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Abstract

In this thesis we consider situations where heterogenous objects are to be distributed among a set
of claimants. The objects in question are indivisible, so they cannot be split or shared. There is no
money in this economy, so objects cannot be simply bought and sold. Allocations to claimants must
be based on their preferences over objects alone. We impose the additional restriction that each
object has an exact capacity constraint, such that each object is assigned either to a pre-specified
(and fixed) number of agents, or it is not assigned at all. Further, we assume that the capacity
constraint is the same for all objects. We call such a situation an allocation problem.

In Chapter 2 we consider the case where the exact capacity constraint is of size 2. Thus agents
must be divided into pairs. Our quest is to find efficient rules in the framework. We propose a rule
which we call the Partner Trading (PT) Rule, and show that it characterises the set of all rules in
this model that satisfy the standard properties of strategy-proofness, limited influence, unanimity
and neutrality. It is also group-strategy-proof and Pareto efficient. The PT rule can be thought of
as a generalisation of the famous top trading cycles procedure to this particular environment.

In Chapter 3 we consider fair rules in this framework. We extend the exact capacity constraints
to be of any size. We demonstrate that the well-known incompatibility between fairness and Pareto
efficiency persists in this model too. We propose a rule which we call the Deferred Acceptance
with Improvements (DAI) rule, which is fair and constrained efficient. We also identify a Pareto
improvement procedure that always leads us to a fair and constrained efficient allocation in one
iteration. We show, however, that the DAI rule is not strategy-proof.

In Chapter 4 we study group-strategy-proofness, which is the extension of strategy-proofness
to groups of agents. This property comes in a standard form and a weak form. The distinction
between the two forms is non-trivial as important rules in the literature fail the standard form but
satisfy the weak form. It is well-known that in allocation models such as ours, a strategy-proof rule
that is also non-bossy is (standard) group-strategy-proof. But the link between strategy-proofness
and weak group-strategy-proofness is not as well established. We make steps towards this in this
paper. We identify conditions (which we call ultra-weak Maskin monotonicity and weak non-
bossiness) that are sufficient to ensure that a strategy-proof rule is weakly group-strategy-proof.
These conditions are natural weaker forms of commonly used axioms in the literature. We also
demonstrate that the conditions are ‘weak enough’, in that a rule satisfying them may not be
(standard) group-strategy-proof.

i



Acknowledgements

I would like to express my sincere gratitude to everyone who has helped me over the past few years.
The PhD is a long and difficult journey, and one I could not have completed alone.

First and foremost, I would like to thank Prof Arunava Sen for being the supervisor every PhD
candidate wishes for. He has been patient above all else. He indulged me in my fickleness and
inability to stick to a subject, especially in the early years. He has been firm when I have needed
him to be, which is often. He has provided incisive guidance in crucial moments, finding clarity
where I couldn’t. If there is anything of merit in these pages, it is because of him.

I would also like to thank Prof Debasis Mishra for being a pillar of support through the entire
process. The reading groups organised by Prof Sen and him were invaluable in keeping us up-
to-date with recent theoretical developments, and keeping me focused on research. His insightful
comments and feedback on previous iterations of the papers in the thesis have been influential in
their improvement. My debt to him is immense.

The faculty and administration at the ISI, Delhi, also deserve special mention. Profs Satya
Das, Chetan Ghate, Abhiroop Mukhopadhyay, Bharat Ramaswami, Tridip Ray, E Somanathan and
others have made us all feel like we belong, first as teachers and later as sources of encouragement.
Behind the scenes, Mrs Niranjana Gupta and the kind folk in the accounts department ensured
that the monthly stipends kept coming. Deepmala in the department office has cheerfully borne
the brunt of all our paperwork. The library staff have often gone out of their way to help. The
scholarships and travel support received from the ISI are also gratefully acknowledged.

My colleagues in the PhD programme have been compatriots in crime, in the sharing of joys
and misery equally. Abdul Quadir, Anup Pramanik, Mihir Bhattacharya, Mridu Goswami, Sonal
Yadav, Soumendu Sarkar, in particular, this would not have been possible without them.

Aditya Wig should be able to see reflections of himself in every page of this thesis. Many
arguments in here are the end products of long and late-night discussions over cold-coffee and
worse. He has brought a level head to both my excitement at breakthroughs and surliness at
roadblocks. I am especially grateful for the recent commonality in our cause.

No acknowledgement of help received can be complete without a profuse thanks to my family.
Ma and Baba, especially, firstly for gently guiding me into doing a PhD in the first place and
then for keeping me firmly bound to it when I would have rather been doing almost anything else.
My brother Sharad’s equanimity in the face of any obstacle has been an inspiration for someone
like me who continually imagines obstacles in his way. My aunts and uncles have provided much
encouragement. Chandra Attai, in particular, thank you for your unshakeable conviction that I
could do this, even when I didn’t believe it myself. My grandmothers have found it hard to contain
their love, and I have been the lucky recipient of many a spillover. And Poto, our ageing Labrador,
whose patient company has been a daily comfort.

There have been many others - friends, teachers, family - who have left an indelible mark on
this journey in their own particular ways. I thank them all. I am also grateful to two anonymous
examiners for their comments on this thesis.

And yet, despite the overwhelming and unconditional support that I have been fortunate to
receive, writing the thesis has often been a lonely process. I am grateful for the strength to deal
with isolation and solitude long enough to have done it.

Madhav Raghavan

July 2014 (Updated: July 2015)



For Anna and Thatha, who should have been here to see it



Contents

1 Introduction 1
1.1 Allocation Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 No Money, More Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 What We Look For in a Good Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Summary of Chapters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Efficient Pairwise Allocation via Priority Trading 10
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 An Informal Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 Partner Trading Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.6 A Detailed Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.7 Features of the PT Rule and Special Cases . . . . . . . . . . . . . . . . . . . . . . . 28
2.8 Axioms for Pairwise Project Allocation Rules . . . . . . . . . . . . . . . . . . . . . . 30
2.9 Characterisation Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.11 Appendix: Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Fair Allocation with Exact Capacity Constraints 44
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.2 The Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 An Informal Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.5 Properties of Allocation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.6 Pareto Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.7 Deferred Acceptance with Improvements . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.8 Strategic Aspects of the DAI Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.10 Appendix A: Proof of Theorem 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Sufficient Conditions for Weak Group-Strategy-Proofness 67
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.3 Standard Strategy-Proofness Properties . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Strategy-Proof Rules and their Group-Strategy-Proofness . . . . . . . . . . . . . . . 71
4.5 Weaker Conditions on Allocation Rules . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5 Bibliography 80

iv



1

Introduction

1.1 Allocation Problems

Consider a situation where heterogenous objects are to be distributed among a set of claimants.
The objects in question are indivisible, so they cannot be split or shared. Different claimants may
want different objects and there is a limited supply of them. What’s more, there is no money in
this economy, so objects cannot be simply bought and sold.

We shall call such a situation an allocation problem. Examples abound in real life. For instance,
a teacher in a school may wish to assign projects to his or her students. Each student may get one
project or many students may share projects, but there is no buying or selling involved. Similarly, a
manager may wish to assign tasks to his or her workers. A task is not assigned by money changing
hands, however much the worker eventually might be paid for completing it. The same is true
of a school that wishes to offer a selection of courses to its students. It must determine which
students get to attend which course, particularly when there is large demand for some of them.
This determination however does not depend on the ‘price’ of a course.

When we look around, a surprisingly wide class of other problems can be considered in this
light. In a wholly different context, the problem of determining kidney donations for transplants is
also an allocation problem. It is ethically questionable to buy or sell human organs. Yet there is a
need for kidneys for transplants. How is this need met? Hospitals usually have a organ bank, which
is built up over time via donations by ‘good Samaritans’, or the will of the deceased. Sometimes
it may even be possible for couples to trade kidneys, provided they are compatible. Once kidneys
become available, though, the question remains as to how to assign them among claimants.

Or take college admissions. Around the world, the assignment of college seats to students takes
place on considerations of merit or other criteria. Usually students become eligible for seats via
a competitive examination, and their relative grades determine the success of their application.
Related to this is the matching problem faced by hospitals and medical residents. Hospitals wish
to secure the best residents, while graduating medical students wish to apply to the best hospitals
for their residency requirements. Any centralised matching process to deal with these situations
becomes a solution to an allocation problem.

Another interpretation of allocation problems is that of matching people with other people.
The classical example is called the marriage market. This is the problem of matching men and
women with each other based on how much they desire to be together. Similarly, the so-called
roommate problem is one of pairing tenants with each other. In these contexts, speed dating
programs, online matrimony web sites and housing forums make their money essentially by solving
allocation problems.

1.2 No Money, More Problem

There are two key features common to the situations above. The first is the idea of a centralised
planner or designer. Many of these transactions could take place at an individual level. But there is
also a coordination benefit to centralisation, especially in terms of the proper use of scarce resources.

1



CHAPTER 1. INTRODUCTION

For instance, there is no point for a school to have empty seats if there are students in another
neighbourhood that need them. A centralised process could allocate spare seats more efficiently
than schools doing it by themselves.

The second common feature is the absence of monetary compensation. The normal practices of
setting a price or conducting negotiations or selling to the highest bidder do not generally work here.
Instead, allocations have to be made using criteria that have to do with entitlements or notions of
‘deservingness’. These criteria are usually distilled into the form of relative ‘rights’, ‘priorities’ or
‘entitlements’ that individuals have over different objects or vice versa.

For example, in the college admissions setting, students compete for colleges on the basis of
grades obtained in school-leaving examinations, and in some cases may receive bonuses for other
criteria such as living in the same neighbourhood as the college, or having a sibling attend the
same college, and so on. Students with higher grades or those that better meet the requirements
stand a better chance of admission. In the problem of allocating office space to faculty, rooms are
usually assigned with reference to seniority. Elsewhere, office tasks are assigned to workers based on
measures of their competence. Courses are assigned to students based on completion of prerequisite
courses or on CGPA. In each case, the set of criteria used to differentiate between claimants can
be collapsed into a ranking over the claimants involved, with higher-ranked people said to be more
eligible for the respective object.

The kidney exchange market, while more complicated in theory and practice, also essentially
operates on the notion of priority. Because kidneys are generally more scarce than patients needing
them, there is often a lengthy waiting list. A kidney that becomes available goes preferentially
to patients who are higher on the list. Thus priorities can also take the form of a queue, where
allocations are made on a first-come-first-served basis.

Each problem is different and has its own particular features. In its abstract form, however, an
allocation problem can be represented by the following information:

1. There are some indivisible1 objects (houses, offices, courses, kidneys, college seats, etc.) that
are to be assigned.

2. There are some individuals (we call them agents) who claim these objects.

3. Each agent may receive at most one object. This is not a necessary requirement of all models,
but it does apply to a number of settings, including the ones we wish to consider in this thesis.

4. Agents have a clear idea of what they want, represented by their preferences. These prefer-
ences could be simply over what they might receive. Or it might also matter to them what
other agents receive. In cases where many agents may be assigned together, such as students
in a school or workers in a team, they may also care about who shares the task or space with
them. In this thesis, we will restrict attention to cases where agents are ‘selfish’, in that they
only care about their own assignments. Preferences are represented as rankings over objects.

5. The objects in turn are imbued with priorities. Priorities are also rankings, this time over
agents. They are meant to capture the relative eligibility of each agent for that object. Each

1Indivisibility is important, to distinguish these models from cases where objects can be divided among agents.
A usual example of the latter problem is that of dividing a cake, or splitting a sum of money. Such problems are
beyond the scope of this thesis. In our case, while a college may have many seats to offer, we consider each seat to
be indivisible.
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1.3. WHAT WE LOOK FOR IN A GOOD RULE

object may have its own ranking over agents. For example, a manager wishing to assign tasks
to employees may wish to give priority to engineers for engineering positions, lawyers for legal
positions and so on. Or objects may have the same ranking over agents. For example, a school
with multiple seats may evaluate candidates based on grades in some common examination.
In this case students with higher grades are more eligible for any of the seats in the school.

1.3 What We Look For in a Good Rule

A rule takes all this information and prescribes an allocation, i.e., who gets what. It is always
possible to make assignments in some arbitrary and ad hoc fashion. Except in rare cases, however,
these allocations will be unsatisfactory - there may be cause for complaints, or there may be waste.
Thus the designer’s quest is to come up with ‘good’ solutions, formulated by way of those that
satisfy normative criteria that are desirable for individuals as well as the society as a whole. We
now discuss some of these criteria.

For instance, we may be concerned about the fairness of an allocation. An allocation is deemed
unfair if an agent receives an object even though he or she is less eligible for it than some other agent
who also desires it. For example, a student with a higher GPA may feel legitimately aggrieved if a
seat in a course he or she desires is instead given to some other student with a lower GPA, especially
when the explicit criteria for assigning seats is GPA. We would like to avoid such situations wherever
possible.

We may also be concerned about the efficiency of the overall allocation, i.e., minimising waste.
An allocation is efficient if there is no way for us to improve it, in the sense that there is no other
allocation that gives at least one agent something that he desires more, while at the same time not
making any other agent worse off. It would be inefficient to have empty seats in a school while
there are students who seek admission there. Granting even one of these students admission makes
him or her better off, without making anyone else worse off. Efficiency is desirable to the extent
that it seeks to optimises the use of scarce resources.

Another important consideration is that of strategy. In all the allocation problems above, an
agent’s ‘true’ preferences are unknown, and must be elicited by the rule designer or implementer.
A shrewd agent may be tempted to game the system if it advantageous to do so. In particular, if
lying about one’s preferences results in a better assignment, there is no reason to believe that an
agent will not falsify revealed information. If agents were encouraged to game the system in this
way, it could make a mess of the designer’s aims.

Thus it is desirable to provide agents with incentives to truthfully reveal their preferences. This
notion has also been proposed on the basis of informational simplicity. If it is always the case that
truthfully revealing preferences makes an agent as well off as lying, then he or she gains nothing
by spending time pondering what others may or may not do, and can be concerned with simply
evaluating and reporting his or her own preferences. A rule satisfying this property is said to be
strategy-proof.

Other considerations may have an egalitarian agenda. One may seek to limit the undue influ-
ence that one individual may have on another’s assignment. In particular, we may wish to avoid
situations where one agent ‘bosses’ another, in that the former can determine what the latter gets,
without any effect on her own assignment. It would be undesirable, say, for a student picking a
course to dictate to other students which courses they should or shouldn’t pick for themselves. A
rule that prevents this occurrence is called non-bossy.

3



CHAPTER 1. INTRODUCTION

Or, from the point of view of the objects, one may wish to treat all objects the same way,
without discriminating between them. For example, a centralised admissions process may wish to
treat all schools equally, without being biased for or against any of them. Such a rule would avoid
referencing any of the schools by name in its procedure. A rule satisfying this property is ‘neutral’.

There are several other properties of varying desirability. The challenge for a social planner
faced with an allocation problem is to pick a set of criteria that he or she considers important to
that context, and to find a solution to the problem that satisfies them.

1.4 Summary of Chapters

In the first two chapters in this thesis we make some additional restrictions on the nature of the
objects we wish to allocate. These have to do with their capacity constraints.

In many cases it is natural to assume that objects have a maximum capacity constraint. For
instance, a school may have limited seats to offer, such that it cannot admit any more students
than that. It is also possible that in some situations objects have a minimum capacity constraint.
A college wishing to offer a course to its students may require that at least ten students sign up for
it, say. It might be infeasible for the course to be offered to any fewer students than that - because
of the costs involved or limited facilities.

Capacity constraints, especially minimum capacities, have an effect on the existence of good
solutions to allocation problems. The range of feasible solutions may decrease substantially. More-
over, if capacity constraints are incompatible, no feasible solutions may exist at all.

Our central theme in this thesis is the study of allocation problems with exact capacity con-
straints. What we assume is that objects not only have maximum and minimum capacities, but also
that they coincide. Thus each object has an exact capacity constraint. An object may be assigned
to only exactly that number of agents. We will also assume that the exact capacity constraint is
the same for all objects so that they are all perfectly substitutable with each other.

We will save further discussion of the restrictions to the description of the chapters themselves,
to which we now turn.

1.4.1 Efficient Pairwise Allocation via Priority Trading

In this chapter we restrict our attention to cases in which each heterogenous object must be assigned
to exactly two agents if it is to be assigned at all. To differentiate this from the classical single-unit
object allocation problem, we will refer to these objects as ‘projects’, and the model as one of
pairwise project allocation.

Such partnerships problems are common occurrences. Police precincts usually send officers out
in pairs. Airlines allocate flight routes to pilots and co-pilots. Teachers often assign projects to
pairs of students. Many hostels and dormitories allocate rooms to pairs of roommates. Managers
may have tasks that require exactly two workers to perform them.

Individuals are concerned only about the assignment they receive. So the police officer will
only care about his or her beat, the student will only care about which project she is assigned,
and the hosteller is only interested in the room he is assigned. In particular, individuals will not
care about the identity of the partner who is also assigned that project, even though there must
be one. We will also assume that preferences are strict, in that there are no two projects to which
any individual is indifferent.
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1.4. SUMMARY OF CHAPTERS

An allocation in this context will be the assignment of projects to individuals, such that each
project is assigned either to nobody or to exactly two people. Conceptually, it is as if each project
will have two copies, such that if one copy is assigned to some agent, then the other copy must be
assigned to some other agent as well.

It should be pointed out at this stage that this problem differs from the classical house allocation
problem in another significant way. There are more projects available than can be feasibly assigned
to agents. Thus there is also an inbuilt project selection problem, where m projects need to be
selected from a set of size at least m+ 1. If, instead, the number of projects were less than or equal
to what could be feasibly assigned to agents, then many of the classical procedures in the literature
would be appropriate to use in this context.

What we seek in this context is a rule or a class of rules. A rule is a prescription of an allocation
(or a procedure to determine an allocation) for any configuration of individual preferences. We will
formulate such a rule (we call it the partner trading (PT) rule). The PT rule can be considered to
be an adaptation of the famous top trading cycles (TTC) procedure to our environment.

The partner trading (PT) rule proceeds in stages. The information at each stage is captured by
a ‘state’ vector, which essentially is a partial allocation that keeps track of agents’ assignments up
to that stage. This state information serves as input for functions that specify the relative order
of agents who get to choose subsequently. These functions are called a ‘primary list’, a ‘preferred
partner list’, a ‘proposal’ and a ‘partner inheritance table’, respectively. Collectively we call them
the ‘entitlement’ for that state.

Agents may receive their assignments in one of two ways - via a proposal or by trading.

Note that for feasibility the total number of different projects that can be assigned in any feasible
allocation is some integer m. At each stage in which the number of different projects assigned is
less than m (we call this an interim state), the primary list will identify agents who can guarantee
their assignments by picking distinct projects from the ones that remain. The preferred partner
list will identify the agents who can join these agents in their choices, should they choose the same
project. The primary list is ordered, in that there is a ranking that governs the sequence in which
they may exercise their choice.

We will develop the notion of a proposal to capture how assignments are made in interim states.
Based on the primary list and the preferred partner list, a pairing is an ordered pair of agents, such
that the first agent in the pair is from the primary list, while the second agent in the pair is either
the corresponding preferred partner, or is a distinct agent from the primary list. The set of all
possible pairings is ordered by a relation which we call a proposal. The ordering determines the
sequence in which pairings are considered. Given a proposal, we start with the first pairing and
check if the top-ranked project for each agent in the pairing (from among the projects available
at this stage) is the same. If so, we deem this an acceptable pairing and assign both agents that
project. If not, we go on to the next pairing determined by the ordering. In this way, we evaluate
all the pairings until we find the first acceptable pairing. If there is no acceptable pairing, we assign
all agents in the primary list their top-ranked projects (which must be distinct, since otherwise
we would have found an acceptable pairing). We then update the state, which might result in an
interim state, a trading state, or a terminal state. If it is an interim state, we repeat the above
step, with the primary list, preferred partner list, and proposal corresponding to this state.

For trading states, which occur when m distinct projects have been assigned to at least one agent
by the steps above, we use the TTC procedure. For each project that has already been assigned,
but has only been assigned to one agent thus far, there is a designated ‘preferred partner’ who can
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CHAPTER 1. INTRODUCTION

be thought of as owning the rights to partner this agent in her assignment. The preferred partner’s
identity is determined by a partner inheritance table, which lists the sequence in which unassigned
agents may become the partner for an unpartnered agent. The first agent in the corresponding
partner inheritance path is the preferred partner, and is yet to receive her assignment. She could
always guarantee being a partner of this agent for herself. But she could also put the partner
status up for trade. If there is another similarly placed agent who is the preferred partner of some
other agent, and they each desire each other’s partner’s projects, they can swap. This also applies
to cycles of more than two agents. Any cycles are honoured, and the agents removed along with
their assignments. If there are any unpartnered agents remaining, their preferred partners are
determined by the highest remaining agent in the corresponding inheritance path. In each such
case, at least one cycle must emerge, and thus in a finite number of steps, all remaining agents
receive their assignments. We update the state (which is now a terminal state) and stop. Note
that once we get to a trading state, only the TTC procedure applies until all agents receive their
assignments.

The PT rule is then a collection of the above sub-procedures. For any combination of agent
preferences, the rule proceeds by starting with the null state and performing either a proposal
evaluation or a TTC evaluation, depending on the nature of the current state, and making some
assignments. There will always be at least one assignment made in every stage. In subsequent
stages, the assignments made thus far will become inputs for the selection of agents for the sub-
procedures above. The entire procedure terminates when all agents have received their assignment.

We will impose some desirable properties on the rule. More precisely, the properties are strategy-
proofness, limited influence, unanimity and neutrality. Our main result will be a characterisation,
in that we will show that the class of PPT rules we identify are exactly those rules that satisfy the
combination of these properties.

1.4.2 Fair Allocation with Exact Capacity Constraints

In this paper we model a situation where a college wishes to offer a selection of courses to its students
and requires that each student sign up for exactly one of these courses. In turn, each course has
a minimum and maximum capacity and can admit students only within those capacities. For the
sake of this paper we make the further assumption that the minimum and maximum capacities
for all courses are equal, and the same. That is, for example, each course may admit only exactly
twenty-five students, say.

In contrast to other papers with minimum capacity constraints, we allow for the fact that a
course need not be assigned at all. There are more courses available than may be feasibly assigned
together, so in effect the college must determine the solution to a two-part problem: not only must
the college decide which selection of courses from the total will be offered, but also which students
will be assigned which course.

