
 

term in equation (7.3D.4) is an increasing function of    as    . Therefore, in 

this case too, the social welfare function increases with the growth rate. 
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