Course allocations are made on the basis of preference and priorities. Each student has as his
or her private information a strict ranking over the available courses, which we call a preference
ordering, or simply a preference. This information must be elicited by the college and in general
we may wish to award students their preferred courses, as far as possible. On the other hand, each
course has a strict ranking over the students, which we call a priority. In contrast to preferences,
this priority information is commonly known and fixed, and may be determined by transparent
criteria such as GPA, prerequisites, and so on. Priority information captures which students are
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1.4. SUMMARY OF CHAPTERS

more eligible for which courses.

So an allocation problem for a college is a collection of students, courses, capacities, course
priorities and student preferences. It must use this information to produce a feasible allocation -
one in which each student is assigned a course, and every course is assigned to its exact capacity
(or to no one). In effect, since the first four are commonly known, the problem becomes one of
producing a feasible allocation for any combination of elicited student preferences.

The college wishes that the allocation should satisfy some desirable properties. The first class
of properties has to do with fairness. An allocation is deemed unfair for some student if there is a
course that she prefers and there is another less eligible student who is assigned that course instead
of her. The former student then can be said to have a case of justifiable envy towards the latter.
A fair process will avoid this possibility.

The second class of properties has to do with efficiency. An efficient process eliminates waste.
In particular, an allocation is inefficient if there is another allocation in which each student receives
a course she likes as much, and some student receives a course she strictly prefers. In this case we
say that the latter allocation ‘Pareto dominates’ the former.

However, it has been well documented in the literature that fairness and efficiency are incom-
patible in the most general environments. We demonstrate by example that this incompatibility
persists even in our model with exact capacity constraints.

In the model without minimum constraints, a weaker version of efficiency, called constrained
efficiency, is compatible with fairness. A constrained efficient allocation is efficient within the set of
feasible and fair assignments.2 The classical Gale-Shapley Deferred Acceptance Rule for instance
is simultaneously fair and constrained efficient.

However, the DA rule is not directly applicable to models with minimum constraints without
requiring extra information. We shall discuss the nature of this extra information in more detail
and why it is necessary. However, we can find a modified DA rule that is simultaneously fair and
constrained efficient. This rule requires no extra information. We call this rule the DA rule with
improvements (DAI).

The DAI rule works as follows. We first exogenously select a set of courses that can exactly
accommodate all students, and run the conventional DA rule on the restricted environment with
only these courses. By the properties of the DA rule, such an allocation will be fair as well as
internally constrained efficient 3. However, our initial selection of courses is arbitrary. There is the
possibility that there exists some other allocation, with a different selection of courses, that Pareto
dominates this one. Our main contribution is to provide a procedure to identify these Pareto
improvements whenever they exist. Moreover, we show how we can carry out these efficiency
improvements in a manner that preserves the fairness of the original allocation. The composite
process is therefore fair and constrained efficient. We also show that the procedure can reach a
constrained efficient allocation in just one complete round.

Next we come to questions of strategy. A third property that we would like our rule to satisfy
is non-manipulability on the part of students. Since student preferences are private information,
the college would like to ensure that students are incentivised to report their true preferences. We
consider the strategic aspects of the rule. The DAI rule is not strategy-proof. Thus it is not a

2If some allocation Pareto dominates a constrained efficient allocation, then it must either be infeasible or unfair
to some student.

3 An allocation is internally constrained efficient if it is constrained efficient for that particular selection of courses.
It need not be constrained efficient in general.
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complete generalisation of the DA procedure to the environment with exact capacity constraints.

1.4.3 Sufficient Conditions for Weak Group-Strategy-Proofness

In this paper, we concentrate on the fact that the key feature of preferences in all allocation
models is that they are private to each individual. The designer or implementer of the solution to
the allocation problems must elicit this information from individuals before making assignments.
Individuals may reveal any preferences at all.

It is assumed that individuals may seek to game the system if it is to their advantage. If falsely
revealing preferences gives an agent an object she prefers to what she might get if she instead
truthfully revealed her preferences, then there is no reason to believe that a rational agent would
not do so. A desirable property that a designer would like the allocation rule to satisfy is immunity
from such undue gain for deviating agents. In particular, a strategy-proof rule ensures that it is a
dominant strategy for every individual to truthfully reveal her preferences.

There are many allocation problems where even individually strategy-proof rules do not exist.
Demanding more from such rules is futile. However, in problems where strategy-proof rules exist, it
is natural to ask whether the immunity from manipulation can be extended to coordinated actions
by groups of agents as well. This property is called group-strategy-proofness.

Group-strategy-proofness comes in two forms. Both look at the consequences for a group of
agents who deviate by reporting different preferences. The standard form requires that it should not
be the case that all deviating agents are as well off as before in terms of their original preferences,
and some agent is strictly better off. A weaker form requires that it should not be the case that all
deviating agents are strictly better off as a result. It is clear to see that the standard form implies
the weak form while the converse is not true in general.

There is a clear connection between individual and group-strategy-proofness. In a wide class of
allocation problems, group-strategy-proofness can be shown to be equivalent to a combination of
strategy-proofness and a property called non-bossiness. Non-bossiness preempts situations where
one agent can be bossy with another by affecting her assignment without changing her own.

Several important strategy-proof rules in the literature are also group-strategy-proof. The list
includes inheritance rules (Pápai (2000)), other generalisations of top trading cycles rules (Ab-
dulkadiroğlu and Sönmez (1999), Pycia and Ünver (2013)) and sequential and serial dictatorships
(Svensson (1999), Pápai (2001), Hatfield (2009)). These rules are non-bossy and are also weakly
group-strategy-proof by default.

However, there are also important strategy-proof rules that are weakly group-strategy-proof
but not group-strategy-proof. The famous Gale-Shapley Deferred Acceptance (DA) rule (Gale
and Shapley (1962)) is a case in point. Kojima (2010) shows that it is impossible for a stable
rule to be non-bossy. Since the DA rule always produces a stable outcome, it is bossy. Thus it
cannot be group-strategy-proof. Yet Hatfield and Kojima (2009) show that under general conditions
(including the ones that apply in our model) the DA rule is weakly group-strategy-proof.

There is a non-trivial distinction between the two properties. It is useful therefore to ask the
question: what makes a strategy-proof rule weakly group-strategy-proof but not group-strategy-
proof? Barberà et al. (2010) consider a related question in the context of domains of preferences.
In particular, they provide conditions on domains guaranteeing that for all rules defined on them,
individual and weak group-strategy-proofness become equivalent.

Non-bossiness is too strong a condition and is not necessary for weak group-strategy-proofness.
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We identify two fairly weak properties, which we call partial weak Maskin Monotonicity and weak
non-bossiness respectively, that are sufficient to guarantee that a strategy-proof rule is also weakly
group-strategy-proof.

We show the robustness of these conditions. That is, we can find examples of rules that violate
one or other of these properties in turn. We also show that these properties are ‘weak enough’, in
that there are rules that satisfy these properties (and are thus weakly group-strategy-proof) but
are not group-strategy-proof.
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2

Efficient Pairwise Allocation via Priority Trading

2.1 Introduction

In this chapter we restrict our attention to cases in which each heterogenous object must be assigned
to exactly two agents if it is to be assigned at all. To differentiate this from the classical single-unit
object allocation problem, we will refer to these objects as ‘projects’, and the model as one of
pairwise project allocation.

Such partnerships problems are common occurrences. Police precincts usually send officers out
in pairs. Airlines allocate flight routes to pilots and co-pilots. Teachers often assign projects to
pairs of students. Many hostels and dormitories allocate rooms to pairs of roommates. Managers
may have tasks that require exactly two workers to perform them.

Individuals are concerned only about the assignment they receive. So the police officer will
only care about his or her beat, the student will only care about which project she is assigned,
and the hosteller is only interested in the room he is assigned. In particular, individuals will not
care about the identity of the partner who is also assigned that project, even though there must
be one. We will also assume that preferences are strict, in that there are no two projects to which
any individual is indifferent.

An allocation in this context will be the assignment of projects to individuals, such that each
project is assigned either to nobody or to exactly two people. Conceptually, it is as if each project
will have two copies, such that if one copy is assigned to some agent, then the other copy must be
assigned to some other agent as well.

It should be pointed out at this stage that this problem differs from the classical house allocation
problem in another significant way. There are more projects available than can be feasibly assigned
to agents. Thus there is also an inbuilt project selection problem, where m projects need to be
selected from a set of size at least m+ 1. If, instead, the number of projects were less than or equal
to what could be feasibly assigned to agents, then many of the classical procedures in the literature
would be appropriate to use in this context.

What we seek in this context is a rule or a class of rules. A rule is a prescription of an allocation
(or a procedure to determine an allocation) for any configuration of individual preferences. We will
formulate such a rule (we call it the partner trading (PT)1 rule). We will impose some desirable
properties on the rule. Our main result will be a characterisation, in that we will show that the
class of PT rules we identify are exactly those rules that satisfy the combination of properties2 we
consider. The properties as well as the rule will be discussed at length in subsequent sections. The
PT rule can be considered to be an adaptation of the famous top trading cycles (TTC) procedure
to our environment.

The paper is organised as follows. Section 2.2 presents a review of the literature on object
allocation and recent extensions to project allocation. Section 2.3 is an informal discussion of the

1The PT rule makes assignments via an iterative process. In each stage, there are two ways in which an agent
may receive his or her assignment - either by finding an acceptable partner or by trading preferred partner status
with each other. As we shall see, some of these ideas are familiar in the literature and some are novel to this rule.

2More precisely, the properties are strategy-proofness, limited influence, unanimity and neutrality.
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model. We will show how some of the common approaches used to assign objects efficiently fail in
our context of pairwise project allocation. We will also discuss the workings of the PPT rule.

Next we get to the formal part of the paper. Section 2.4 presents the notation and main
definitions that we use throughout the paper. Section 2.5 contains the formal specification of the
PT rule. Section 2.6 presents a detailed example of its working. Section 2.7 discusses the features
of the rule and presents some special cases of PPT rules. Section 2.8 discusses the properties
(‘axioms’) that we wish for our rule to satisfy. Section 2.9 presents our main result. Section 2.10
concludes and discusses possible extensions of this model. The proofs are relegated to the appendix.

2.2 Literature Review

The typical allocation problem deals with assigning indivisible objects. It is generally assumed
that objects are such that each may be allocated to only one agent. The classical studies in the
literature designate these objects as houses (Shapley and Scarf (1974)), and the general framework
is called house allocation. Shapley and Scarf (1974) also introduce Gale’s top trading cycles (TTC)
procedure, which is an iterated procedure in which agents initially own objects and trade with each
other. Trading is done via a ‘pointing’ mechanism that represents favourable trades via cycles. The
TTC procedure will be discussed at length later, as it lies at the centre of a number of papers on
efficient object allocation. The TTC procedure is also a feature of our rule.

The TTC is a robust rule. Roth and Postlewaite (1977) show how the TTC allocation coin-
cides with the unique core allocation when preferences are strict. The TTC is also strategy-proof
(Roth (1982b)). Moreover, the TTC solution is the only Pareto-efficient, individually rational and
strategy-proof rule (Ma (1994), Svensson (1999)). It is also group-strategy-proof (Bird (1984)).

Allocation mechanisms that are strategy-proof and Pareto efficient have been well-covered in
the literature. Pápai (2000) characterises the set of Pareto efficient, group-strategy-proof and
reallocation-proof mechanisms, and derives a wide class of functions called hierarchical exchange
rules. Hierarchical exchange rules are an extension of the TTC procedure, via a generalisation of
the initial endowment structure and by defining inheritance rules for unassigned objects. Also,
Pycia and Ünver (2013) independently characterise the class of group-strategy-proof and Pareto
efficient rules in this context.

Another generalisation of the TTC procedure can be found in Abdulkadiroğlu and Sönmez
(1999) who consider a mixed model of house allocation and a housing market. They provide
a strategy-proof, Pareto efficient and individually rational mechanism. The key feature of their
model is the presence of exogenous property rights.

Under the assumption of neutrality, Svensson (1999) shows that the only strategy-proof and
non-bossy mechanism in this model is the serial dictatorship. The serial dictatorship is one in which
there is an exogenous fixed order of agents who get to successively pick their best options from the
set available to them after previous choices have been made. Rhee (2011) extends this result to the
case where each object must be assigned to a couple. Couples are ranked according to a hierarchy,
and one agent in each couple serially selects an object. The other agent in the couple shares this
object. The serial dictatorship is Pareto efficient in both cases. Pápai (2000) shows how the serial
dictatorship can be embedded in a hierarchical exchange rule based on the TTC.

When we consider the case of multiple agents sharing an object, the extreme case is when one
object must be assigned to all agents. Here, the seminal result in the literature is of course the
Gibbard-Sattherthwaite Theorem. Independently proposed by Gibbard (1973) and Satterthwaite
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(1975), it was shown that the only strategy-proof and onto rule is the dictatorial one. This result
has been replicated in numerous instances (see, for example, Sen (2001), Barberà (1983)), and is
also derived as a consequence of the serial dictatorship result in Svensson (1999). As in that paper,
this applies to the public goods case as well. It also applies to voting rules.

In some models, agents may receive more than one object. Pápai (2001) characterises the
sequential dictatorship as the only rule that is strategy-proof, non-bossy and satisfies citizen
sovereignty. Strengthening non-bossiness to total non-bossiness yields the serial dictatorship in
this model. Hatfield (2009) considers a model where each agent has a capacity that must be
filled exactly. He shows under a certain restriction on preferences that the only strategy-proof,
Pareto optimal and nonbossy rule is a sequential dictatorship. Furthermore, he shows that the
only strategy-proof, Pareto optimal, nonbossy, and neutral mechanisms are serial dictatorships.

The model in Hatfield (2009) is essentially a model of exact capacity constraints on the part of
agents. In the context of capacity constraints for objects, Hylland and Zeckhauser (1979) present
a model where objects have some maximum capacity constraint, and propose a strategy-proof and
efficient rule. Fragiadakis et al. (2012) and Ehlers et al. (2011) also deal with capacity constraints.
In particular, the objects in their models have minimum as well as maximum constraints. The
former paper is relevant to our model, in that the TTC extensions they produce are related to our
rule. However, they do not provide a characterisation of efficient and group-strategy-proof rules in
the context of minimum and maximum capacities. The latter paper is concerned with fairness as
opposed to efficiency.

2.3 An Informal Discussion

In this section we discuss some alternative approaches to pairwise project allocation. In particular,
we show how the rules commonly used in object allocation need to be modified or extended to fit
this context. After that we discuss the key features of our rule.

2.3.1 Other Approaches

Why is pairwise project allocation different from object allocation? Why can we not use the rules
that have been shown to work in the single-unit case here as well? In what follows we attempt to
demonstrate the reasons why.

Consider, as a natural starting point, the serial dictatorship. This is also known as the serial
priority rule. The rule works as follows: there is an exogenous and fixed ordering of agents (agent
I comes before agent J who comes before agent K, and so on). Each agent gets to pick his or her
top-ranked object in turn. So the first agent is guaranteed to receive his or her top-ranked object
in all cases. The second agent is faced with the objects that are left over after the first agent has
made his or her selection. The second agent is then guaranteed to receive her top-ranked object
from all the ones that remain. The only object she cannot receive is the one that has been selected
by the first agent. Every subsequent agent in the ordering picks from the set of objects left behind
after earlier agents have made their choice.

The serial priority rule has been characterised by Svensson (1999) as the only rule that is
strategy-proof, non-bossy and neutral. Rhee (2011) extends this result to the case (similar to ours)
where agents are organised in pairs. The equivalent rule to serial priority in this context works as
follows: there is an ex ante separation of agents into pairs, an exogenous ranking of pairs, and a
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fixed selection of one agent from each pair. These selected agents are ordered according to how the
pairs are ordered. The rule applies the serial priority method to these agents, as in the single object
case. The other agent in the pair is automatically assigned the object his or her partner has selected.
Rhee shows that that this extended rule is also characterised by the axioms of strategy-proofness,
non-bossiness and neutrality.

However, while the original rule is also Pareto efficient, the extended rule is no longer so. To
see this, note that the non-selecting partners in each pair in the extended rule have no say in their
assignments. In particular, it may be that two non-selecting partners would actually prefer to be
assigned each other’s object, i.e., belong to a different pair. The rule does not allow any such
profitable swaps, and is thus inefficient. Since we look for Pareto efficient rules in the pairwise
model, this rule will not serve our purpose.

So consider the following thought experiment. Each project in our model can be considered to
comprise two ‘copies’. If one copy is assigned to some agent, the other copy must be assigned to
some other agent as well. We could then label each copy as a distinct object in itself. For example,
project a could be separated into a1 and a2. As long as we ensure that if one of them is assigned,
that the other must be as well, there is no threat to feasibility from this approach.

So we could apply the original serial priority rule to this case with 2x ‘objects’, where x is
the number of original projects. Agents are ordered, and would select according to their order.
We would suitably restrict the set of objects available to later agents to ensure feasibility of the
overall assignment in the original context of projects. This rule, as the original one was, will also be
strategy-proof, non-bossy and neutral.3 However, it is no longer characterised by those properties.
That is, when we translate this model back to the original pairwise project allocation setting, we
can find other rules as well that satisfy those properties, that are not serial or even sequential
priority rules. So if we seek a full characterisation of this class of rules, we have to look beyond
purely serial or sequential priority.

So let us consider the famous top trading cycles (TTC) rule attributed to David Gale (see
Shapley and Scarf (1974)). In brief, the extended TTC works as follows:

Each object is initially owned by one agent, who brings it to the market for trade4. Some agents
may initially own more than one object, while others may own none at all. The procedure works
in stages. In any stage, each agent who is yet to receive an assignment points to the owner of the
object she most prefers from the ones that are available. A top trading cycle is made up of agents
who successively point to the next agent, with the last agent pointing to the first. A cycle can
be a singleton, such that an agent points to herself (she owns the object she most prefers.) Since
there is a finite number of agents, at every stage there must always be a cycle. Agents in a cycle
trade their objects along the cycle until they receive the object they desire. This becomes their
assignment and such agents leave the market along with those objects. If there are still agents and
objects left unassigned, the procedure repeats in the reduced market. If preferences are strict, then
given an initial ownership, the resulting allocation is unique.

The TTC rule is illustrated by an example. Suppose there are three agents (1, 2, 3) and three
objects (a, b, c). Suppose agent 1 initially owns a, b and agent 3 initially owns c. Agent 1 desires c,
while agents 2 and 3 desire b. The TTC procedure would look as follows:

3As an added bonus, it will also be Pareto efficient.
4Objects that an agent initially owns form a part of his or her ‘endowment’
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(1, {a, b})

(2)

(3, {c})

Agent 1 ‘points to’ agent 3 who owns c, and agents 2 and 3 in turn point to agent 1 who owns
b. The cycle in this stage is between agents 1 and 3, who consequently trade those objects. The
TTC would assign b to agent 3 and c to agent 1.

As discussed earlier, TTC rules and their generalisations to inheritance rules (Pápai (2000)) are
indeed group-strategy-proof and Pareto efficient. An inheritance rule in the above example would
also specify how agent 2 ‘inherits’ the remaining object a. The TTC procedure in the second stage
would just be agent 2 pointing to herself, and a would become her assignment.

Sequential and serial priority rules form a sub-class of inheritance rules. To see this, note that
a serial priority effectively grants initial ownership of all objects to some agent. This agent can
always pick his or her top-ranked object from among them. Additionally, the rule specifies that all
objects left over after his or her selection are inherited by some other fixed agent. This agent can
always pick her top-ranked object from among them. The remaining objects are inherited by some
fixed third agent, and so on.

However, when faced with projects, the idea of initial ownership needs to be generalised as
well. Since there are two copies, each project could be initially collectively owned by a pair of
agents. Different projects may be owned by different pairs of agents. But note that pairwise
project allocation implicitly involves not just the assignment of projects, but also the question of
how to select the assigned projects in the first place. How do we select the projects? What makes
one pair’s endowment superior to another’s? When do we decide that this project can be traded
while another one cannot? Unless the number of projects is exactly equal to capacity, there will
always be this selection problem. Thus a specification of a TTC rule will have to account for these
possibilities as well.

There is another conceptual problem with naively using the TTC rule in this setting. Note
that the success of the TTC procedure rests on the existence of a distinct cycle in every stage of
pointing. We can then unambiguously trade objects along the cycle until the agents are satisfied.
The cycle itself arises because each agent desiring an object can unambiguously point to a single
owner of that object. But how would that work here, where objects have two copies? If an agent
desires an object owned by two other agents, who are both available, then to whom should she
point? There exists the possibility now of multiple overlapping cycles. This problem has been
addressed in Hakimov and Kesten (2014) and Morrill (2014), where agents owning different copies
of the same object are ranked by their respective priorities under that object.

We do indeed base our rule around the TTC, but we take a different approach. As a result,
we see that the TTC rule cannot be directly used in this framework. Our rule is therefore more
complicated than the simple TTC rule itself.
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2.3.2 The Partner Trading Rule

The partner trading (PT) rule proceeds in stages. The information at each stage is captured by a
‘state’ vector, which essentially is a partial allocation that keeps track of agents’ assignments up
to that stage. This state information serves as input for functions that specify the relative order
of agents who get to choose subsequently. These functions are called a ‘primary list’, a ‘preferred
partner list’, a ‘proposal’ and a ‘partner inheritance table’, respectively. Collectively we call them
the ‘entitlement’ for that state.

Agents may receive their assignments in one of two ways - via a proposal or by trading.
Note that for feasibility the total number of different projects that can be assigned in any feasible

allocation is some integer m. At each stage in which the number of different projects assigned is
less than m (we call this an interim state), the primary list will identify agents who can guarantee
their assignments by picking distinct projects from the ones that remain. The preferred partner
list will identify the agents who can join these agents in their choices, should they choose the same
project. The primary list is ordered, in that there is a ranking that governs the sequence in which
they may exercise their choice.

We will develop the notion of a proposal to capture how assignments are made in interim states.
Based on the primary list and the preferred partner list, a pairing is an ordered pair of agents, such
that the first agent in the pair is from the primary list, while the second agent in the pair is either
the corresponding preferred partner, or is a distinct agent from the primary list. The set of all
possible pairings is ordered by a relation which we call a proposal. The ordering determines the
sequence in which pairings are considered. The ordering is based on the rank of the first agent in
each pairing in the primary list. There are three criteria that govern the ordering of pairs. The first
condition is that, for every primary list agent, the pairing with her corresponding preferred partner
should be ranked above any other pairing where she is the first agent. The second criterion is that
for any two primary list agents, the pairing with the higher ranked agent as the first agent should
be ranked above the reciprocal pairing. And the third condition requires that, for a given primary
list agent, the pairing of higher ranked agents in the primary list as the second agent should be
ranked higher than pairings with lower ranked agents in the primary list as the second agent. These
criteria produce a complete ranking over all pairings, which we call a proposal.

Given a proposal, we start with the first pairing and check if the top-ranked project for each
agent in the pairing (from among the projects available at this stage) is the same. If so, we deem
this an acceptable pairing and assign both agents that project. If not, we go on to the next
pairing determined by the ordering. In this way, we evaluate all the pairings until we find the first
acceptable pairing. If there is no acceptable pairing, we assign all agents in the primary list their
top-ranked projects (which must be distinct, since otherwise we would have found an acceptable
pairing). We then update the state, which might result in an interim state, a trading state, or a
terminal state. If it is an interim state, we repeat the above step, with the primary list, preferred
partner list, and proposal corresponding to this state.

For trading states, which occur when m distinct projects have been assigned to at least one agent
by the steps above, we use the TTC procedure. For each project that has already been assigned,
but has only been assigned to one agent thus far, there is a designated ‘preferred partner’ who can
be thought of as owning the rights to partner this agent in her assignment. The preferred partner’s
identity is determined by a partner inheritance table, which lists the sequence in which unassigned
agents may become the partner for an unpartnered agent. The first agent in the corresponding
partner inheritance path is the preferred partner, and is yet to receive her assignment. She could
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always guarantee being a partner of this agent for herself. But she could also put the partner
status up for trade. If there is another similarly placed agent who is the preferred partner of some
other agent, and they each desire each other’s partner’s projects, they can swap. This also applies
to cycles of more than two agents. Any cycles are honoured, and the agents removed along with
their assignments. If there are any unpartnered agents remaining, their preferred partners are
determined by the highest remaining agent in the corresponding inheritance path. In each such
case, at least one cycle must emerge, and thus in a finite number of steps, all remaining agents
receive their assignments. We update the state (which is now a terminal state) and stop. Note
that once we get to a trading state, only the TTC procedure applies until all agents receive their
assignments.

The PT rule is then a collection of the above sub-procedures. For any combination of agent
preferences, the rule proceeds by starting with the null state and performing either a proposal
evaluation or a TTC evaluation, depending on the nature of the current state, and making some
assignments. There will always be at least one assignment made in every stage. In subsequent
stages, the assignments made thus far will become inputs for the selection of agents for the sub-
procedures above. The entire procedure terminates when all agents have received their assignment.

2.3.3 Criteria for Allocation Rules

In this paper we are concerned with the following four criteria for rules. The first is strategy-
proofness, which ensures that it is always a dominant strategy for every agent to truthfully report
his or her preferences. The second is a composite criterion which we call ‘limited influence’. The
first part of this criterion is familiar in the literature as the non-bossiness condition. Non-bossiness
stipulates that an agent may not affect another agent’s assignment via a change in reported pref-
erences, if she does not change her assignment as well. The second part is new to this paper but
similar versions have appeared in other papers as well. It seeks to limit the influence that an agent
has on the assignment of certain projects via a change in reported preferences, even if her own
assignment changes. We shall discuss this axiom in more detail in a later section.

The third criterion for a rule is unanimity, which states that a rule should respect the self-
selection of agents into feasible pairs. If agents report preferences such that it is feasible to give
every agent her top-ranked project, than a unanimous rule must do so. The final condition is
neutrality, which requires the rule to treat all projects symmetrically. The main result in this
paper is that a PT rule is characterised by the above four axioms.

Next, we go to the formal part of the paper, where we define all the above notions rigorously.

2.4 Notation and Definitions

The model is described below.

• There is a finite set of agents N = {1, ..., i, j, , k, ..., N} and a finite set of projects Z =
{a, b, c, d, ...}. We denote the ‘null object’ as ∅, and assume that ∅ ∈ Z. We assume that
|N | = 2m for some integer m ≥ 2 and that |Z| ≥ m+ 1.5

5This assumption of at least two ‘pairs’ and three projects is equivalent to the assumption in object allocation
models of at least two ‘agents’ and three objects.
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• An allocation x ∈ ZN with x = (x1, ..., xN ) is a vector that associates a project with each
agent. For any agent i ∈ N , xi ∈ Z is the assignment of agent i in x. An allocation x is
feasible if, for all a ∈ Z, |{j ∈ N : xj = a}| ∈ {0, 2}. That is, an allocation is feasible if it
assigns each project to exactly two agents, or to nobody. The set of all feasible allocations is
given by A.

• Preferences over assignments are strict. Formally, agent i ∈ N has preferences, denoted Ri,
that are given by a binary relation over Z. For any a, b, aRib is interpreted as ‘project a is at
least as good as project b for agent i under preferences Ri’. The binary relation is reflexive
(for all a, aRia), complete (for all a, b, aRib or bRia), transitive (for all a, b, c, aRib and bRic
imply aRic) and antisymmetric (for any a, b, aRib and bRia imply a = b). The associated
strict relation is given by Pi, such that aPib if aRib and a 6= b. For any a, b, aPib means ‘a is
preferred by i to b under preferences Ri’.

• Agent preferences over allocations are selfish, in that they care only about the assignment they
receive. Agents are indifferent between all allocations that give them the same assignment. An
agent’s preferences between two allocations that give her different assignments are governed
by her preferences over the respective assignment she receives.

• A collection of preferences for all agents is called a preference profile, or simply a profile, and
is denoted by R = (R1, ..., RN ). The set of all preference profiles is R. In this model we shall
usually suppress reference to R, with the understanding that we operate on the full domain
of preferences everywhere. As is the convention, we write R−i for a sub-profile of preferences
of all agents other than i. Similarly, for a subset of agents M , we write RM and R−M to
denote the sub-profile of preferences of agents in subsets M and N \M , respectively.

• A pairwise project allocation rule (P-PAR) is a function f : R → A that maps every preference
profile to a feasible allocation. For any agent i, fi(R) is the assignment she receives at
preference profile R according to the rule f . Similarly, for any subset of agents M , fM (R) is
the M-dimensional vector of assignments of M at R, according to f .

2.5 Partner Trading Rules

2.5.1 States

We first present some useful terminology. The notion of a state will be useful to keep track of
agents’ assignments as the algorithmic procedure in our rule unfolds.

Formally, a state is a vector s ∈ ZN with s = (s1, ..., sN ) such that:

1. |{j ∈ N : sj = a}| ≤ 2 for any a ∈ Z

2. |{a ∈ Z : si = a for some i ∈ N}| ≤ m.

A state is essentially a partial allocation. The two conditions are necessary for feasibility. The
first condition ensures that no project is associated with more than two agents for any state, and
the second condition ensures that not more than m projects are associated with any state. Let
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the set of all states be denoted S6. It follows from the definition above that the set of feasible
allocations is a subset of the set of states, i.e., A ⊂ S.

For a state s, we define the set of assigned agents in s as N(s) = {i ∈ N : si 6= ∅}, the set of
unassigned agents in s as N̄(s) = {i ∈ N : si = ∅}, the set of assigned projects in s as Z(s) = {a ∈
Z : si = a for some i ∈ N}, the set of partially assigned projects in s as Ẑ(s) = {a ∈ Z : si = a for
exactly one i ∈ N}, the set of unassigned projects in s as Z̄(s) = {a ∈ Z : si 6= a for all i ∈ N},
and the number of remaining projects in s as m′(s) = m − |Z(s)|. It is clear that Ẑ(s) ⊆ Z(s),
N = N(s) ∪ N̄(s), Z = Z(s) ∪ Z̄(s) and 0 ≤ m′(s) ≤ m for any s.

If, in addition, m′(s) > 0, we call s an interim state. Note that |N̄(s)| ≥ 2 for any interim state
s. It shall be convenient to call the null vector (∅, ..., ∅) the null state. It is clear that the null state
is an interim state. For reasons that shall become clear, if m′(s) = 0 but |N̄(s)| > 0, we call s a
trading state. If m′(s) = 0 and N̄(s) = 0, we call s a terminal state. For any preference profile,
our rule will start with the null state and progressively assign projects to agents in stages until we
reach a terminal state. It is easy to see that a terminal state is a feasible allocation.

For example, let N = {1, ..., 6} and let Z = {a, b, c, d}. Then the null state is given by (∅, ..., ∅),
an interim state could be the vector (a, ∅, b, b, ∅, ∅), a trading state could be the vector (a, c, b, b, ∅, ∅),
and a terminal state could be (a, c, b, b, c, a).

Given two states s and s′, we say that s is a prior state of s′ (alternatively, s′ is a subsequent
state of s) if:

1. si 6= ∅ =⇒ s′i = si

2. m′(s′) < m′(s)

The first condition requires that any agent with a non-empty assignment in s has the same
assignment in s′. The second condition requires that more projects be assigned (partially assigned)
in s′ than in s. In essence, s′ is formed by taking s and assigning additional projects to more agents.

2.5.2 Entitlements

Primary and Preferred Partner Lists

As discussed earlier, Rhee (2011) presents a pairwise allocation model and characterises a rule
similar to the serial priority rule. That is, there is an ex ante separation of agents into pairs, an
exogenous ranking of pairs, and a fixed selection of one agent from each pair. These selected agents
are ordered according to how the pairs are ordered. The rule applies the serial priority method to
these agents, as in the single object case. The other agent in the pair is automatically assigned the
object his or her partner has selected. Rhee shows that that this extended rule is also characterised
by the axioms of strategy-proofness, non-bossiness and neutrality.

Even in our more general case, we use this result as a starting point. Thus we retain the notion
of an agent in each pair that selects a project, and the idea that the other agent in the pair can
always claim the same project that her partner has chosen. The main difference is that the identity
of the pairs, and the respective agents in the pair, are no longer ex ante fixed, and depend instead
on the features of the rule.

6Strictly, S depends on N , but since N is fixed in this model, we slightly abuse notation by suppressing reference
to N in the specification of S.
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Given an interim state s, where there are still m′(s) projects left to be assigned, we develop the
notion of a primary list, which identifies m′(s) unassigned agents who, if they all picked different
projects as their top-ranked project, could guarantee those projects as their assignment. We also
identify, for each of these agents, a preferred partner (called the preferred partner list), who can
join them in their assignments by commonly declaring that project as their top-ranked project.

Formally, let s be an interim state. A primary list is an ordered collection of agents α(s) =
(i, j, . . . ,K) such that:

(PL1). i ∈ N̄(s) for all i ∈ α(s)

(PL2). i 6= j for all i, j ∈ α(s)

(PL3). K = m′(s)

Condition PL1 requires that each agent in the primary list be unassigned in this state. Condition
PL2 requires each agent in the primary list to be distinct. And Condition PL3 requires that there
be m′(s) agents in the primary list.

Since the primary list is ordered, for any agent i ∈ α(s), we denote i′s position in α(s) by αi(s).
So we say i precedes j in α(s) if αi(s) < αj(s). Also, we denote the first agent in α(s) by α1(s),
the second agent as α2(s), and so on.

A preferred partner list is a correspondence β(s) : {α(s)} → N̄(s) such that β(αi(s)) 6= i for
all i ∈ α(s) (call this Condition SL1). Condition SL1 requires that each preferred partner be
unassigned in this state, and be distinct from the corresponding primary list agent. The same
agent could be the preferred partner for multiple primary list agents, and the preferred partner
could be some other agent from the primary list as well.

Primary lists and preferred partner lists are also related across states. In particular, given an
interim state with a primary list and a preferred partner list, when some assignments are made
and we reach a subsequent state, the new primary list and preferred partner list are related to the
previous lists in the following ways. Let s be an interim state and let s′ be a subsequent state to
s. Then:

(PL4.) For i, j ∈ α(s), if αi(s) < αj(s), i ∈ N̄(s′) and j 6∈ N̄(s′), then αi(s
′) = αi(s).

(PL5.) For i, j ∈ α(s) such that αi(s) < αj(s), if i, j 6∈ N̄(s′) and β(i) ∈ N̄(s), then αβ(i)(s
′) = αi(s).

Condition PL4 says that if an agent from the primary list is no longer available in a subsequent
state, then all agents that were higher ranked to her in the primary list in the previous state retain
their ranks in the primary list of the subsequent state. Condition PL5 says that if two agents in the
primary list are no longer available in a subsequent state, then if the preferred partner of the higher
ranked agent is available in the subsequent state, she enters the primary list of the subsequent state
in the position that her erstwhile partner occupied in the previous state.

The intuition behind Condition PL5 is as follows. At each state, each primary list agent has a
preferred partner, who can guarantee the assignment of the same project by declaring it as her top-
ranked preference (explained in detail below.) If this partner should remain unassigned when the
primary list agent receives an assignment, then strategy-proofness will require that she receive an
assignment that is weakly better than that project. The only way to guarantee this is by including
her in the primary list so that she can get her top-ranked project in a later state.
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Pairings and Proposals

At an interim state, if all agents in the primary list have different top-ranked projects, they will be
assigned those projects. However, how is this determined? Also, what happens when all the top-
ranked projects are not distinct? How are assignments evaluated? In this subsection we develop
the notion of a pairing and a proposal, which is key to making assignments in interim states.

Essentially, we develop a suitable set of pairs of agents whose top-ranked preferences we jointly
evaluate. The pairs are ordered according to a well-defined ranking function. We check each pair
to see if the agents in that pair have the same top-ranked preference. The first pair that agrees is
assigned the corresponding project.

The pairs are constructed carefully. Formally, a pairing is an ordered tuple of agents (i, j) such
that:

(PA1). i ∈ α(s)

(PA2). j ∈ {β(i), α(s)}

(PA3). j 6= i

Condition PA1 requires that the first agent in the pairing be from the primary list. Condition
PA2 requires that the second agent in the pairing be either the corresponding preferred partner, or
an agent from the primary list. Condition PA3 requires both agents in the pairing to be distinct.

Given a primary list and a preferred partner list, we can generate the set of all possible pairings.
Let the set of all pairings for a given state s be denoted T (s). Now we develop an ordering over
the set of pairings. A proposal �s is a reflexive, complete, transitive and anti-symmetric relation
over pairings in T (s) such that:

(PR1). (i, β(i)) �s (i, j) for every i, j ∈ α(s).

(PR2). αi(s) < αj(s) =⇒ (i, j) �s (j, i) for every i, j ∈ α(s).

(PR3). αj(s) < αk(s) =⇒ (i, j) �s (i, k) for every i, j, k ∈ α(s).

A proposal is an ordering over pairings. Condition PR1 requires that, for every primary list
agent, the pairing with her corresponding preferred partner should be ranked above any other
pairing where she is the first agent. Condition PR2 requires that for any two primary list agents,
the pairing with the higher ranked agent as the first agent should be ranked above the reciprocal
pairing. And Condition PR3 requires that, for a given primary list agent, the pairing of higher
ranked agents in the primary list as the second agent should be ranked higher than pairings with
lower ranked agents in the primary list as the second agent.

Note that a proposal �s is not unique for a given α(s), β(α(s), as we demonstrate by example
below. Note also that � is not defined for trading states.

For example, let s be an interim state, and let let N̄(s) = {1, 2, 3, 4, 5, 6}. The table below gives
a proposal for the following three cases: (1) Primary list {1, 2, 3}, preferred partner list {2, 1, 4};
(2) Primary list {1, 2, 3}, preferred partner list {2, 1, 4}; (3) Primary list {1, 3, 5}, preferred partner
list {2, 4, 6}.
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�1
s �2

s �3
s

(1,2) (1,2) (1,2)
(1,3) (2,1) (1,3)
(2,1) (3,4) (3,4)
(2,3) (1,3) (3,1)
(3,4) (3,1) (1,5)
(3,1) (2,3) (3,5)
(3,2) (3,2) (5,6)

(5,1)
(5,3)

It is easy to see that the pairings above satisfy Conditions PA1-PA3, and that the proposals
satisfy Conditions PR1-PR3. Also, while the primary list and preferred partner list in the first
two cases are the same, the proposals are different. This demonstrates that proposals need not be
unique for a given combination of primary list and preferred partner list.

Partner Inheritance

Given a trading state s, m different projects have been assigned to different agents, but some may
have been assigned to only one agent so far. Feasibility requires that the copy of these projects be
assigned to another agent. The partner is designed to capture the rights that unassigned agents
have to be the partner of the as-yet unpartnered agents in s.

For a trading state s and an agent i such that |{j ∈ N : sj = si}| = 1, the partner inheritance
path of i in state s is a sequence of agents (a1, a2, . . . , aK) such that:

(E1). aj ∈ N̄(s) for all j

(E2). aj 6= ak for all j 6= k

(E3). a1 = i

(E4). K = |N̄(s)|

For a given trading state s, a partner inheritance E(s) is a specification of an inheritance path
for every unpartnered agent.

Condition E1 requires all agents in the inheritance path to be unassigned agents. Condition
E2 requires each agent in the inheritance path to be distinct. Condition E3 requires that the first
agent in the path be the agent itself. And Condition E4 requires that all unassigned agents feature
in each inheritance path.

The first available agent in each inheritance path is the preferred partner for the correspond-
ing agent. If an agent in an inheritance path becomes unavailable, then the next agent in the
path becomes the preferred partner. The nature of these transfers bears some resemblance to the
inheritance rules in Pápai (2000), as we shall discuss subsequently.

For example, suppose there are three unassigned agents (1, 2, 3), and three partially assigned
projects (a, b, c) assigned to agents (4, 5, 6), respectively. Then a possible partner inheritance table
looks as follows:
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E4(s) E5(s) E6(s)

1 1 3
2 2 1
3 3 2

It is easy to check that the table above satisfies Conditions E1-E4. Note also that for an interim
state s, there are no inheritance paths defined.

Entitlements

We are now ready to define an entitlement. For every state s, define the entitlement at state s as
Γ(s) = (α(s), β(α(s)),�s, E(s)). A collection of entitlements for every state is denoted Γ.

A partner trading rule fΓ is a specification of Γ, i.e., an entitlement for every state s ∈ S, along
with an iterative procedure that prescribes an allocation based on these entitlements for every
preference profile. In what follows, we describe this procedure.

2.5.3 Assignments

First we shall describe how assignments are made for a particular state. If the state is an interim
state, we use the Proposal Evaluation described below to make assignments. If, instead, the state
is a trading state, we use the TTC Evaluation as described subsequently to make assignments.

Proposal Evaluation

Let s be an interim state. Let T (s) be the set of pairings for this state, ordered by a proposal �s.
Let R be a preference profile. For every agent i , let ai = top(Ri, Z̄(s)) be the top-ranked project
for agent i among unassigned projects, according to preferences Ri.

For a pairing t(s) ∈ T (s), we say t(s) is an acceptable pairing if at1(s) = at2(s), i.e., if both agents
in the pairing have the same top-ranked project from among unassigned projects.

To evaluate a proposal at interim state s, we check pairings one by one, according to the
ordering, to see if they are acceptable. For the first acceptable pairing we encounter, we assign
each agent i in that pairing the corresponding project ai, and make no more assignments in this
round7. If no pairing is acceptable, we assign every agent i ∈ α(s) her corresponding top-ranked
project ai.

8

Note that, by construction of the proposal, if no acceptable pairing is found, this means that
the top-ranked projects for agents in α(s) must all be distinct. (This is because each combination
of pairings of agents in α(s) is included in the proposal.)

For example, suppose a proposal is given as in the following table, where the primary list is
{1, 2, 3} and the corresponding preferred partner list is {2, 1, 4}.

7Two agents receive their assignment.
8In this case, m′(s) assignments are made.
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�s
(1,2)
(1,3)
(2,1)
(2,3)
(3,4)
(3,1)
(3,2)

Consider the following three preference profiles: (1) R1 such that the top-ranked projects of
agents (1,2,3,4) are (a, b, a, d); (2) R2 such that the top-ranked projects of (1,2,3,4) are (a, b, b, a); (3)
R3 such that the top-ranked projects of (1,2,3,4) are (a, b, c, a), respectively. Then the acceptable
proposals are given in boxes in the table below. Note that in the third case, there is no acceptable
proposal, and so agents (1,2,3) are assigned (a, b, c), respectively.

R1 R2 R3

(1,2) (1,2) (1,2)

(1,3) (1,3) (1,3)

(2,1) (2,1) (2,1)

(2,3) (2,3) (2,3)

(3,4) (3,4) (3,4)
(3,1) (3,1) (3,1)
(3,2) (3,2) (3,2)

TTC Evaluation

The top trading cycles method of assigning projects applies only in trading states. Note that in
trading states, m distinct objects have been assigned to at least one agent each, and there is at
least one partially assigned project, i.e., a project that has been assigned to exactly one agent thus
far. The partner inheritance table specifies the inheritance path for all unpartnered agents.

In any TTC round, all agents who are preferred partners of at least one unpartnered agent
‘point to’ the agent who is the preferred partner of the assigned agent holding her top-ranked
project among the set of partially assigned projects. A cycle is a distinct sequence of agents with
each agent in the sequence pointing to the next agent, and the last agent pointing to the first. A
cycle can be a singleton, with an agent pointing to herself. For any cycle that we might encounter,
we trade partners along the cycle until each agent is the partner of the assigned agent holding her
most preferred project. This becomes their assignments. We do this for all cycles that we find. At
least one agent will receive her assignment as a result.

If there are any other unpartnered agents, their preferred partner status is ‘inherited’ by the
next unassigned agent in the corresponding inheritance path. The TTC step is repeated with the
remaining agents. Since at least one agent receives her assignment in every TTC step, and partner
inheritance is well-defined, the procedure is guaranteed to terminate in a finite number of steps.
Also, since there are exactly as many partially unassigned projects as there are unassigned agents
in a trading step, each agent will receive exactly one project as her assignment.
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Formally, let s be a trading state and let E(s) be the partner inheritance table. Let R be a
preference profile. Let N1(s) = N̄(s) be the set of unassigned agents in s, Z1(s) = Ẑ(s) be the set
of partially assigned projects.

1. Pointing Step #k (k ≥ 1): Each unassigned agent i ∈ Nk(s) points to the agent in Nk(s)
who is the preferred partner of the agent who holds the project top(Ri, Z

k(s)).

2. A cycle is a set of agents (i1, i2, ..., in = i1) such that each agent ij points to ij+1.

3. A cycle must exist. For every cycle, agents in the cycle trade partners along the cycle until they
are partners of the assigned agent who holds their most preferred project. The corresponding
unassigned copy becomes their assignment. Remove these agents from Nk(s) to get Nk+1(s)
and remove their assignments from Zk(s) to get Zk+1(s).

4. The preferred partner status for all unpartnered agents remaining is inherited by the first
unassigned agent in Nk+1(s) according to the corresponding inheritance path in E(s).

5. If there are any unassigned agents, we go back to the Pointing Step #(k + 1). Otherwise we
stop.

To continue the example given previously, suppose there are three unassigned agents (1, 2, 3),
and three partially assigned projects (a, b, c) assigned to agents (4, 5, 6). Suppose the partner
inheritance table looks as follows:

E4(s) E5(s) E6(s)

1 1 3
2 2 1
3 3 2

Suppose agent 1 desires c according to R1, while agent 2 desires a and 3 desires b according to
R2 and R3, respectively. The TTC procedure would look as follows:

(1, {4, 5})

(2)

(3, {6})

Agent 1 ‘points’ to agent 3 who is the preferred partner of agent 6 (who is assigned c), and
agents 2 and 3 in turn point at agent 1 who is the preferred partner of agents 4 and 5 (who are
assigned a and b respectively. The cycle in this stage is between agents 1 and 3, who consequently
trade partners. The TTC procedure at this stage would assign b to agent 3 and c to agent 1. Then
the preferred partner status for agent 5 would be inherited by agent 2. In the next round of trading,
there is only one cycle (agent 2 points to herself), and thus agent 2 is assigned a.
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2.5.4 The Iterative Procedure

Fix a preference profile R. Then a PT rule fΓ(R) is determined by an iterative procedure with a
finite number of stages. In the first stage k = 1 we start with the null state s0 = (∅, ..., ∅). Each
subsequent stage k > 1 of the procedure begins with a state sk−1 that captures the assignments of
agents made up to and including stage k − 1.

At any stage k, we check if the corresponding state sk−1 is an interim state or a trading state.
If it is an interim state, we perform the Proposal Evaluation for that state to make assignments as
discussed. At least two agents are assigned a project in every interim state. We update the state
sk−1 to reflect all assignments made up to and including stage k, giving us a new state sk. We then
proceed to stage k+1 of the procedure. Eventually we end up at either a terminal state or a trading
state. For any terminal state, we stop. For a trading state, we perform the TTC Evaluation with
partner inheritance as discussed. Note that all as-yet-unassigned agents receive their assignments
in a trading state. So after this stage, we are at a terminal state.

The corresponding terminal state gives us the final allocation.

Formally:

Let R be a profile. Let Γ be given.

Stage 1

The state is s0 (the null state). Let Γ(s0) be the entitlement for this state.

Proposal Step: Run the Proposal Evaluation for T (s0). For any agent i receiving an assignment
at this step, update s1

i as this project. For all other agents j, s1
j = s0

j . Go to the Verification
Step.

Verification Step: If s1 is a terminal state, we stop with the resulting allocation. If not, we
proceed to Stage 2.

Stage k+1, k ≥ 1

The state is sk. Let Γ(sk) be the entitlement for this state. If sk is an interim state, go to the
Proposal Step. Otherwise go to the Trading Step.

Proposal Step: Run the Proposal Evaluation for T (sk). For any agent i receiving an assignment
at this step, update sk+1

i as this project. For all other agents j, sk+1
j = skj . Go to the

Verification Step.

Trading Step: Run the TTC Evaluation for all agents in N̄(sk). For any agent i receiving an
assignment at this step, update sk+1

i as this project. For all other agents j, sk+1
j = skj . Go to

the Verification Step.

Verification Step: If sk+1 is a terminal state, we stop with the resulting allocation. If not, we
proceed to Stage k + 2.

Note that fΓ(R) is unambiguously defined, as for every R and every agent i there is at most
one stage in which i receives her assignment. The procedure is also finite as at least one agent
receives her assignment at every stage.
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2.6 A Detailed Example

Let N = {1, 2, 3, 4, 5, 6} and Z = {a, b, c, d, e} be a set of agents and projects, respectively. The
entire proposal map is outlined in the figure below.

Let the preference profile R be given as follows:

R1 R2 R3 R4 R5 R6

a c d b a d
c d b c c c
b b c a d a
d a a d b b

Stage 1
The state s0 is the null state. The primary list is {1, 3, 5} and the preferred partner list is

{2, 4, 1}.
Proposal Step: The proposal corresponding to s0 is evaluated. The first acceptable pairing is

(1, 5) (the top-ranked projects in each previous pairing are different). Thus agents 1 and 5 are
assigned the project a. The state s1 = {a, ∅, ∅, ∅, a, ∅}.

Verification Step: s1 is not a terminal stage, so we go to Stage 2.

Stage 2
The state s1 is an interim state. The primary list is {2, 3} and the preferred partner list is

{3, 4}.
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Proposal Step: The proposal corresponding to s1 is evaluated. There are no acceptable pairings.
Thus agent 2 is assigned c and agent 3 is assigned d. The state s2 = {a, c, d, ∅, a, ∅}.

Verification Step: s2 is not a terminal stage, so we go to Stage 3.

Stage 3

The state s2 is a trading state. The preferred partner for agent 2 is agent 6 while the preferred
partner for agent 3 is agent 4.

Trading Step: Agent 6 desires d and agent 4 desires c. Thus they trade partners. So agent 6 is
assigned d and agent 4 is assigned c. The state s3 = {a, c, d, c, a, d}.

Verification Step: The state s3 is a terminal state, so we stop with the resulting assignment.

Instead, with the same entitlements, suppose the preference profile R is as follows:

R1 R2 R3 R4 R5 R6

a c a b c d
c d b c a c
b b c a d a
d a d d b b

Stage 1

The state s0 is the null state. The primary list is {1, 3, 5} and the preferred partner list is
{2, 4, 1}.

Proposal Step: The proposal corresponding to s0 is evaluated. The first acceptable pairing is
(1, 3). Thus agents 1 and 3 are assigned the project a. The state s1 = {a, ∅, a, ∅, ∅, ∅}.

Verification Step: s1 is not a terminal stage, so we go to Stage 2.

Stage 2

The state s1 is an interim state. The primary list is {2, 5} and the preferred partner list is
{4, 2}.

Proposal Step: The proposal corresponding to s1 is evaluated. The first acceptable pairing is
(2, 5). Thus agents 2 and 5 are assigned c. The state s2 = {a, c, a, ∅, c, ∅}.

Verification Step: s2 is not a terminal stage, so we go to Stage 3.

Stage 3

The state s2 is an interim state. The primary list is agent 4 and the preferred partner is agent
6.

Proposal Step: The proposal corresponding to s2 is evaluated. There is no acceptable pairing.
Thus agent 4 is assigned b. The state s3 = {a, c, a, b, c, ∅}.

Verification Step: s3 is not a terminal stage, so we go to Stage 4.

Stage 4

The state s3 is a trading state. The preferred partner for agent 4 is agent 6.

Trading Step: Agent 6 desires b. There are no other unassigned agents. So agent 6 is assigned
b. The state s4 = {a, c, a, b, c, b}.

Verification Step: The state s4 is a terminal state, so we stop with the resulting assignment.
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2.7 Features of the PT Rule and Special Cases

2.7.1 Similarities with Inheritance Rules

In the single-unit object allocation model, Pápai (2000) characterises the set of group-strategy-
proof, Pareto optimal and reallocation proof rules via a class of rules called hierarchical exchange
rules. As discussed previously, hierarchical exchange rules determine the initial endowment of each
object to some agent. Assignments are made using the TTC procedure in rounds. Hierarchical
exchange rules also specify the inheritance of unassigned objects to other agents as a function of
the structure of previous assignments. Each object is owned by some agent, and agents may own
more than one object. Once they have received their assignment, the remaining objects in their
endowments get transferred to (or inherited by) some other agent.

One important sub-class of hierarchical exchange rules is what Pápai (2000) calls a fixed en-
dowment exchange rule. In such a rule, the inheritance structure depends only on which agents
have received their assignments and what assignment they have received. Such a rule also covers
the serial priority rule. Our specification of endowment results effectively in a fixed endowment
exchange rule.

Hierarchical exchange rules in general satisfy two properties called the Assurance Rule and
the Twin Inheritance Rule. The Assurance Rule guarantees that an object that is in an agent’s
endowment remains in her endowment at any later stage in which she is yet to receive an assignment.
The Twin Inheritance Rule says that if there are two preference profiles such that the hierarchical
exchange rule at a certain stage results in the same agents with the same preferences being assigned
the same objects, then the endowments determined at that stage for other agents must also be the
same in the two cases.

In our model, the partner inheritance structure satisfies these two properties. An agent retains
her preferred partner status as long as she is still unassigned. This is the Assurance Rule in other
words. Furthermore, the partner inheritance table depends only on the state s. So for any two
situations where the assignments and preferences of assigned agents up to that point are the same,
i.e., we are in the same state, then the partner inheritance specification for those states will also
be the same. This is basically the Twin Inheritance Rule.

Thus there is a connection between PT rules and fixed endowment inheritance rules, though
they operate in different environments.

2.7.2 The Serial Dictatorship Rule

In the classical model, where each object may be assigned to at most one agent, the serial dic-
tatorship (or serial priority) rule works as follows: There is an exogenous and fixed ordering of
agents σ such that agents sequentially select projects in that order (σ(1) selects first, σ(2) goes
next, and so on). Each agent selects her top-ranked projects from the ones that are available, given
the choices of earlier agents in the sequence. It is easy to see that for any preference profile, the
first agent always gets her top-ranked object, while the second agent always gets her top-ranked
object whenever it is distinct from the selection of the first agent, and so on.

Extending this rule to our context is straightforward. However, the presence of copies in our
model means that the feasible set of projects available to later agents in the sequence may be larger
than in the classical case. So the serial dictatorship rule fSD in our model works as follows: There
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is an exogenous and fixed ordering of agents σ. The first agent in σ will always get to select her
top-ranked project. But the second agent in σ may select not only a project that differs from the
first agent, but also may select the copy of the project that is assigned to the first agent, because it
is still available. In general, agents’ choices will affect the feasible set for subsequent agents not only
via restricting the available set of different projects, but also the availability of copies of projects
already selected.

A PT rule fΓ incorporates this special case in the following manner. Suppose with no loss of
generality that there is an exogenous ordering of agents σ such that σ(i) ‘precedes’ σ(j) whenever
i < j, where i and j are agents in N . Then for any interim state s, let the primary list be the
first m′(s) agents according to σ, and let the corresponding preferred partners be the first available
agent according to σ. For a trading state, let the partner inheritance table be such that agent i
appears above agent j in the inheritance path of that project whenever i precedes j.

Thus, for example, in the null state, the primary list is {σ(1), σ(2), σ(3)}, while the preferred
partner list is {σ(2), σ(1), σ(4)}.

The proposal is given as follows:

�s
(σ(1), σ(2))
(σ(1), σ(3))
(σ(2), σ(1))
(σ(2), σ(3))
(σ(3), σ(4))
(σ(3), σ(1))
(σ(3), σ(2))

The partner inheritance table is given as follows:

Eσ(1)(s) Eσ(2)(s) Eσ(3)(s)

σ(4) σ(4) σ(4)
σ(5) σ(5) σ(5)
σ(6) σ(6) σ(6)

It is easy to see that fSD = fΓ for this specification of entitlements, and thus the serial
dictatorship rule is a special case of the PT rule.

2.7.3 The ‘No Agent Always Gets Her Top-Ranked Project’ Rule

An interesting special case of the PT rule is one in which there is no agent that always gets her top-
ranked project. The reason this is interesting is that in the classical model, the rules characterised
by the same collection of axioms as we have here specify an agent who always gets her top-ranked
project. In the case where all agents share an object, strategy-proofness and unanimity together
guarantee dictatorship. On the other hand, in the house allocation model, strategy-proofness,
unanimity and neutrality guarantee the serial dictatorship. But as can be seen from the example
below, it is possible in the pairwise project allocation framework to have a rule that satisfies all the
axioms, yet does not have an agent who always gets her top-ranked project.

Let N = {1, 2, 3, 4, 5, 6}, let Z = {a, b, c, d}, and consider the null state. Let the primary list be
{1, 2, 3}, the preferred partner list be {2, 1, 4}, and let the proposal be given as in the table below.
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�
(1,2)
(2,1)
(3,4)
(1,3)
(3,1)
(2,3)
(3,2)

Then for the following preference profile, the assignments for agents {1, 2, 3, 4} are given in
boxes:

R1 R2 R3 R4 R5 R6

a b a a c c

b a b b d d
c c c c a a
d d d d b b

With the same entitlement, if the preference profile is the following, the assignments are given
in boxes:

R1 R2 R3 R4 R5 R6

a b b b c c
b a b a d d
c c c c a a
d d d d b b

Instead, if the preferences are as given below, the assignments also change accordingly:

R1 R2 R3 R4 R5 R6

a a a a c c

b b b b d d
c c c c a a
d d d d b b

It is clear from inspection that none of the agents {1, 2, 3, 4} always get their top-ranked projects.

2.8 Axioms for Pairwise Project Allocation Rules

We describe below the axioms that we impose on P-PARs, and present some key initial results.
Most of these axioms are standard in the literature.

Strategy-proofness is a condition which requires truth-telling to be a dominant strategy for all
agents. In other words, given the reports of all other agents, an agent must be as well off reporting
her true preferences as any other preferences. When this is true for all agents and all preferences,
the mechanism is said to be strategy-proof. Formally:

Axiom 1. A P-PAR f is strategy-proof (SP) if, for all preference profiles R, all agents i ∈ N , and
all preference orderings R′i:
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fi(R)Rifi(R
′
i, R−i)

The next axiom, which we call the limited influence axiom, identifies conditions under which
an agent may not affect another agent’s assignment. The axiom has two parts. The first part is
identical to the non-bossiness axiom that is pervasive in the literature on assignment rules. The
condition was introduced by Satterthwaite and Sonnenschein (1981) and requires that an agent not
be able to affect other agents’ outcomes without affecting her own.

The second part of the limited influence axiom is new. It states that if an agent cannot obtain
a particular project that she desires over her assignment (given other agents’ preferences) then she
cannot influence the assignment of that project. We first state the axiom formally and discuss it
below.

Axiom 2. A P-PAR f satisfies limited influence (LIN) if:

1. (LIN1) (Non-bossiness (NB)) For all preference profiles R, all agents i ∈ N , and all preference
orderings R′i:

[fi(R
′
i, R−i) = fi(R)] =⇒ [f(R′i, R−i) = f(R)]

2. (LIN2) For all preference profiles R, all projects a ∈ Z, all agents i ∈ N such that aPifi(R),
and for all R′i such that fi(R

′
i, R−i) 6= a:

[fj(R) = a] =⇒ [fj(R
′
i, R−i) = a] for all j ∈ N

Limited influence merits more discussion. LIN1, which is essentially non-bossiness, negates any
effect that an agent can have on other agents’ assignments in cases where she does not change
her own assignment. Its main justification is that it keeps the distribution of influence in the
allocation process from unduly depending on any one agent. Another justification has to do with
its strategic effects. Also, its original use by Satterthwaite and Sonnenschein (1981) is on the basis of
considerations of informational simplicity. Non-bossiness disqualifies rules in exchange economies
that “assign all the resources to one or the other of two agents depending upon some arbitrary
feature of some third agents preferences.”9. However, Thomson (2014) also notes that its main
value is in providing technical support for characterisation results.

LIN2 negates any effect that an agent can have on the assignment of a project that she also
desires but cannot obtain. Suppose that there is an agent and a project she desires. For whatever
reason, she is not assigned this project. Then for any reported preference in which she does not
get assigned that project, it should not be the case that she can influence who else gets or does
not get that project. In a sense, it says that if the agent does not have the ‘rights’ to that project,
then she should not be able to influence who else has those rights.

Both LIN1 and LIN2 have the most effect when used in conjunction with strategy-proofness
(Thomson (2013)). To see this, suppose that an agent is unable to affect his assignment to his
advantage by misrepresenting his or her preferences. Then strategy-proofness is met for this agent.
Such a misrepresentation may yet affect some other agents assignment. If this other agent benefits
from it, there is an incentive for the second agent to approach the first agent and suggest the
manipulation. LIN1 applies to cases where an agent is unable to change her own assignment at all,

9See Thomson (2014)
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while LIN2 applies to cases where the misrepresentation does not yield the desired project (which
is ensured by strategy-proofness).

LIN2 is very similar to a condition used by Pápai (2000). In fact, LIN1 and LIN2 play an
important role in the characterisation of inheritance rules. In that paper, LIN2 is not assumed
directly, and instead emerges as a consequence of the combination of strategy-proofness, non-
bossiness and an additional condition called reallocation-proofness. Reallocation-proofness “rules
out the possibility that two individuals can gain by jointly manipulating the outcome and swapping
objects ex post, when the collusion is self-enforcing in the sense that neither party can lose by
reporting false preferences in case the other party does not adhere to the agreement and reports
honestly”.10 The corresponding version of reallocation-proofness in this model is complicated, and
so we do not use reallocation-proofness. We instead take LIN2 to be a primitive requirement of the
rule.

There are important single-unit object allocation rules in the literature that satisfy LIN1 and
LIN2 and others that do not. As mentioned above, inheritance rules satisfy both axioms. Therefore
so do sequential and serial priority rules. However, the Deferred Acceptance (DA) rules and their
generalisations typically do not satisfy either condition. It is possible for an agent in the DA rule to
affect the assignment of an object even when she cannot obtain it herself, whether she changes her
assignment as a result or not. Thus it is a non-trivial condition to impose on project allocation rules.
Moreover, the two conditions are independent, as we demonstrate by examples in Section 2.8.1.

Group-strategy-proofness is a stronger condition than strategy-proofness. It ensures that groups
of agents do not have profitable deviations, i.e., if a group of agents deviates by reporting different
preferences, then a group-strategy-proof rule ensures that it is not the case that all agents in the
deviating group are at least as well off as before, and some agent strictly better off. Formally, a P-
PAR f is group-strategy-proof if, for all profiles R, there does not exist a set of agents M ⊆ N , and a
preference sub-profile R′M , such that fi(R

′
M , R−M )Rifi(R) for all i ∈M , and fj(R

′
M , R−M )Pjfj(R)

for some j ∈M .
In a wide class of assignment models, including ours, group-strategy-proofness is equivalent

to the combination of strategy-proofness and non-bossiness. We reproduce the proof from Pápai
(2000) here.

Lemma 1. A P-PAR is group-strategy-proof if and only if it is strategy-proof and non-bossy.

Proof : It is clear that group-strategy-proofness implies strategy-proofness (let the group size be
unity). To see that it implies non-bossiness as well, consider a preference profile R, agents i, j ∈ N ,
and preferences R′i such that fi(R

′
i, R−i) = fi(R) but fj(R

′
i, R−i) 6= fj(R). Since preferences are

strict, either fj(R
′
i, R−i)Pjfj(R) or fj(R)Pjfj(R

′
i, R−i). In the first case, agents i, j can manipulate

at R via (R′i, Rj), and in the second case, agents i, j can manipulate at (R′i, R−i) via (Ri, Rj). In
either case, group-strategy-proofness is violated.

To show the converse, let f satisfy SP and NB. Consider a subset of agents M , a preference
profile R and a sub-profile R′M , such that for all i ∈ M , we have that fi(R

′
M , R−M )Rifi(R). For

each i ∈ M , consider a preference ordering R̂i such that we move her assignment fi(R
′
M , R−M )

to the top of her preference R̂i, and leave the other projects ranked the same as they are in Ri.
By SP, fi(R̂i, R−i) = fi(R). Hence by NB, f(R̂i, R−i) = f(R). Repeating for all agents in M ,
we have that f(R̂M , R−M ) = f(R). Also, by SP and NB, f(R̂M , R−M ) = f(R′M , R−M ). So
f(R′M , R−M ) = f(R), and f is group-strategy-proof. �

10See Pápai (2000).

32



2.8. AXIOMS FOR PAIRWISE PROJECT ALLOCATION RULES

Thus by requiring our rule to satisfy strategy-proofness and limited influence, we ensure that
the rule is group-strategy-proof.

For any preference Pi and any subset X ⊆ Z, let top(Pi, X) denote the top project in X
according to Pi. When we mean the top-ranked project from the full set Z, we will often suppress
the set notation and refer to it simply as top(Pi). Correspondingly, for a preference profile P , let
top(P,X) denote the N -dimensional vector of top-ranked projects in X according to preferences in
P . Similarly, top(P ) is the vector of top-ranked projects in Z according to preferences in P .

Unanimity is a full-range condition which says that if agents’ preferences are such that it is
feasible to give each agent her top-ranked project, then the mechanism must do so. In our model,
this means that if the vector of top-ranked preferences in a particular profile is such that agents are
naturally divided into m pairs, then a mechanism satisfying unanimity must prescribe those exact
pairs. Formally:

Axiom 3. A P-PAR f is unanimous (U) if, for all preference profiles R:

[top(R) ∈ A] =⇒ [f(R) = top(R)]

A stronger condition than unanimity is Pareto efficiency. We say that an assignment is Pareto
efficient if it is not possible to make an agent strictly better off while keeping all agents at least as
well off as earlier. Formally, a P-PAR f is Pareto efficient if, for any preference profile R, there is
no feasible assignment x ∈ A such that xiRifi(R) for all i ∈ N , with xjPjfj(R) for some j ∈ N .

The combination of strategy-proofness, limited influence and unanimity gives us Pareto effi-
ciency. Pápai (2001) proves a very similar result using a condition called citizen sovereignty, which
is weaker than unanimity.

Lemma 2. A P-PAR satisfying strategy-proofness, non-bossiness and unanimity is Pareto efficient.

Proof : Let f be strategy-proof, non-bossy and unanimous, and let R be a preference profile.
Suppose f(R) is not a Pareto efficient assignment. Then there exists some feasible assignment
x ∈ A such that xiRifi(R) for all i ∈ N and xjPjfj(R) for some j ∈ N . Construct a preference
profile R̂ from R such that for all agents i, xi is ranked top in R̂i while other projects are ranked
the same as in Ri.

Consider some agent i and the profile (R̂i, R−i). By strategy-proofness, fi(R̂i, R−i) = fi(R),
and so f(R̂i, R−i) = f(R) by non-bossiness. Repeating for all agents, we have that f(R̂) = f(R).
By construction, top(R̂) = x. Since x ∈ A, by unanimity we have that f(R̂) = x. But x 6= f(R).
This is a contradiction. Hence f(R) is Pareto efficient. Since R was arbitrary, f(R) is Pareto
efficient for all R and so f is a Pareto efficient rule. �

Neutrality ensures that a rule treats all projects symmetrically, and does not distinguish between
them on the basis of their names. That is, if for a particular preference profile we were to perform
a swap operation on a pair of projects, exchanging their positions in each agent’s preferences, then
such a swap must reflect exactly in the final assignments as well. When this is true for all projects
and all profiles, we say a mechanism is neutral. Formally:

Axiom 4. A P-PAR is neutral (NEU) if, for all preference profiles R and all permutations11 π of
Z:

f(πR) = πf(R)

11A permutation applied to a collection of objects X is a bijection π : X → X that associates each object in X with
a unique object in X (possibly itself). In our case, we use it to mean a relabelling of projects such that a collection of

33



CHAPTER 2. EFFICIENT PAIRWISE ALLOCATION VIA PRIORITY TRADING

2.8.1 Independence of Axioms

To show that these axioms are independent, we now provide examples of rules satisfying all but
one of the axioms in turn.

Strategy-proofness: Consider a rule that operates like a PT rule with the following modification.
There are three agents {i, j, k} such that for any preference profile R, if top(Ri) = top(Rj)
then the preferred partner for agent i is j, and is k otherwise. Also, j is not in the primary
list at any interim state s. Let R be a profile where top(Ri) = top(Rk) = a, top(Rj) = b
and a is ranked second in Rj , and a and b are the last two projects in the preferences of all
other agents. Then aPjfj(R). But j can manipulate via a preference R′j in which a is ranked
top, since fj(R

′
j , R−j) = a. This rule violates strategy-proofness. It is easy to check that it

satisfies limited influence, unanimity and neutrality.

Limited influence 1: Consider a rule like the PT rule, but with the following modification. Let
the first pairing in the null state be (1, 2). If agents 1 and 2 are assigned the same project, and
if their second-ranked projects are the same, then the first pairing for the next state is (i, j),
whereas if the second-ranked projects in their preferences differ, then the first pairing for the
next state is (k, l), where i 6= j 6= k 6= l. Like the PT rule, this rule satisfies strategy-proofness,
unanimity, neutrality and limited influence 2, but violates LIN1, i.e., is bossy.

Limited Influence 2: Let N = 6 and q = 2. Consider a rule that works like the PT rule,
with the following modifications. Let R be a profile. The first pairing for the null state is
(1, 2). If top(R1) 6= top(R2), we look at agent 3’s preferences. If top(R3) = top(R1) and
the second-ranked project in R3 is distinct from top(R2), then the second pairing is (1, 4).
If top(R3) = top(R1) and the second-ranked project in R3 is the same as top(R2), then the
second pairing is (1, 5). We specify the rest of the entitlements suitably.

Consider the preference profiles R and R′ given below. The assignments are given in boxes.

R

1 2 3 4 5 6

a b a a a a

c d b d d d
d c c b c c
b a d c b b

R′

1 2 3 4 5 6

a b a a a a
c d c d d d
d c b b c c

b a d c b b

projects exchange their names. For example, under π, project a may now be called project b (π(a) = b), which is now
called project c (π(b) = c), which in turn is called project a (π(c) = a). The permutation π applied to a preference
profile R (written as πR) or an assignment vector x (written as πx) permutes the projects in the preferences or the
assignment according to the permutation applied to the underlying set of projects Z.
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Note that from R to R′ only agent 3’s preferences change. She does not get a which she
prefers to her assignment, but still affects the assignment of a (to agent 5 in R and agent 4 in
R′). Thus this rule violates LIN2. It is easy to see that it satisfies strategy-proofness, LIN1,
unanimity and neutrality.

Unanimity: Consider a rule12 that divides agents into fixed pairs M1, ...,Mm and indexes one
agent i(Mi) in each pair. For any preference profile R, run the sequential priority rule with
agents i(Mi). Whatever project they select becomes the assignment of the corresponding
pair Mi. This rule violates unanimity. It is easy to check that it satisfies strategy-proofness,
limited influence and neutrality.

Neutrality: Consider a rule that works like the PT rule, with the following modification. There
is a set of agents {i, j, k} and projects a, b such that for any profile R with top(Ri) = a,
i ∈ α(s0), where s0 is the null state, the first pairing for S0 is (i, j), and for any profile R′

such that top(R′i) = b, the first pairing for s0 is (i, k). This rule violates neutrality. It is easy
to check however that it satisfies strategy-proofness, limited influence and unanimity.

2.9 Characterisation Result

We are now ready to state our main characterisation theorem.

Theorem 1. A pairwise-project assignment rule is strategy-proof, unanimous, neutral and satisfies
limited influence if and only if it is a partner trading rule.

The proof is in the appendix. Here we provide the intuition behind the arguments of the proof.

2.9.1 Sufficiency

We begin by proving two lemmas. The first says that if there is an agent and a project she desires
over her assignment at a profile, then this project must either have been fully assigned by the PT
rule at an earlier stage, or if this project is not assigned at all, then m different projects must have
been at least partially assigned by the time she gets her assignment. The second lemma shows
that an agent cannot affect the assignment of any agent who receives her project in a stage before
when this agent is assigned her project. We use these lemmas to show that the PT rule satisfies
the axioms.

• Strategy-proofness: Suppose for a profile there is an agent who prefers some project to her
own assignment. Either this project is assigned at that profile or it is not. If it is, then by the
lemma it must have been fully assigned at a stage before when this agent gets her assignment.
If it is not assigned to anyone, then m different projects must have already been assigned by
that stage, by the same lemma. Since no agent can affect the assignment of any agent who
is assigned a project at an earlier stage, a unilateral deviation on the part of this agent will
not get her the project, and strategy-proofness is satisfied.

12This rule is identical to the one proposed by Rhee (2011).

35



CHAPTER 2. EFFICIENT PAIRWISE ALLOCATION VIA PRIORITY TRADING

• Limited influence 1: It can easily be seen that no agent can be bossy with another agent who
receives her assignment at an earlier stage or the same stage (by the second lemma). We
show that no agent can be bossy with an agent who receives her assignment at a later stage.
This involves showing that the entitlement at this stage is a function only of the agents who
receive their assignments and the projects they receive. As long as this agent receives the
same project, the entitlement remains the same. Thus the assignments at the next stage are
independent of this agent. And the same is true for all later stages as well. Thus the earlier
agent cannot affect the assignment of the later agent.

• Limited influence 2: If there is a project that this agent prefers, then it is being assigned at
an earlier stage than when she gets her assignment. Thus she cannot affect the assignment
of this project to earlier agents even if she receives a different project later. The same is true
if the project is not assigned to anyone at all.

• Unanimity: The PT rule makes assignments based on the top-ranked projects of agents among
projects not fully assigned. Thus for a unanimous profile, agents are only ever assigned their
top-ranked projects, and so the allocation must be the vector of top-ranked projects.

• Neutrality: It is easy to see that neither the entitlement nor the iterative procedure of the
PT rule depends on the identity of the project. Thus for any profile R and any reshuffling of
the names of projects, the allocation must incorporate the reshuffling as well, as the various
partners remain the same.

2.9.2 Necessity

To prove the converse, we have to show that any rule satisfying the axioms is a PT rule. This requires
two steps: One, we construct the entitlements for any state. Two, we show that assignments are
made for any preference profile via the iterative procedure using those entitlements.

First we construct the entitlements for any state.
We show that for any interim state there is a pair of agents that can guarantee the assignment

of any unassigned project among themselves by declaring it their top option. The proof begins
by showing that for an identical preference profile, Pareto efficiency implies that some pair gets
the top-ranked project. We then show that strategy-proofness and limited influence mean that no
other agent can affect the assignment of this pair. Neutrality then implies that this is true for all
unassigned projects. Since our selection of interim state was arbitrary, this allows us to construct
the pairing for all such states.

We prove a ‘trading’ lemma that allows us to trace the sequence in which acceptable pairings
may be found. We also prove a lemma that states that any pair of agents that can guarantee a
project between them must have at least one of them receiving a weakly preferred project to that
one.

We use these lemmas to construct the acceptable pairings for any state. We also order them,
generating the proposal, and identify the primary and preferred partner lists for each state.

After this, we build the partner inheritance table for each trading state. For any interim state,
we show that any project assigned to only one agent must have another agent who is the preferred
partner. We show that trade must happen wherever possible, and so repeating for all unpartnered
agents and all subsets of remaining agents, we are able to generate the inheritance paths for each
unpartnered agent for that trading state, thereby generating the partner inheritance table.
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Collectively, this gives us the entitlement for each state.

Finally, we show that the rule satisfying the axioms must behave like a PT rule. That is,
using the entitlements generated above, we show that the rule prescribes assignments in stages in
a manner consistent with the iterative process specified by the PT rule. This completes the proof.

2.10 Conclusion

In this paper we have developed a rule to make assignments in the pairwise project allocation
framework. We have shown that this PT rule specifies a class that is characterised by the properties
of strategy-proofness, limited influence, unanimity and neutrality. In what follows, we discuss some
possible extensions of this model.

The first target of any extension of this rule will be from pairwise allocation to arbitrary
group sizes, i.e., where each project must be assigned to exactly q agents or to nobody, where
1 ≤ q ≤ |N |.13

Note that assuming q = 1 returns us to the classical object allocation setup. Following from
the work of Svensson (1999), it is straightforward to show that our rule would translate into serial
dictatorships. At the other extreme, when q = |N |, such that each project must be assigned either
to everyone or no one, we return to the public goods setting, and our rule will become a dictatorship
in the sense of Gibbard (1973) and Satterthwaite (1975).

Thus the problem effectively becomes one of determining what happens when 2 < q < |N |. In
principle, this would involve expanding the components of the entitlement and then refining the
iterative procedure to handle larger groups.

As far as expanding entitlements is concerned, some tasks are easier than others. The definition
of a pairing can easily be generalised to account for larger group sizes that can commonly guarantee
a top-ranked project. The existence of such a larger group for any interim state is also easy to
show.

One difficulty lies in specifying proposals. In our model, proposals are orderings over pairs of
agents. When considering larger groups, however, there is more than one agent who can join any
agent who receives a project. In fact, more than one agent must join any agent who receives a
project. Thus the notion of a proposal cannot be used directly. We have some insight but not a
clear picture about how this would work.

Difficulties also arise when considering a possible TTC round. More than one agent may be
the preferred partner of an unpartnered agent. These agents have no a priori distinction. Thus if
there is some other agent who desires this partner in a TTC round, she has more than one option
of agent to point to. Determining which trade, if any, is honoured in this case is a non-trivial
exercise. The presence of possibly multiple overlapping cycles will require the use of a tie-breaker
or the introduction of some other component of an entitlement. We have not found a way around
this problem yet.

Other extensions, even in the pairwise framework, would be to obtain a full characterisation of
group-strategy-proof and Pareto optimal rules. This will require dropping the axioms of neutrality
and LIN2. Dropping neutrality will spread the pairwise ‘ownership’ of each project to possibly a
different pair of agents. Dropping LIN2 leaves the rule in a possibly endogenous situation, where
the preferences of other agents could influence the initial pairings. These remain open problems.

13 Another related extension would be to drop the requirement that each project have the same exact capacity
constraint.
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2.11 Appendix: Proof of Theorem 1

In this section we present the proof of our main characterisation theorem.

2.11.1 Sufficiency Proof

We must show that the PT rule satisfies the axioms.

Lemma 3. Let fΓ be the PT rule, let R be a profile, let i be some agent and a ∈ Z a project such
that aPif

Γ
i (R). Suppose i receives her assignment in stage k. Then, by some stage k′ < k, either

(1) a is fully assigned, or (2) m different projects are assigned to other agents.

Proof : Let fΓ be the PT rule, let R be a profile, let i be some agent and a ∈ Z a project such
that aPif

Γ
i (R). Note that at any stage of the PT rule, an agent gets her assignment by virtue

of her top-ranked project from those that are available, whether as a part of a proposal or by
trading. Suppose i receives her assignment fi(R) in stage k. She gets it by pointing to fi(R). By
the properties of the PT rule, this means that project a is no longer available in stage k otherwise
she would be pointing to it instead. Thus if project a is assigned to other agents, it must have
been fully assigned by at most stage k − 1. Alternatively, project a is no longer available because
m other projects have been assigned. Again, this must have happened at most by stage k − 1. �

Given a preference profile R and agents i and j, we say that agent i affects the assignment of
agent j if, for some R′i, we have that fi(R

′
i, R−i) = fj(R) but fj(R

′
i, R−i) 6= fj(R).

Lemma 4. Let fΓ be a PT rule. For any profile R, consider agent i and let k be the stage in which
she receives her assignment. Then i cannot affect the assignment of any agent j who receives her
assignment in a stage earlier than k.

Proof : The null state entitlement is given exogenously and does not depend on agent i. Assign-
ments in the first stage are based on preferences of agents that receive their assignments in that
stage. Agent i cannot influence their preferences, and cannot influence the order in which pairings
are evaluated, and so she cannot influence their assignments. Thus she cannot affect the state after
the first stage, and cannot affect the entitlements in the second stage either. Let the state at any
stage k′ < k be given. Assignments are based on preferences of agents other than i. Agent i cannot
affect their preferences, the order of proposals, or assignments. Thus the state in k′ + 1 is given
independently of i. So are entitlements. By induction this is true for all k′ < k. So agent i cannot
affect any assignments made in stages before when she gets her assignment. �

Strategy-proofness: Let R be a profile, a some project and i an agent such that aPifi(R).
Suppose i gets her assignment in stage k. There are two possibilities: (1) fM (R) = a for some
M . Then by Lemma 3 agents in M are assigned project a before stage k. (2) fj(R) 6= a for
all j ∈ N . By Lemma 3, this means that m distinct projects have been assigned by stage k.
Since by Lemma 4, agent i cannot affect the entitlement at any earlier stage, she cannot get
a for any preference R′i. Thus in each case a unilateral deviation will not get her the project,
and SP is satisfied.
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Limited influence 1: It can easily be seen that no agent can be bossy with another agent who
receives her assignment at an earlier stage or the same stage, since by Lemma 4 she cannot
affect the assignments at earlier stages. To see that an agent cannot affect the assignment of
later agents without changing her own assignment, see that the entitlement formed at the end
of the stage where she receives her assignment depends on the identities of agents receiving
their assignments in that stage and the projects they receive. She cannot affect any other
agent who receives her assignment in the same stage without changing her own assignment.
So if she continues to get the same project, the state at the end of the stage remains the same,
and so does the entitlement. Later entitlements are independent of her preferences. So she
cannot affect the assignment of any subsequent agent as long as she gets the same project.
Thus fΓ satisfies LIN1.

Limited influence 2: Let R be a profile, i some agent and some project a such that aPifi(R). If
a is assigned by the PT rule for R, then by Lemma 3, there is some pair M and some stage
k where both agents in M have received a as their assignment. Since by Lemma 4 agent i
cannot affect entitlements at earlier stages, she cannot affect the assignment of this project
to earlier agents as long as they desire it. This is true even if she were to receive some other
project. If a is not assigned to any agent for R, then by Lemma 3, m different projects have
already been assigned, and agent i cannot influence the assignment of project a. Thus fΓ

satisfies LIN2.

Unanimity: Let R be a unanimous preference profile. At any stage, an agent participating in
a proposal or a partner inheritance table does so via her top-ranked project among those
that are not fully assigned. Thus every assignment that is made is the respective agent’s
top-ranked project. So fΓ(R) = top(R), and fΓ is unanimous.

Neutrality: It is easy to see that neither the entitlement nor the iterative procedure of the PT
rule depends on the identity of the project (it does depend on the identity of the agents).
Thus for any profile R and any permutation π of Z, we have that fΓ(πR) = πfΓ(R) and so
fΓ is neutral.

2.11.2 Necessity Proof

We start by showing that at any interim state there is a pair of agents that can guarantee their
own assignment of any unassigned project by commonly declaring it as their top-ranked project.

Lemma 5. Consider an interim state s with m′(s) ≥ 1. Fix preferences of agents in N(s) as RN(s).
Let f satisfy SP, LIN, U and NEU. Then there exists a pair of agents M(s) ⊆ N̄(s) such that, for
any RN̄(s) and any a ∈ Z̄(s), [top(RM(s)) = (a, a)] =⇒ [fM(s)(R) = (a, a)].

Proof : Let R be a profile such that RN(s) is as given and Ri = Rj for all i, j ∈ N̄(s). Without loss
of generality, let top(RN̄ (s)) = (a, a, ..., a), with a ∈ Z̄(s). Since f is Pareto efficient and m′(s) ≥ 1,
there must exist a pair of agents M ⊆ N̄(s) such that fM (R) = (a, a). Let R′

N̄(s)\M be an arbitrary

sub-profile for agents in N̄(s) \M . We will first show that fM (RN(s), RM , R
′
N̄(s)\M ) = (a, a).

Pick a j ∈ N̄(s) \ M and consider the sub-profile (R′j , R−j). Since aPjfj(R), SP implies
that fj(R

′
j , R−j) 6= a. If fj(R

′
j , R−j) = fj(R) then f(R′j , R−j) = f(R) by LIN1. In particu-

lar, fM (R′j , R−j) = (a, a). Instead, suppose fj(R
′
j , R−j) 6= fj(R). Then [fM (R) = (a, a)] =⇒

[fM (R′j , R−j) = (a, a)] by LIN2.
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Repeating for all other agents in N̄(s) \M , we have that fM (RN(s), RM , R
′
N̄(s)\M ) = (a, a).

It follows from SP and LIN1 that this is true for any RM with top(RM ) = (a, a). Since f satisfies
NEU, this is true for all a ∈ Z̄(s). Thus, for any preference sub-profile RN̄(s) and any a ∈ Z̄(s)
with top(RM ) = (a, a), we have that fM (R) = (a, a). Set M(s) = M as determined above. �

For convenience, we shall denote the pair M(s0) where s0 is the null state as M∗.

Next, we define the notion of the pair-option-set. Fixing a sub-profile of preferences of other
agents, the pair-option-set of a pair M at that sub-profile is the set of projects that it can receive
if both agents in the pair list it as their top preference. Formally:

Definition 1. Let M be a pair of agents, and let R−M be an arbitrary sub-profile for the other
agents. The pair-option-set of M at R−M is denoted oM (R−M ) such that:

oM (R−M ) = {a ∈ Z|∃R′M : [top(R′M ) = (a, a)] =⇒ [fM (R′M , R−M ) = (a, a)]}

We now state and prove a lemma that will be useful in constructing proposals. Lemma 6
identifies conditions under which agents in pairs with a non-empty pair-option-set can ‘trade’
projects with each other. In particular, if there are two pairs with non-empty pair-option sets and
at least one agent claims the project associated with the opposite pair, then a rule satisfying our
axioms must honour the swap. Formally:

Lemma 6. Let f satisfy SP, LIN and U. Let R be a profile. For a pair of agents M = {i, j},
suppose that top(Ri) = a and top(Rj) = b, and let a ∈ oM (R−M ). If there is a pair M ′ = {k, l}
such that top(Rk) = top(Rl) = a and b ∈ oM ′(R−M ′), then fj(R) = b and fk(R) = a or fl(R) = a.

Proof : Suppose for contradiction that bPjfj(R). Construct R′j such that b and a are ranked
first and second, and all other projects are ranked the same as in Rj . By SP, fj(R

′
j , R−j) 6= b.

Since a ∈ oM (R−M ), we have that fM (R′j , R−j) = a. Note that aPkfk(R
′
j , R−j), aPlfl(R

′
j , R−j)

and b ∈ oM ′((R
′
j , R−{N\{M ′∪{j}}})). Construct R′k, R

′
l such that a and b are ranked first and

second respectively, and all other projects are ranked the same as in Rk, Rl respectively. By SP,
fk,l(R

′
{j,k,l}, R−{j,k,l}) 6= a.

As b ∈ oM ′((R′j , R−{N\{M ′∪{j}}})), it follows that fM ′(R
′
{j,k,l}, R−{j,k,l}) = (b, b). By LIN, we

have that fj(R
′
{j,k,l}, R−{j,k,l}) = a. This violates PE as agent j and either k or l can swap assign-

ments making them both strictly better off while keeping other agents as well off as before. This is
a contradiction. So fj(R

′
{j,k,l}, R−{j,k,l}) = b. But b ∈ oM ′((R′j , R−{M ′\{j}})), so at least one of k, l

must get something they strictly prefer to b. Without loss of generality, let fk(R
′
{j,k,l}, R−{j,k,l}) = a.

By SP and LIN, this means that fj(R) = b and fk(R) = a. �

We prove another useful lemma. Lemma 7 says that if f satisfies SP, LIN and U, then for
any preference profile and any pair of agents with a non-empty pair-option-set, at least one agent
in the pair must be assigned a project that she weakly prefers to her top-ranked project in the
pair-option-set. Formally:

Lemma 7. Let f satisfy SP, LIN and U. Let R be a preference profile and let M be a pair of agents
such that oM (R−M ) 6= ∅. For each i ∈ M , let ai = top(Ri, oM (R−M )). Then fj(R)Rjaj for some
j ∈M .
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Proof : Let f satisfy SP, LIN and U, let R be a preference profile and let M be a pair of agents
with oM (R−M ) 6= ∅. Let ai = top(Ri, oM (R−M )) for each i ∈ M . Define Y = {ai|i ∈ M}. It
follows that 1 ≤ |Y | ≤ 2.

Case 1: Suppose |Y | = 1. Let Y = {b}, i.e., ai = b for all i ∈ M . For contradiction, suppose
that bPifi(R) for all i ∈M . For each i ∈M , construct R′i such that b is the top-ranked project in
R′i and all other projects are ranked the same as in Ri. Consider some j ∈M . Since bPjfj(R), by
SP and LIN1 it follows that f(R′j , R−j) = f(R). Repeating for the other agent in M , we get that
f(R′M , R−M ) = f(R). In particular, fM (R′M , R−M ) 6= (b, b). But b ∈ oM (R−M ), so by definition
top(R′M ) = (b, b) implies fM (R′M , R−M ) = (b, b). This is a contradiction. So fi(R)Rib for at least
one agent i ∈M .

Case 2: Suppose |Y | = 2. Let M = {i, j} and without loss of generality let top(Ri) = a and
top(Rj) = b. For contradiction, suppose that aPifi(R) and bPjfj(R). Consider agent i. Construct
R′i such that a and b are ranked first and second in R′i, and all other projects are ranked the same
as in Ri. It follows from SP that fi(R

′
i, R−i) 6= a. Since b ∈ oM (R−M ), we have by SP and LIN1

that fM (R′i, R−i) = (b, b). For agent j, construct R′j such that b and a are ranked first and second
respectively, and other projects are ranked the same as in Rj . It follows from SP and LIN1 that
fM (R′M , R−M ) = (b, b).

Instead, consider agent j and the profile (R′j , R−j). By a symmetric argument, fM (R′j , R−j) =
(a, a). And repeating for agent i, we have that fM (R′M , R−M ) = (a, a). We thus have two outcomes
for M at the same preference profile. Since a 6= b, this is a contradiction. Thus fi(R)Ria or
fj(R)Rjb. �

Corollary 1. For every R there is an i ∈M∗ such that fi(R) = top(Ri).

Proof : By Lemma 5, for every a ∈ Z and every R−M∗1 , a ∈ oM∗(R−M∗). �

Proposal Vector

In what follows we show how to generate the proposals for an arbitrary interim state.

1. Let s be some interim state, and let m′(s) ≥ 2.

2. By Lemma 5, there exists a pair of agents M(s) ⊆ N̄(s) such that a ∈ oM(s)(R−N̄(s)\M(s)) for

all R−N̄(s)\M(s)) and all a ∈ Z̄(s). Without loss of generality, let M(s) = {1, 2}.

3. Note that, by Lemma 5, for all RM(s) with top(R1, Z̄(s)) = top(R2, Z̄(s)) = a, we must have
that fM (s) = (a, a), for all a ∈ Z̄(s). Thus (1, 2) and (2, 1) are both acceptable pairings by
the definition above.

4. Consider agent 1. Consider a sub-profile RN̄(s) where top(R1) = b and a is ranked second,

and top(Rk) = a for all k ∈ N̄(s), k 6= 1. By Lemma 6, f1(R) = b. By PE, there is a pair
M1 ⊂ N̄(s) such that fM1(R) = a.

Claim 1. For any RN̄(s) and c, d ∈ Z̄(s), if top(R1) = c and top(RM1) = (d, d), then f1(R) = c
and fM1(R) = (d, d).
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Proof : Let RN̄(s) be as in the construction above. Then we have f1(R) = b and fM1(R) = a.
Consider any agent k 6= 1 and k 6∈ M1, and let R′k be some arbitrary preference. We
have that aPkfk(R). So by SP, fk(R

′
k, R−k) 6= a. By LIN, fM1(R′k, R−k) = (a, a). Sup-

pose f1(R′k, R−k) 6= b. Then by Lemma 5, f1(R′k, R−k) = a. This contradicts LIN. Thus
f1(R′k, R−k) = b. Repeating for all other agents, we get that assignments of agent 1 and
agents in M1 are independent of other unassigned agents’ preferences. By neutrality, this
must be true for all such configurations of preferences. In particular, for any c, d ∈ Z̄(s), if
top(R1) = c and top(RM1) = (d, d), then f1(R) = c and fM1(R) = (d, d). �

5. So M1 is an acceptable pairing, by definition. Now, consider agent 2. Consider a sub-profile
RN̄(s) where top(R2) = b and a is ranked second, and top(Rk) = a for all k ∈ N̄(s), k 6= 2.

By Lemma 6, f2(R) = b. By PE, there is a pair M ′1 ⊂ N̄(s) such that fM ′1(R) = a.

6. By the reasoning in Claim 1 above, M ′1 is also an acceptable pairing.

7. Now, fixing the preferences of earlier agents, we can repeat the above step for each acceptable
pairing (once for each agent in the pairing) to get the next acceptable pairing. We must take
care to vary the top-ranked projects for each agent in the pairing so that they are distinct
from the top-ranked projects of the agents whose preferences we have already fixed.

8. Repeating in this way, we can generate all acceptable pairings. We end up in a situation
where there are m′(s) agents with distinct top-ranked projects, which they are all assigned,
and this does not depend on the preferences of other agents. This produces the primary list
for this state.

9. Now it remains to order them. The agents in the primary list are ordered by the sequence
in which they were fixed. Their proposals are ordered by the sequence in which they were
considered. The reciprocal pairings are suitably inserted. The first partner for each primary
agent is the preferred partner, thereby generating the preferred partner list.

10. It is easy to see that Conditions PA1-PA3 are satisfied by the pairings and Conditions PR1-
PR3 are satisfied by the proposal.

Partner Inheritance

Let s be a state and R be a profile. Let E(s) = (∅, ..., ∅). For each partially assigned project
a ∈ Ẑ(s), let i be the agent such that si = a. With no loss of generality, let a = top(Ri). Construct
a sub-profile R′

N̄(s)
such that a = top(R′j) for all j ∈ N̄(s). It must be that fk(RN(s), R

′
N̄(s)

) = a

for some k ∈ N̄(s). Repeating for all other unpartnered agents, we have the first preferred partners
for each. Fixing the assignments of each of them in turn, we can construct the rest of the partner
inheritance table. Thus we have E(s) for this state.

It is easy to check that the partner inheritance table E(s) satisfies (E1-E3). To see that E4 is
also satisfied, consider any agent and any unpartnered agent that she is the preferred partner for.
Note that from the construction above, other agents prefer the project but cannot get it. Thus by
LIN they cannot affect the assignment of this project. So at all other states where this project is
partially assigned to the same agent, and this agent remains unassigned, she can claim that project
when she desires it.
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Entitlements

For any interim state, we use the above steps to generate the primary list, the preferred partner list
and the proposals. Similarly, for any trading state, we can generate the partner inheritance table.
Thus we can get the complete entitlement.

Iterative Procedure

It remains to show that the assignments must work as described, in that the iterative procedure
must be followed. Let R be a preference profile and let Γ be the entitlements as determined above.

Assignments at stage 1:
The null state s0 is an interim state. We use the proposal generated above to find the first

acceptable pairing. If there is no acceptable pairing, then all agents in the primary list are assigned
their (distinct) top-ranked projects.

Assignments at stage k + 1:

Let the state sk be the partial allocation up to stage k. The entitlement (α(sk), β(α(sk)),�sk
, E(sk)) is specified by construction. Fix the preferences and assignments of agents receiving their
assignments up to and including stage k.

If sk is a trading state, then for all i ∈ Ê(sk) and a ∈ Êi(sk), if top(Ri, Z̄(sk) ∪ Ẑ(sk)), then
we have that fi(R) = a. If there is a set of agents (i1, ..., ik ≡ i1), with ij ∈ Ê(sk) for all j, and
aij ∈ Êij (sk) such that aij−1Pijaij for all j, then if fij (R) 6= aij−1 for any j then PE is violated.
Thus all trades must occur.

Instead, if sk is an interim state, we use the proposal generated above to find the first acceptable
pairing. If there is no acceptable pairing, then all agents in the primary list are assigned their
(distinct) top-ranked projects. Stop if the resulting state is a terminal state. Otherwise update the
state and go to the next stage.

In each stage at least one agent receives an assignment. Thus the procedure is guaranteed to
terminate in a finite number of steps. Moreover, assignments are made in according with the PPT
rule procedure. This completes the proof.
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3

Fair Allocation with Exact Capacity Constraints

3.1 Introduction

A premier engineering college in New Delhi, India, offers as a part of its course structure a number
of optional courses or ‘electives’ from the social science department. Every student, in addition to
his or her core science and engineering courses, must complete over the five years of the program
a certain number of such electives. The social science department offers a variety of courses, from
history to political science to philosophy, even economics.

However, as facilities and faculty are limited, so are the total number of courses offered in any
particular term. Thus the college stipulates that a student may opt for only one elective in a term,
so that there are enough seats in a term for everybody who desires one.

It is not feasible to offer a course if there are few takers for it, because of the cost of time and
facilities. The college wishes to offer only those courses that are enough in demand. Thus there
is in effect a minimum capacity constraint operating on a course, such that the college finds it
infeasible to offer the course to fewer students than that. Also, since classroom or laboratory sizes
are limited, there is a maximum number of students that each course can accommodate.

The college wishes to give priority for these electives to students in their second and third years
of the program. It feels this is an appropriate time to finish the elective requirements, as the last
two years are typically very intensive in the chosen specialisations. Within this broad preference
for students by year, the college gives priority to students with a higher GPA, and also sometimes
to a subject-specific progression of prerequisites. Thus, for example, a second year student with
a 3.6 GPA who has done elementary microeconomics could be given priority for intermediate
microeconomics over a fourth year student with a 3.8 GPA.

Before the start of each term, the college asks students to submit their preferences over some
potential set of courses to be offered in that term. Based on this information, plus the capacities
and the priorities of the various courses, it must prescribe the course allocation for that term. How
should it do so?

In this paper we model such a situation. In particular, we look at the case where a college
wishes to offer a selection of courses to its students and requires that each student sign up for
exactly one of these courses. In turn, each course has a minimum and maximum capacity and
can admit students only within those capacities. For the sake of this paper we make the further
assumption that the minimum and maximum capacities for all courses are equal, and the same.
That is, for example, each course may admit only exactly twenty-five students, say. While this may
seem like an overly restrictive assumption, we believe this is a natural starting point. Relaxing this
assumption will not materially change our results, though it will complicate the process.

In keeping with our motivating example, we allow for the fact that a course need not be assigned
at all.1 There are more courses available than may be feasibly assigned together, so in effect the
college must determine the solution to a two-part problem: not only must the college decide which
selection of courses from the total will be offered, but also which students will be assigned which

1This is a departure from other allocation models with minimum constraints. In these papers, each object must
be assigned up to its minimum constraint.
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course.

Course allocations are made on the basis of preference and priorities. Each student has as his
or her private information a strict ranking over the available courses, which we call a preference
ordering, or simply a preference. This information must be elicited by the college and in general
we may wish to award students their preferred courses, as far as possible. On the other hand, each
course has a strict ranking over the students, which we call a priority. In contrast to preferences,
this priority information is commonly known and fixed, and may be determined by transparent
criteria such as GPA, prerequisites, and so on. Priority information captures which students are
more eligible for which courses.

So an allocation problem for a college is a collection of students, courses, capacities, course
priorities and student preferences. It must use this information to produce a feasible allocation -
one in which each student is assigned a course, and every course is assigned to its exact capacity
(or to no one). In effect, since the first four are commonly known, the problem becomes one of
producing a feasible allocation for any combination of elicited student preferences.

The college wishes that the allocation should satisfy some desirable properties. The first class
of properties has to do with fairness. An allocation is deemed unfair for some student if there is a
course that she prefers and there is another less eligible student who is assigned that course instead
of her. The former student then can be said to have a case of justifiable envy towards the latter.
A fair process will avoid this possibility.

The second class of properties has to do with efficiency. An efficient process eliminates waste.
In particular, an allocation is inefficient if there is another allocation in which each student receives
a course she likes as much, and some student receives a course she strictly prefers. In this case we
say that the latter allocation ‘Pareto dominates’ the former.

However, it has been well documented in the literature that fairness and efficiency are incom-
patible in the most general environments. We demonstrate by example that this incompatibility
persists even in our model with exact capacity constraints.

In the model without minimum constraints, a weaker version of efficiency, called constrained
efficiency, is compatible with fairness. A constrained efficient allocation is efficient within the set of
feasible and fair assignments.2 The classical Gale-Shapley Deferred Acceptance Rule for instance
is simultaneously fair and constrained efficient. We shall describe this rule next. It will provide the
starting point for our model.

3.1.1 The Deferred Acceptance Rule

In the general model with no minimum capacity constraints, the Deferred Acceptance (DA) rule is
fair and constrained efficient. It works in a series of rounds, as follows.

In the first round, all students apply to their most preferred course. Any course that receives
more applications than its maximum capacity is forced to reject the excess students, provisionally
accepting the rest. The students that are rejected are those that are the lowest in that course’s
priority among its pool of applicants. In the next round, all rejected students apply to their next
preferred course that has not rejected them already. A course considers its existing applications
plus any fresh ones it might receive, and provisionally accepts the top students according to its
priority, rejecting the lowest ones that are excess to capacity. If any student is rejected, we go to

2If some allocation Pareto dominates a constrained efficient allocation, then it must either be infeasible or unfair
to some student.
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the next round. The rule terminates in any round in which no student is rejected. All provisional
acceptances become final.

Consider the following example. There are three agents {1, 2, 3} and three objects {a, b, c}.
Preference and priority information are given in the table below:

Priorities Preferences
a b c 1 2 3

1 2 3 b a a
2 3 1 a c b
3 1 2 c b c

In the first round, agent 1 applies to her top-ranked object b while agents 2 and 3 apply to a.
Since a has two applicants, it rejects the lower-ranked one according to its priority, which is agent
3. Agents 1 and 2 are tentatively assigned b and a respectively. In the next round, agent 3 applies
to her next preferred object, which is b. Now b has two applicants, so it rejects the lower-ranked
one according to its priority, which is agent 1. Agents 2 and 3 are tentatively assigned a and b
respectively. In the next round, agent 1 applies to his next preferred object, which is a. Again,
object a must reject one application, and so agent 2 is rejected. In the final round, agent 2 applies
to c. There are no more rejections and the rule terminates here, giving us the final allocation
((1, a), (2, c), (3, b)).

The DA rule is not directly applicable to models with minimum constraints without requiring
extra information. We shall discuss the nature of this extra information in more detail and why it
is necessary. However, we can find a modified DA rule that is simultaneously fair and constrained
efficient. This rule requires no extra information. We call this rule the DA rule with improvements
(DAI).

The DAI rule works as follows. We first exogenously select a set of courses that can exactly
accommodate all students, and run the conventional DA rule on the restricted environment with
only these courses. By the properties of the DA rule, such an allocation will be fair as well as
internally constrained efficient 3. However, our initial selection of courses is arbitrary. There is the
possibility that there exists some other allocation, with a different selection of courses, that Pareto
dominates this one. Our main contribution is to provide a procedure to identify these Pareto
improvements whenever they exist. Moreover, we show how we can carry out these efficiency
improvements in a manner that preserves the fairness of the original allocation. The composite
process is therefore fair and constrained efficient. We also show that the DAI rule needs only one
iteration to produce a constrained efficient assignment from any initial selection of courses.

Next we come to questions of strategy. A third property that we would like our rule to satisfy is
non-manipulability on the part of students. Since student preferences are private information, the
college would like to ensure that students are incentivised to report their true preferences. This is
done by eliminating the possibility of undue gain that a student may make by unilaterally reporting
false preferences. This is called a profitable manipulation. A rule that can ensure that there is
no profitable manipulation for any student is called strategy-proof. It has the additional pleasant
hallmark of informational simplicity. Students need only consider what they truly prefer, and need
not worry about other students’ strategies. The DAI rule is not strategy-proof. However, we show
that the opportunities for manipulation on the part of students are limited.

3 An allocation is internally constrained efficient if it is constrained efficient for that particular selection of courses.
It need not be constrained efficient in general.
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The paper is organised as follows. Section 3.2 provides a literature review on the DA rule
and its properties. We also talk about fair assignments and Pareto improvement procedures in
other contexts. Section 3.3 is an informal discussion on minimum capacity constraints, our rule,
and the justification of our procedure. Section 3.4 begins the formal section of the paper by
providing the notation that we use throughout. Section 3.5 discusses the axioms of fairness and
efficiency. Here we show the key incompatibility between the two properties. Section 3.6 outlines
our Pareto improvement procedure and presents our existence result. Section 3.7 lays out the DAI
rule. Section 3.8 discusses its strategic aspects. Section 3.9 concludes. All proofs are relegated to
the appendix.

3.2 The Literature

In the context of object allocation, it is well known that Pareto efficiency and fairness are incom-
patible. There are usually two approaches followed in the literature.

On efficiency, most papers are typically generalisations or special cases of the famous top trading
cycles mechanism (TTCM) attributed to David Gale (Shapley and Scarf (1974)), and include
inheritance rules (Pápai (2000), Pycia and Ünver (2013)), and sequential priority rules (Svensson
(1999)4, Hatfield (2009), Pápai (2001) etc.) Such rules are Pareto efficient and strategy-proof but
not fair. Since we are interested in fairness, we do not pursue this line of research here.

Fairness is the one-sided analogue property to stability in the two-sided matching environment5

(see for example Abdulkadiroğlu and Sönmez (2003)). In this literature, there are several key
results. The famous Gale-Shapley agent-optimal stable mechanism (AOSM)(Gale and Shapley
(1962)) always produces a stable matching in the two-sided case. Its direct adaptation to the one-
sided model (called the deferred acceptance (DA) rule, described above) always produces a justified-
envy-free or fair matching. Moreover, this mechanism Pareto-dominates any other mechanism that
is stable/fair (Gale and Shapley (1962)). Also, the DA rule is strategy-proof (Roth (1982b), Dubins
and Freedman (1984)). In fact, the DA rule is the only mechanism that is individually rational, fair,
non-wasteful, and strategy-proof (Alcalde and Barberà (1994)). There are other characterisations
of the DA rule as well (see for example Kojima and Manea (2010)).

In the one-sided model, such as ours, object ‘preferences’ are interpreted as priorities. Under
certain conditions on these priorities, the DA rule and the TTCM can be shown to be equivalent.
In particular, Kesten (2006) shows the equivalence of the DA rule and the TTCM when priorities
are acyclical, i.e., satisfy a very particular restriction. For more on acyclicity, see also Ergin (2002).

Some recent papers have introduced the problem of minimum constraints to the allocation
model. In a closely related paper, Fragiadakis et al. (2012) examine a model where each object
has a minimum capacity that must be satisfied. They introduce adaptations of the DA procedure
that satisfy combinations of properties. In particular, their ESDA procedure is strategy-proof and
satisfies a weak version of fairness and non-wastefulness, while the MSDA procedure satisfies an
even weaker notion of fairness, but is non-wasteful and strategy-proof. However, in their model
they assume that all objects must be assigned, thus all minimum capacities must be satisfied. This
is in contrast to our model, where some objects may not be assigned at all. Thus our results are
qualitatively different from theirs.

4Svensson (1999) deals with serial priority rules, which is a further restriction of sequential priority rules.
5Two-sided matching, such as marriage markets, involves private preferences on both sides of the market.
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In another related model, Ehlers et al. (2011) and Abdulkadiroğlu and Ehlers (2006) look at the
case where agents may be classified according to type, and each object has a minimum capacity for
each student type, which must be satisfied. They too show that there might not exist assignments
that satisfy standard fairness and non-wastefulness properties, whereas constrained non-wasteful
assignments which are fair for same type students always exist. They introduce a ‘controlled’
version of the (DA) rule with an improvement stage that finds a Pareto optimal assignment among
such assignments.

In the context of Pareto improvements, Erdil and Ergin (2008) show how to go from any stable
assignment to the student-optimal stable assignment when indifferences may exist in priorities.
Indifferences are broken according to an arbitrary tie-breaker, and then the DA rule is used to get
a stable assignment. However, because of the arbitrariness of the tie-breaker, and the presence of
indifferences, this assignment may not be a Pareto-efficient stable assignment. But the repeated
use of what they call the stable-improvement-cycles technique leads inevitably to a Pareto-efficient
stable assignment, if one exists. Their key result, similar in spirit to ours, is that if an assignment is
Pareto dominated by another stable assignment, then there must exist a stable-improvement-cycle.
However, their model considers indifferences and not minimum capacities, and is thus substantially
different from our model here.

3.3 An Informal Discussion

Suppose there are M courses and N students. We assume that the capacity of each course is the
same (and equal to q) in order to not discriminate between different combinations of courses, i.e.,
so that every combination of courses is equally likely to appear in a feasible allocation. The total
available seats in all the courses is then qM .

If qM < N , then no feasible allocation exists, as there are not enough seats for each student. If
qM = N , then minimum capacities become irrelevant, as there are only as many seats as students.
Thus if we run the conventional DA rule as described in the introduction with maximum capacities
set as q for each course, we will always get a feasible allocation. Moreover, this allocation will be
fair, constrained efficient, and the rule will be strategy-proof.

However, consider the case where qM > N . There are more seats available than students to
fill them. In particular, let qm = N for some m < M . A feasible allocation will thus contain some
selection of m courses from the whole set, since not all can be simultaneously offered. So now we
have a two part problem in which we have to determine not only the subset of m courses that will
be offered, but also the allocation of q students to each course.

Once we have the courses selected, we can run the regular DA rule to get a fair and constrained
efficient allocation. So let us look at the course selection problem first. There are at least three
approaches we could take. We could:

1. Systematically add courses to our collection until we reach m

2. Systematically eliminate courses from the available set until we are left with m

3. Start with an arbitrary selection of m courses and progressively exchange courses until we
have the ‘right’ combination.

We consider each of these approaches in turn.
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3.3.1 Course Addition

Assume we have to select the required number of courses somehow. A natural starting point
would be the sequential priority rule, in which students are ordered according to some ranking, and
successively pick their desired courses until the requisite number is reached. In such a scenario, the
remaining students would then be assigned one or other of these selected courses. This approach
has a few features that are worth discussing.

Firstly, consider the ordering of students that determines the sequence in which they pick the
courses. This assumption has some intuitive justification in the context of course selection (since
students can be ranked according to their CGPA), and has parallels in other matching problems.
In the US military, for example, cadets are ranked according to a single merit list based on overall
performance (Sönmez and Switzer (2011)). In school choice problems, in most countries students
are required to take a common exam, which serves as the basis for admissions to many schools
(Abizada and Chen (2011)). Fragiadakis et al. (2012) use an overall ranking, which they call a
‘master list’, as a key ingredient in their models.

Secondly, we may not always be able to respect the selection of earlier students in the sequential
priority. This is because the sequential priority ranking may be different from how a course ranks
students in its own course priority. So there may be subsequent students in the sequential priority
who are higher-ranked in a course’s priority than the student who originally selected it. In this
case we cannot continue to assign it to the student who selected it without violating fairness.

To see this, consider the following example: Suppose there are four students {1, 2, 3, 4} and three
courses {a, b, c}, and each course has a capacity of 2. Suppose the sequential priority is (1, 2, 3, 4),
students 1, 3, 4 most prefer course a, student 2 prefers course b, and the priority for course a is
(3, 4, 1, 2). If we follow the sequential priority rule, student 1 goes first and will pick course a. Then
student 2 will pick course b. Now if student 1’s choice is to be respected, then only one of students
3, 4 can be assigned course a. But whichever one of them does not get assigned a will feel justified
envy towards student 1. Thus this allocation will not be fair.

Even with the sequential priority rule, the selection of a course and its allocation to the selecting
student can only be provisional. But this gives rise to the possibility of manipulation. A student
higher in the sequential priority may deliberately pick a course in order to affect the choices of later
students. In turn, this might grant her a preferred course. Such a rule may not be strategy-proof.

3.3.2 Course Elimination

Suppose instead that we start with the entire set of courses, looking for a way to eliminate undesired
courses. Picture the DA rule, and suppose that in the first round students apply to their preferred
course among the entire set on offer. The provisional allocation in this round typically will be
infeasible. Infeasibility in this context comes in two flavours: (1) There may be one or more courses
that receive more applications than their capacities; and (2) There may be one or more courses
that receive less than their capacities.

The DA rule tells us what to do in the first case, i.e., of oversubscription. We simply appeal to the
relevant course’s priority, and reject the application of the lowest-ranked students that are excess to
capacity. But the second possibility (which we call undersubscription) is more problematic. What
if there is more than one course that receives less applications than it requires? Do we eliminate
only one of them? If so, which one? Alternatively, do we reject the applications of some of those
students? If so, which ones?
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We could assume a ranking over courses, such that we eliminate the lowest-ranked under-
subscribed course and reassign its applicants. However, this introduces a discrimination between
courses. It may result in the same set of courses being offered in most allocations. Plus, we would
like to avoid a situation where a History course is always favoured over a Political Science course,
say.

Instead, we could assume a ranking over students, such that an undersubscribed course that
receives applications from higher-ranked students is retained in favour of another that has only
lower-ranked applicants. However, consider the following scenario: students who have applied to
course a are the highest-ranked in its priority, but lowest-ranked in the overall ranking. Course a
is undersubscribed and so these students are rejected. Course a is eliminated as a result. These
students apply to course b. They are higher ranked in course b’s priority than some of the existing
applicants, who are now in turn rejected. These students prefer course a to any other course. But
course a is now eliminated, so either they cannot apply to it, or doing so violates fairness in terms
of the original rejected students. There are also significant efficiency losses in this scenario.

We also cannot let the choice of course to be eliminated depend on student preferences without
running the risk of manipulation.

3.3.3 Our Model

In this paper we take the third approach. We design a rule that first makes an allocation with some
arbitrary selection of courses, and then consider efficiency improvements.

So first we arbitrarily select m courses that can exactly accommodate all students, i.e, such
that qm = N . We have left out some courses at this stage. We then run the classical DA rule on
the restricted environment with just this selection of courses.

By the properties of the DA rule, we are guaranteed an allocation that is fair and internally
constrained efficient. As mentioned earlier, internal constrained efficiency means that there is no
other fair allocation with the same selection of courses that Pareto dominates this one. But this
allocation may not be constrained efficient in general. In particular, since the initial selection of
courses was exogenous, and did not depend on the preference profile, it might be that there is an
unassigned course that some students prefer to their current allocation.

So consider the following scenario where students s1 to s9 are assigned courses in History,
Philosophy and Sanskrit in a fair and internally constrained efficient manner. There are three seats
in each course. But suppose that there is additionally a course in cinema studies which could be
offered to them.
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If there are enough claimants for the Cinema Studies course, i.e., students who desire the course
at the current allocation, it may be possible to transfer the top claimants to the course (see figure
below).

But doing so will leave vacancies in the courses they leave behind. Thus this provisional allo-
cation is not feasible, though it is fair and also a Pareto improvement on the original allocation.
So next we see if we can fill the slots that are left behind. Note that at each stage if we are able
to fill a slot we must do so by moving the top claimant of that slot according to the priority of the
relevant course. This is essential to ensure fairness of the overall allocation. Suppose we can do so
as below.
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This will leave new vacancies, which we fill again, if possible.

Suppose the result is an allocation as in the figure below.

By following this sequential improvement procedure, we have achieved not only a feasible allo-
cation, but one that is also fair and a Pareto improvement on the original allocation.

In essence we have built a Pareto improvement chain for every slot in the new course, such that
each chain terminates in a slot in some other course. The course where the chains terminate can
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be removed and replaced with the new course. Of course, the scenario can be more complicated,
in that the chains may be interlinked with those for another course. But the key insight is that if
at any point if we can find a collection of chains, one for each slot in a course, such that all chains
terminate in slots in the same courses, then we can add the new courses and delete the old ones.
This will give us a Pareto improving allocations that is also fair and feasible. In particular, the
original allocation is not constrained efficient.

In fact, our first theorem characterises precisely this situation. It shows that the original allo-
cation is internally constrained efficient but not constrained efficient if and only if such a collection
of improvements exists. That is, there is a sequence of fairness-preserving moves that leads us from
every slot in a new course to every slot in some course that will be now dropped. We also outline
a procedure to find such improvements.

We thus build a composite rule, the Deferred Acceptance with Improvements (DAI), which works
as follows. We exogenously select some courses, run the DA rule to get an allocation, and check it
for improvements. If improvements exist, and if there is more than one possible improvement, then
we select6 one of them and run the DA rule again for the new selection of courses. This resulting
allocation will be constrained efficient and fair. We also show that a constrained efficient allocation
can be found by just running this entire procedure once.

We then test the DAI rule for strategic implications. The DAI rule is not strategy-proof. But
the possibilities of manipulation are limited. We show that no student can induce the favourable
addition of a course or favourably change her assignment within the set of assigned courses via a
manipulation. The reason the rule is not strategy-proof is that a student can cause a potentially
Pareto improving course to be removed from contention in favour of another course that is also in
contention and that she prefers. We demonstrate by example and show that this is the only way a
student can manipulate.

It should be pointed out that for the same preference profile, DAI rules can result in different
outcomes, depending not only on the initial choice of courses, but also possibly on the later selection
from among improvements, in case there are more than one of them. Thus there is not a one-to-one
correspondence for DAI rules between preference profiles and allocations.

In the sections that follow we formally demonstrate the results and arguments above.

3.4 Notation and Definitions

• There is a finite set of students S = {s, t, u, ...}, and a finite set of courses C = {c, d, e, ...}.

• Each course c ∈ C has an exact capacity of q. We assume that |S| = qm for some integer m
and that |C| > m.

• An allocation is a mapping µ : S ∪ C → 2S∪C such that:

1. µ(s) ∈ C for all S ∈ S.

2. µ(c) ⊆ S for all c ∈ C.
3. µ(s) = c if and only if s ∈ µ(c).

In an allocation, every student is mapped to a course, every course is mapped to a set of
students, and a student is mapped to a course if and only if she belongs to the set of students

6The selection of improvements is a non-trivial exercise, and we shall discuss it in greater detail in a later section.
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that the course in turn maps to. For an allocation µ, a student s and a course c, µ(s) and
µ(c) refer to student s and course c’s assignment in µ, respectively.

• An allocation µ is feasible if |µ(c)| ∈ {0, q} for all c ∈ C, and |µ(s)| = 1 for all s ∈ S. An
allocation is feasible if every course is assigned either to no student, or to exactly q students,
and every student is assigned to exactly one course. Let A denote the set of all feasible
allocations.

• Preferences over assignments are strict. Formally, student s ∈ S has preferences, denoted Rs,
that are given by a binary relation over C. The binary relation is reflexive (for all c, cRsc),
complete (for all c, d, cRsd or dRsc), transitive (for all c, d, e, cRsd and dRse imply cRse) and
antisymmetric (for any c, d, cRsd and dRsc imply c = d). Here cRsd is interpreted as ‘course
c is at least as good as course d for student s under preferences Rs’. The associated strict
relation is given by Ps, such that cPsd if cRsd and c 6= d. For any c, d, cPsd means ‘c is
preferred by s to d under preferences Rs’. We assume that all courses are acceptable to all
students.

• Agent preferences over allocations are selfish, in that they care only about the assignment they
receive. Agents are indifferent between all allocations that give them the same assignment. An
agent’s preferences between two allocations that give her different assignments are governed
by her preferences over the respective assignment she receives.

• A collection of preferences for all agents is called a preference profile, or simply a profile, and
is denoted by R = (R1, ..., RN ). The set of all preference profiles is R. In this model we shall
usually suppress reference to R, with the understanding that we operate on the full domain
of preferences everywhere. As is the convention, we write R−i for a sub-profile of preferences
of all agents other than i. Similarly, for a subset of agents M , we write RM and R−M to
denote the sub-profile of preferences of agents in subsets M and N \M , respectively.

• Each course c ∈ C has a strict ranking �c over students, which we call a priority. A priority
is given by a reflexive, complete, transitive and antisymmetric binary relation over S. For
any priority �c and students s and t, s �c t means that ‘student s has a higher priority for
course c than student t’. We assume that all students are acceptable to all courses. We refer
to a collection of priorities for all courses as a priority structure, and denote it as �. The
priority structure is exogenous, fixed, and common knowledge.

• An allocation problem is the tuple (S, C, q,�, R). When S, C, q,� are fixed, as in what follows,
we will refer to an allocation problem simply as R.

• An allocation rule (or simply a rule) f : R → A solves every allocation problem, i.e., associates
every preference profile R with a feasible allocation. For any student s, fs(R) is the assignment
she receives at preference profileR according to the rule f . Similarly, for any subset of students
T , fT (R) is the |T |-dimensional vector of assignments of T at R, according to f .

3.5 Properties of Allocation Rules

The first property we wish to implement is fairness. An allocation is unfair if there is a student
who does not get a course she desires, and loses out to some other student who is below her in that
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course’s priority. If that is the case, then this student justifiably envies the other student. We wish
to avoid such a situation. Formally:

Definition 2. For a preference profile R, An allocation µ is unfair to student s if there is a course
c and a student t such that cPsµ(s), t ∈ µ(c) and s �c t, i.e., if student s prefers student t’s
assignment (course c) to her own, and also has a higher priority for c than t. An allocation µ is fair
if it is not unfair to any student. A rule f is fair if the allocation f(R) is fair for every preference
profile R.

The second class of properties we are interested in has to do with efficiency. In its strong form,
we say an allocation is efficient if there is no other allocation that Pareto dominates it, i.e., in which
all students are at least as well off according to their preferences, and at least one student is strictly
better off, in the sense that she is assigned a course that she prefers. Formally:

Definition 3. For a preference profile R, An allocation µ is Pareto efficient if there is no other
allocation ψ such that ψ(s)Rsµ(s) for all s ∈ S and ψ(t)Ptµ(t) for some t ∈ S. A rule f is Pareto
efficient if, for all preference profiles R, the allocation f(R) is Pareto efficient.

Pareto efficiency is incompatible with fairness in general. The following example, which we
adapt from Roth (1982a), demonstrates this.

Example 1. Let s1, s2, s3, s4, s5, s6 be six students and let a, b, c be three schools with exactly
two seats each. The constraint structure, priority structure and preference profile is given in the
following table.

�a �b �c Ps1 Ps2 Ps3 Ps4 Ps5 Ps6
s1 s3 s3 b© b© a© a© a a

s2 s4 s4 a a b b b b
s5 s1 s1 c c c c c© c©
s6 s2 s2

s3 s5 s5

s4 s6 s6

It is easy to check that the allocation in boxes is the only fair allocation, which is not Pareto
efficient as it is dominated by the allocation in circles. However, the allocation in circles, while
Pareto efficient, is not fair as s5 envies s4 for course a.

So we weaken our definition of efficiency to constrained efficiency. An allocation is constrained
efficient if there is no other feasible and fair allocation that Pareto dominates it. Formally:

Definition 4. An allocation µ is constrained efficient if there is no other feasible and fair allocation
ψ such that ψ(s)Rsµ(s) for all s, and ψ(t)Ptµ(t) for some t.

For an allocation µ, let Cµ denote the set of courses assigned in µ, i.e., Cµ = {c ∈ C|µ(s) = c
for some s ∈ S}. Next we define the notion of internal constrained efficiency, which has to do with
efficiency with respect to the courses selected in a particular allocation.

Definition 5. An allocation µ is internally constrained efficient if there is no other fair and feasible
allocation ψ with Cψ = Cµ, such that ψ(s)Rsµ(s) for all s, and ψ(t)Ptµ(t) for some t.

An allocation that is Pareto efficient is also constrained efficient, and an allocation that is
constrained efficient is also internally constrained efficient, but the reverse implications may not be
true.
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3.6 Pareto Improvements

In this section we elaborate on a technique that allows us to recover constrained efficiency from an
internally constrained efficient allocation. Note that an internally constrained efficient allocation
need not be constrained efficient, because we do not consider courses outside of the allocation
when evaluating the former. There may be some other course that is not assigned, that enough
students prefer, such that we can suitably transfer and reassign students making some of them
better off without making anybody else worse off, while preserving fairness. We build the notion
of an improvement to capture such situations.

3.6.1 Pareto Chains

Since each course has an exact capacity q, we say that each course c ∈ C has q slots {oc1, oc2, ..., ocq},
denoting the available positions in the course. We denote a generic slot for a course c as oc.

For an allocation µ and a course c, let Dµ(c) = {s ∈ S|cPsµ(s)} be the set of students who
desire c at µ. Let Dµ refer to the collection {Dµ(c)}c∈C . We call Dµ the claimant profile at µ.

Also, for course c and any subset of students T , let topk(�c, T ) denote the k top students in
c’s priority among students in T . It should be noted that, depending on the size of the set T , that
topk(�c, T ) may contain fewer than k students.

First, we define a Pareto chain. Suppose we are given an allocation at a preference profile.
Consider some course that is unassigned at this allocation. A Pareto chain is a sequence of distinct
students and their assignments such that the first student in the chain prefers this unassigned
course, and each subsequent student prefers the assignment of the student immediately before her
in the chain. A Pareto chain will be associated with a particular slot in the unassigned course.

Definition 6. Let µ be an allocation, let R be a preference profile, let c 6∈ Cµ be a course, and
let oc be a slot in c. We say that a finite sequence of students and courses γ = {(sk, ck)}Kk=1, with
1 ≤ k ≤ K, is a Pareto chain originating at oc if:

1. si 6= sj for all i, j ∈ {1, ...,K}

2. si ∈ µ(ci) for all i ∈ {1, ...,K}

3. Set c0 ≡ c. Then ci−1Psici for all i ∈ {1, ...,K}.

4. For each ci−1, si ∈ topq(�ci−1 , Dµ(c)).

We call a particular pair (sk, ck) a link in the chain. The first condition requires that all
students in the chain be distinct, while the second condition pairs each student in a link with her
corresponding assignment. The third condition highlights the chain quality, by requiring that each
student prefer the assignment of the previous student in the chain, with the first student preferring
the unassigned course. The fourth condition states that each student in the chain is among the top
q students for the course she desires among those who desire it at that allocation.

We now introduce some notation to simplify exposition. For a chain γ and a particular k, we
denote the corresponding sk as γs(k) and the corresponding ck as γc(k). We denote the last student
in the chain, γs(K), by γ̄s, and the last course in the chain, γc(K), by γ̄c. Similarly, we denote
the origination course for a chain γ by γc(0). Denote a collection of chains satisfying the above
properties by Γ.
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So, for a course c and some slot oc, if a Pareto chain exists, it looks like this, where the arrows
mark the direction of preference, and where γc(0) = c:

γc(0)

↑
(γs(1), γc(1))

↑
(γs(2), γc(2))

↑
...
↑

(γ̄s, γ̄c)

A Pareto chain is designed to capture a potential sequence of transfers that would make some
students better off, while preserving the assignments of other students, in a fair manner. That is:

Definition 7. For an allocation µ, a course c 6∈ Cµ and a Pareto chain γ associated with some
slot oc ∈ c, we say that an allocation µ′ is an upgrade of µ via γ if µ′(γs(k)) = µ(γs(k − 1)) for all
k and µ′(s) = µ(s) for all other students.

It is clear that an upgrade, if it exists, is a Pareto improving allocation, since at least one
student in the chain is strictly better off and all other students are equally well off. It is also fair.
However, an upgrade may not be feasible. The new assignment, formed by giving students in the
Pareto chain their desired courses, may not satisfy the requirement of each course being assigned to
exactly q students. To additionally ensure feasibility, we now provide the notion of an improvement,
which is a collection of distinct Pareto chains that originate and terminate ‘coherently’.

Definition 8. Let µ be an allocation with courses Cµ. Let C be a selection of m courses with
C 6= Cµ. A collection of chains ΓC is an improvement of µ if:

1. For any c ∈ C \ Cµ, we have that |{γi ∈ ΓC : γci (0) = c}| = q.

2. For any c′ ∈ Cµ \ C, we have that |{γi ∈ ΓC : γ̄cj = c′}| = q.

3.
⋂
ΓC

γsj (k) = φ.

The first condition requires there to be a Pareto chain in the collection for every slot in every
course that we seek to add. The second condition requires that there be a Pareto chain terminating
in every slot in a course that we seek to drop. The third condition requires each student in the
collection of chains to be distinct.

We are now ready to state our first theorem. Theorem 2 says that an internally constrained
efficient allocation is not constrained efficient when we can find an improvement for some other
set of courses such that the chains terminate ‘coherently’. In other words, when we perform the
upgrade related to the improvement, then the resulting allocation is feasible.

Theorem 2. Let R be a profile and let µ be an internally constrained-efficient allocation for some
selection of courses Cµ at R. Then, µ is not constrained efficient if and only if there exists a
selection of courses C 6= Cµ such that ΓC is an improvement of µ.
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The proof is in Appendix A. We provide an informal discussion here.
Theorem 2 characterises the situation where an allocation is internally constrained efficient

but not constrained efficient. If this is true, then there must be some other courses such that,
when we build the Pareto chains for slots in those courses, the resulting collection of chains is an
improvement of the original allocation, and also that the resulting upgrade is feasible.

In one direction, it is clear that if such an improvement exists, the resulting upgrade is feasi-
ble, fair, and Pareto dominates the original allocation, and thus the latter cannot be constrained
efficient.

To prove the converse, we assume that the allocation is not constrained efficient. Then there
must be a constrained efficient allocation which Pareto dominates it. Furthermore, this constrained
efficient allocation must differ from the original allocation by at least one course. (Otherwise the
original course could not have been internally constrained efficient.) We build the collection of
Pareto chains for the courses in this allocation, and show that the collection is an improvement
according to the definition, and that each chain terminates in a course that is not present in the
constrained efficient allocation. We build these chains iteratively, identifying the top claimant for
a course in each step, and upgrading students’ assignments as we go along. The key insight is that
at each stage some student is strictly better off, and no student is ever worse off, so eventually we
get to the constrained efficient allocation, which is feasible and fair.

Thus we have a procedure that allows us to evaluate the constrained efficiency of an allocation.
We use this feature to define our composite rule in the next section.

3.7 Deferred Acceptance with Improvements

The Deferred Acceptance with Improvements (DAI) rule operates in three stages. Firstly, we select
some courses and make assignments following the classical DA procedure, restricting preferences
to just those courses. By the properties of the DA rule, such an allocation is fair and internally
constrained efficient. We then look for improvements to this allocation. If we find one, we build a
new set of courses accordingly. The third stage is a repetition of the first stage for the new selection
of courses. The resulting allocation will be fair, feasible and constrained efficient.

Initialisation
Exogenously select a subset of courses C ⊂ C such that |C| = m. Then q|C| = |S|, i.e., there

are just enough courses to exactly accommodate all students.

Assignment Step #1
Restrict preferences to courses in C, and run the classical Deferred Acceptance procedure re-

stricted to these courses. That is:

1. In the first round, all students apply to their most preferred course in C. Any course c
receiving more than q applicants provisionally accepts the applications of the top q students
among the applicants according to �c, rejecting the rest.

2. In any subsequent round, rejected students apply to their most preferred course in C that
has not rejected them already. Each course c evaluates its existing applicants (if any) plus
new applicants (if any), provisionally accepting the top q applications according to �c, and
rejecting the rest. If any course rejects a student, we go to the next round. The procedure
stops in a round where there are no more rejections.
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It is clear that since q|C| = |S|, that this procedure will terminate in a finite number of steps
with each course in C receiving exactly q applicants, since any course receiving k > q applicants in
any round must reject k− q applications. Courses outside C receive no applicants. Moreover, each
student is assigned to a course in C. Thus the resulting allocation is feasible. By the properties of
the classical DA rule, this allocation is fair and internally constrained efficient.

By Theorem 2, we know that to check if this allocation is constrained efficient, we need only to
look for improvements. So we run the Pareto improvement procedure as follows:

Improvement Step

Let µ be the allocation generated by the Assignment Step.

Recall that for an allocation µ and a course c, Dµ(c) = {s ∈ S|cRsµ(s)} is the set of students
who desire c at µ. Similarly, Dµ = {Dµ(c)}c∈C is the claimant profile at µ.

Also, for course c and any subset of students T , topk(�c, T ) denotes the k top students in c’s
priority among students in T .

1. For each c 6∈ Cµ, we build the Pareto chains for the slots of c as follows:

(a) Let Sc = topq(�c, Dµ(c)). If |Sc| < q, discard this course. If not:

(b) Create a chain γi for each slot oci ∈ c, with γsi (1) = si for some distinct si ∈ Sc, and let
γci (1) = µ(si).

(c) For every k > 1, and every i, let γsi (k) = top(�γci (k−1), Dµ(γci (k − 1))) if this student
exists, and let γci (k) = µ(γsi (k)).

(d) At any stage, if the same student repeats in any two chains, remove her from the chain
she less prefers and remove all subsequent students in that chain.

(e) At any stage, if all chains contain the same course, then remove all additional links and
go on to the next course.

(f) Otherwise repeat from step (c) until no other links can be formed.

(g) Repeat the above steps for all other courses c 6∈ Cµ.

2. When all chains are built, search for a collection of subchains Γ such that:

(a) For any c with a γ ∈ Γ such that γc(0) = c, we have that |{γi ∈ Γ : γci (0) = c}| = q.

(b) For any c′ with a γ ∈ Γ such that γ̄c = c′, we have that |{γi ∈ Γ : γ̄ci = c′}| = q.

(c)
⋂
ΓC

γsij(k) = φ.

If we find such a collection of subchains (and there may be more than one collection), we select7

one of these collections Γ, generate C ′ from C by adding the courses corresponding to the first
nodes of chains in Γ and deleting the courses corresponding to the final nodes of chains in Γ.

Assignment Step #2

Finally, we repeat the Assignment Step with C ′. The resulting allocation will be feasible, fair
and constrained efficient.

7We discuss in the next sub-section how to select from the possible collections.
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3.7.1 Example

Let {a, b, c, d, e} be five courses and let {1, 2, 3, 4, 5, 6} be six students, and suppose that q = 2. The
preference and priority information is given in the following table.

�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b
4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

Suppose we start with the initial course selection {a, b, c}. Then the DA rule produces the
allocation given below in boxes:

�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b

4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

Now, to check if the allocation is constrained efficient, we build the potential Pareto chains for
unassigned courses {d, e}.

d e

od1 od2 oe1 oe2
↑ ↑ ↑ ↑

(1,a) (3,b) (4,a) (2,c)
↑ ↑ ↑

(2,c) (5,c) (5,c)

Thus we have the choice of selecting either e or d, and dropping c.

3.7.2 Selecting the Improvement

As can be seen from the example above, there may be several improvements that may arise as a
result of the procedure. We have to select one of them. We could of course select one of these
improvements arbitrarily, and we would be left with a fair and feasible allocation that is a Pareto
improvement of the original. But how we select the improvement will matter in terms of the overall
efficiency of the procedure. We claim that it is possible to reach from any arbitrary initial selection
of courses to a selection that guarantees a constrained efficient allocation via a single round of the
Improvement Step. This requires us to always be able to select a constrained efficient allocation at
this stage.8

8Or, alternatively, to select a set of courses that, when we run the Assignment Step #2 with those courses,
produces a constrained efficient allocation for that profile.
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In what follows, we describe how to efficiently select a improvement from all the ones that are
available after the Improvement Step.

First we need some notation. Let R be a preference profile and let µ be the allocation produced
by the DA rule for some selection of courses C. We call µ the base allocation at R for C. Let
µ1, ...µk be k allocations resulting from k different improvements generated by the Improvement
Step. For each µi, let S(µ, µi) = {s ∈ S : µi(s) 6= µ(s)} be the set of all students whose assignments
change from µ to µi. For any two allocations µi, µj , we say that µi dominates µj with respect to
µ if S(µ, µj) ⊆ S(µ, µi) and for all s ∈ S, µi(s)Rsµ

j(s). In other words, one allocation dominates
another with respect to the base allocation if all the students whose assignments change in one also
have their assignments change in the other, and all students are at least as well off in the former.

Selecting an Improvement
Let R be a preference profile and let µ be the base allocation for some selection of courses C. Let

µ1, ...µk be k the allocations resulting from k different improvements generated by the Improvement
Step. For each µi, let S(µ, µi) be as defined above, i.e., the set of all students whose assignments
change from µ to µi.

For any two µi, µj :

1. If µi dominates µj with respect to µ, we discard µj .

2. If not, we keep both courses.

We repeat the above check for every remaining pair of improvements. We call the set that
remains after elimination of dominated improvements the set of valid improvements. From this set,
we pick an improvement arbitrarily.

Moreover, any selection from the set of valid improvements would get us to a constrained
efficient allocation, at most by running the Assignment Step #2. To see this, let µv be a valid
improvement. Suppose µv itself has an improvement µ′v. Then it follows that µ′v is an improvement
of µ. But then, if µ′v dominates µv (which an improvement does), then µv could not have been a
valid improvement of µ. Thus a selection from the set of valid improvements does not itself have an
improvement, and is thus externally constrained efficient. To get a constrained efficient allocation,
at best we need to run the Assignment Step #2 with these courses.

Example

To continue with the example in the previous section, we have two improvements. The associated
course selections are C1 = {a, b, d} and C2{a, b, e}.

If we select the improvement C1 and the courses {a, b, d}, we get the following allocation:

�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b

4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

Instead, if we select C2 = {a, b, e}, the allocation with courses {a, b, e} is:
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�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b

4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

We see that S(C1) = {1, 2, 3, 5} and S(C2) = {2, 4, 5}. Thus no improvement dominates the
other, and so we can pick either selection of courses. However, we shall see in the next section that
this would have strategic implications.

3.7.3 Properties of the DAI Rule

We see from the example that the resulting allocation is constrained efficient and fair. Theorem 3
tells us that this is always true.

Theorem 3. The DAI procedure is fair and constrained efficient.

Proof : The properties of the DA rule guarantee fairness, and the absence of an improvement
guarantees constrained efficiency by Theorem 2. �

3.8 Strategic Aspects of the DAI Rule

In this section we explore the strategic properties of the DAI rule. Strategy-proofness is a property
that ensures that it is a dominant strategy for all students to truthfully report their preferences. In
a strategy-proof rule, no student can do strictly better by falsely reporting some other preferences,
given everybody else’s reported preferences. Formally:

Definition 9. A mechanism f is strategy-proof if, for every profile of preferences R, every student
s, and every report R′s, we have that fs(R)Rsfs(R

′
s, R−s).

The DAI rule is not strategy-proof, even though the underlying DA rule is. There can be
situations where a student can cause a potentially Pareto improving course to be removed from
contention in favour of another. Note that she would not have any incentive to do this if she is not
part of both improvements. But if she is part of both improvements, then she may be differently
well off if one course is picked over the other. It is possible that an agent could render one of those
improvements infeasible. If there were no other options, this would cause the rule to select the
other course. And if this makes her better off, there is a potential for manipulation.

We show the manipulability of the rule by example.

3.8.1 Example

To continue the example in the previous section, let us reproduce in the tables below the allocations
that would result if we selected courses {a, b, d} or {a, b, e} at the Improvement Step, and re-ran
the Assignment Step:

If we select courses {a, b, d}, after the Assignment Step we would get the following allocation:
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�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b

4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

Instead, if we select {a, b, e}, the Assignment Step would produce:

�a �b �c �d �e P1 P2 P3 P4 P5 P6

1 6 2 1 4 d a d e e b

4 3 5 3 2 a e b d b a
5 5 1 6 3 b d c a a d
6 2 3 4 5 c c a c c e
2 1 4 5 6 e b e b d c
3 4 6 2 1

Note that agent 5’s assignments are changing in both allocations. Thus he is part of an im-
provement in both cases. But agent 5 can manipulate. To see this, consider a preference R′5 with
cP ′5b. It is easy to see that the improvement with courses {a, b, d} would no longer exist. Thus
the only improvement would be with courses {a, b, e}, and the rule would select this one. But now
agent 5 receives e which he prefers to b, which is what he was assigned in the other improvement.
Thus agent 5 has an incentive to drop the improvement that gives him b in favour of the one that
gives him e.

3.9 Conclusion

In this chapter we have formulated a fair and constrained efficient solution to the problem of
allocating courses with exact capacity constraints to students based on preferences and priorities.
In the process we have outlined a Pareto improvement procedure that allows us to find a constrained
efficient allocation from any internally constrained efficient allocation, in a manner that preserves
the fairness of the original allocation.

This is particularly useful in the context of the college in our motivating example. For any
number of reasons, the college may have a pre-specified selection of courses that it would rather
offer to the students. Using this as the default offering, our rule allows the college to replace some
courses with others when necessary, especially when enough students would rather have some other
course than one from their selection. The default selection of courses will be altered in a fair and
efficiency-improving way.

The DAI rule is not strategy-proof. Yet the possibilities for manipulation are limited.

A future direction of research in this paper would be to consider the time complexity of the
algorithm underlying the DAI rule. This would be useful especially when comparing the efficiency
of the rule as compared to the brute force approach. We have already shown that running the
procedure once is enough to guarantee a fair and constrained efficient allocation. The procedure
involves two repetitions of the DA procedure, which is polynomial time. It is the building of the
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Pareto chains that will determine the time efficiency of the procedure. Erdil and Ergin (2008) show
that their improvement algorithm is polynomial time, so a similar result in this case would be of
some use as well.

We can extend the analysis in this chapter in multiple directions. It can be seen that the
procedure we have outlined can also be used in cases where courses have different capacities from
each other. Care must be taken however while constructing improvements in this case, as not every
course can be replaced by any other course. Thus the set of feasible allocations will be altered in
this scenario, and some courses may end up being complementary to others.

Another related extension would be to relax the requirements of exact constraints, and allow
courses to have different minimum and maximum constraints. This would increase the set of feasible
allocations and possibly allow the rule to gain even more in terms of efficiency.

3.10 Appendix A: Proof of Theorem 2

Let R be a preference profile, let µ be a feasible, fair and internally constrained-efficient allocation
at a selection of courses Cµ.

Sufficiency

In one direction, suppose there exists a selection of courses C such that, for C ′ = C \ Cµ, there is
an improvement ΓC

′
such that γ̄s ∈ Cµ \ C for all γ ∈ ΓC

′
. Let µ′ be the upgrade of µ via ΓC

′
.

Since γ̄s ∈ Cµ \C for all γ ∈ ΓC
′
, and γ̄i 6= γ̄j for all i 6= j, we have that if c ∈ Cµ \C, then c 6∈ Cµ′ .

Thus Cµ′ = C, and µ′ is feasible. By construction, µ′ is fair, and Pareto dominates µ. Thus µ is
not constrained efficient.

Necessity

We first prove a useful lemma.

Lemma 8. Let µ and ψ be fair assignments, let ψ be constrained efficient, and let ψ Pareto dominate
µ, i.e., ψ(s)Rsµ(s) for all s, and ψ(t)Ptµ(t) for some t. Then:

(a) For every course c ∈ Cψ, we have that |Dµ(c)| ≥ q.

(b) Let c ∈ Cψ, let s = top(�c, Dµ(c)), and suppose that cPsµ(s). Then ψ(s)Rsc, and in particu-
lar, ψ(s)Psµ(s).

Proof : Let µ and ψ be fair assignments, let ψ be constrained efficient, and let ψ Pareto dominate
µ, i.e., ψ(s)Rsµ(s) for all s, and ψ(t)Ptµ(t) for some t.

(a) Pick some c ∈ Cψ, and let Sc = {s ∈ S|ψ(s) = c}. We have that ψ(s)Rsµ(s) for all s ∈ Sc
since ψ Pareto dominates µ. Thus s ∈ Dµ(c) for all s ∈ Sc, and since |Sc| = q, we have that
|Dµ(c)| ≥ q.

(b) Suppose cPsψ(s). Since s = top(�c, Dµ(c)), we have in particular that s �c s′ for all s′ ∈ ψ(c).
This violates fairness of ψ. Thus ψ(s)Rsc. Since cPsµ(s), it follows that ψ(s)Psµ(s).
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�

Suppose µ is not constrained efficient. Then there exists a constrained efficient allocation ψ
that Pareto dominates µ. Let C be the courses at ψ, and let C ′ = C \ Cµ. Note that we have
Cψ 6= Cµ, because otherwise ψ is a rearrangement of µ, violating the internal constrained efficiency
of µ. We will construct ΓC

′
.

Initialisation:

1. Let ν be a tracking allocation and set ν = µ. Let Dν be the associated claimant profile.

2. Let C ′ = {c1, ..., cr}, and for every ci ∈ C ′, let {oci1 , ..., ociq } be the slots in ci.

3. For each course c ∈ C ′ and a slot ocj , create a chain γ by setting the opening node γc(0) = c.

4. Set i = 1, j = 1, k = 1.

Construction Step:

Round k:

1. Let sij(k) = top(�γcij(k−1), Dν(γcij(k − 1))).

Claim 2. For any k ≥ 1, Dν(γcij(k − 1)) 6= φ.

Proof : In any round, ψ Pareto dominates ν (see Claim 3 below). Thus for every round k,
|Dν(γcij(k − 1)| ≥ q, by Lemma 8(a). �

2. Upgrade ν(sij(k)) = γcij(k − 1)

Claim 3. The temporary allocation ν is fair. Also, either ψ = ν or ψ Pareto dominates ν.

Proof : In the first round, µ is fair so ν is fair. In every subsequent round, ν is fair because
if a student’s assignment changes from the previous round, she must be one of the top q
claimants for the course she is newly assigned, and so no other student justifiably envies her.

Suppose ψ 6= ν. We show Pareto dominance. In the first round, ψ Pareto dominates µ. In
any subsequent round k, since by Lemma 8(b) we have that ψ(s)Rsν(s) for all students in
round k − 1, the same is true at round k also after the upgrade.

We show that the relation is strict for some student. Since ψ 6= ν, there must be a student s
such that ν(s) ∈ Cµ \ C. By construction, ν(s) = µ(s). Thus by Lemma 8(b), we have that
ψ(s)Psν(s) in the previous round, and thus in this round too since her assignment does not
change. So ψ Pareto dominates ν.

�

3. Set γsij(k) = sij(k) and γcij(k) = µ(sij(k)).

Claim 4. sij(k) 6= sij(l) for all l < k.
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Proof : Suppose not. Consider sij(l), sij(l + 1), ..., sij(k) ≡ sij(l). By construction, each
student prefers the earlier student’s assignment, which is in µ. Thus we have a Pareto cycle
in µ, and µ is not internally constrained efficient, which is a contradiction. �

4. If γsij(k) = γsi′j′(k
′) and γcij(k) = γci′j′(k

′) for some i′, j′, k′, then remove γsi′j′(k
′′) and γci′j′(k

′′)
for all k′′ ≥ k′.

Claim 5. If γsij(k) = γsi′j′(k
′) and γcij(k) = γci′j′(k

′), then γsij(k + m) = γsi′j′(k
′ + m) and

γcij(k +m) = γci′j′(k
′ +m) for all m ≥ 0.

Proof : Suppose γsij(k) = γsi′j′(k
′) and γcij(k) = γci′j′(k

′). Then we have that top(�γcij(k+1)

, Dν(γcij(k + 1))) = top(�γc
i′j′ (k

′+1), Dν(γcij(k
′ + 1))). Thus γsij(k + 1) = γsi′j′(k

′ + 1) and

γcij(k + 1) = γci′j′(k
′ + 1). Repeating for all m ≥ 1, we have the desired result. We remove all

duplicated students from γi′j′ because by construction, γcij(k)Psij(k)γ
c
i′j′(k

′), and so she must
get at least γcij(k) by Lemma 8(b). �

If γcij(k) ∈ C ∩ Cµ, we go to Round k + 1. Otherwise γcij(k) ∈ Cµ \ C, and we go to the
Verification Step.

Verification Step:

1. We repeat for all slots in a course, i.e., if j < q, then we increment j, set k = 1, and go back
to the Construction Step.

2. We repeat for all courses, i.e., if j = q but i < r, we increment i, set j = 1, k = 1, and go
back to the Construction Step.

3. If there is a course ci and a slot ocij such that, in the relevant chain γij , we have that γ̄ij 6∈
Cµ \ C, we repeat the Construction Step for that course.

Claim 6. The process is guaranteed to terminate in a finite number of steps.

Proof : The number of courses and students is finite, and at every step some student is strictly
improving her assignment. �

When the process completes, we have the improvement ΓC
′

as required, with each chain origi-
nating in a new slot, and terminating in a discarded course.
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4

Sufficient Conditions for Weak

Group-Strategy-Proofness

4.1 Introduction

In this chapter we continue to consider a situation where heterogenous objects are to be distributed
among a set of claimants. Same as before, the objects in question are indivisible, so they cannot
be split or shared. There is no money in this economy so no compensation is possible.

Objects are to be assigned to individuals based on their preferences. Preferences in this context
are rankings over the set of objects, one for each individual, such that an object preferred to
another is also ranked higher than it. We assume that all objects can be ranked, that each object
is acceptable to each individual, and that any ranking is possible in principle.

Moreover, the key feature of preferences is that this information is private to each individual.
The designer or implementer of the solution to the allocation problems must elicit this information
from individuals before making assignments. Individuals may reveal any preferences at all.

It is assumed that individuals may seek to game the system if it is to their advantage. If falsely
revealing preferences gives an agent an object she prefers to what she might get if she instead
truthfully revealed her preferences, then there is no reason to believe that a rational agent would
not do so. A desirable property that a designer would like the allocation rule to satisfy is immunity
from such undue gain for deviating agents. In particular, a strategy-proof rule ensures that it is a
dominant strategy for every individual to truthfully reveal her preferences.1

There are many allocation problems where even individually strategy-proof rules do not exist.
Demanding more from such rules is futile. However, in problems where strategy-proof rules exist, it
is natural to ask whether the immunity from manipulation can be extended to coordinated actions
by groups of agents as well. This property is called group-strategy-proofness.

Group-strategy-proofness comes in two forms. Both look at the consequences for a group of
agents who deviate by reporting different preferences. The standard form requires that it should not
be the case that all deviating agents are as well off as before in terms of their original preferences,
and some agent is strictly better off. A weaker form requires that it should not be the case that all
deviating agents are strictly better off as a result. It is clear to see that the standard form implies
the weak form while the converse is not true in general.

There is a clear connection between individual and group-strategy-proofness. In a wide class of
allocation problems, group-strategy-proofness can be shown to be equivalent to a combination of
strategy-proofness and a property called non-bossiness. Non-bossiness preempts situations where
one agent can be bossy with another by affecting her assignment without changing her own.

Several important strategy-proof rules in the literature are also group-strategy-proof. The list
includes inheritance rules (Pápai (2000)), other generalisations of top trading cycles rules (Ab-
dulkadiroğlu and Sönmez (1999), Pycia and Ünver (2013)) and sequential and serial dictatorships
(Svensson (1999), Pápai (2001), Hatfield (2009)). These rules are non-bossy and are also weakly

1This property has also been motivated by its informational simplicity. In a strategy-proof environment, an agent
has to only consider her own preferences and not worry about what other agents might or might not do.
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group-strategy-proof by default.
However, there are also important strategy-proof rules that are weakly group-strategy-proof

but not group-strategy-proof. The famous Gale-Shapley Deferred Acceptance (DA) rule (Gale
and Shapley (1962)) is a case in point. Kojima (2010) shows that it is impossible for a stable
rule to be non-bossy. Since the DA rule always produces a stable outcome, it is bossy. Thus it
cannot be group-strategy-proof. Yet Hatfield and Kojima (2009) show that under general conditions
(including the ones that apply in our model) the DA rule is weakly group-strategy-proof.

There is a non-trivial distinction between the two properties. It is useful therefore to ask the
question: what makes a strategy-proof rule weakly group-strategy-proof but not group-strategy-
proof? 2

Non-bossiness is too strong a condition and is not necessary for weak group-strategy-proofness.
What we seek in this paper is a condition (or set of conditions) that is weaker than non-bossiness
that is nevertheless enough to guarantee weak group-strategy-proofness. We identify two fairly weak
properties, which we call partial weak Maskin Monotonicity and weak non-bossiness respectively,
that are sufficient to guarantee that a strategy-proof rule is also weakly group-strategy-proof.

We show the robustness of these conditions. That is, we can find examples of rules that violate
one or other of these properties in turn. We also show that these properties are ‘weak enough’, in
that there are rules that satisfy these properties (and are thus weakly group-strategy-proof) but
are not group-strategy-proof.

A similar exercise is conducted in a recent working paper by Barberà et al. (2014) where
they draw connections between strategy-proofness and weak group-strategy-proofness in different
allocation environments. In particular, they show that it is the features of the models of house
allocation, matching and division that result in the relationship between the two properties. Our
work is independent of theirs. Their motivation is similar to ours but the formal results are different.
We discuss this paper and the conditions therein in a later section.

The paper is organised as follows. In Section 4.2 we provide the formal notation that we use
throughout the paper. In Section 4.3 we formally describe the various forms of strategy-proofness
and highlight some well-known connections between them. In Section 4.4 we discuss some of the
important strategy-proof rules in the literature and why they satisfy one or other variant of group-
strategy-proofness. In Section 4.5 we present the partial weak Maskin Monotonicity and weak
non-bossiness properties and relate them to other conditions in the literature. Section 4.6 presents
our main result and proof. In this section we also show that our conditions are independent.
Section 4.7 concludes.

4.2 Notation and Definitions

The details of the model are given below:

• There is a finite set of agents N = {1, ..., i, j, , k, ..., N} and a finite set of objects Z =
{a, b, c, d, ...}.

• An allocation x ∈ ZN with x = (x1, ..., xN ) is a vector that associates an object with each
agent. For any agent i ∈ N , xi ∈ Z is the assignment of agent i in x.

2Barberà et al. (2010) consider a related question in the context of domains of preferences. In particular, they
provide conditions on domains guaranteeing that for all rules defined on them, individual and weak group-strategy-
proofness become equivalent. A similar exercise is conducted in le Breton and Zaporozhets (2009).
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• Depending on the context of the model, an allocation may be feasible or otherwise. The set
of all feasible allocations in an allocation problem is given by A.

• Preferences over assignments are strict. Formally, agent i ∈ N has preferences, denoted Ri,
that are given by a binary relation over Z. For any a, b, aRib is interpreted as ‘object a is
at least as good as object b for agent i under preferences Ri’. The binary relation is reflexive
(for all a, aRia), complete (for all a, b, aRib or bRia), transitive (for all a, b, c, aRib and bRic
imply aRic) and antisymmetric (for any a, b, aRib and bRia imply a = b). The associated
strict relation is given by Pi, such that aPib if aRib and a 6= b. For any a, b, aPib means ‘a is
preferred by i to b under preferences Ri’.

• Agent preferences over allocations are selfish, in that they care only about the assignment they
receive. Agents are indifferent between all allocations that give them the same assignment. An
agent’s preferences between two allocations that give her different assignments are governed
by her preferences over the respective assignment she receives.

• A collection of preferences for all agents is called a preference profile, or simply a profile, and
is denoted by R = (R1, ..., RN ). The set of all preference profiles is R. In this model we shall
usually suppress reference to R, with the understanding that we operate on the full domain
of preferences everywhere. As is the convention, we write R−i for a sub-profile of preferences
of all agents other than i. Similarly, for a subset of agents M , we write RM and R−M to
denote the sub-profile of preferences of agents in subsets M and N \M , respectively.

• An allocation rule f : R → A takes as input a preference profile R and prescribes an associated
feasible allocation f(R). For any agent i, fi(R) is the assignment she receives at preference
profile R according to the rule f . Similarly, for any subset of agents M , fM (R) is the M-
dimensional vector of assignments of M at R, according to f .

4.3 Standard Strategy-Proofness Properties

In what follows we set up the properties of strategy-proofness and the two versions of group-
strategy-proofness and draw some important connections between them.

Strategy-proofness is a condition which requires truth-telling to be a dominant strategy for all
agents. In other words, given the reports of all other agents, an agent must be as well off reporting
her true preferences as any other preferences. When this is true for all agents and all preferences,
the mechanism is said to be strategy-proof. Formally:

Definition 10. A rule is strategy-proof if there does not exist a profileR, an agent i, and preferences
R′i such that:

fi(R
′
i, R−i)Pifi(R)

Group-strategy-proofness is a stronger condition than strategy-proofness. In its standard form,
it ensures that groups of agents do not have profitable deviations, i.e., if a group of agents deviates
by reporting different preferences, then a group-strategy-proof rule ensures that it is not the case
that all agents in the deviating group are at least as well off as before, and some agent strictly
better off. Formally:
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Definition 11. A rule f is group-strategy-proof if there does not exist a profile R, a subset of
agents M , and a sub-profile R′M such that

fi(R
′
M , R−M )Rifi(R) for all i ∈M and fj(R

′
M , R−M )Pjfj(R) for some j ∈M

Weak group-strategy-proofness ensures that groups of agents do not have strictly profitable
deviations, i.e., if a group of agents deviates by reporting different preferences, then a group-
strategy-proof rule ensures that it is not the case that all agents in the deviating group are strictly
better off than before. Formally:

Definition 12. A rule f is weakly group-strategy-proof if there does not exist a profile R, a subset
of agents M , and a sub-profile R′M such that:

fi(R
′
M , R−M )Pifi(R) for all i ∈M

It is clear that group-strategy-proofness implies weak group-strategy-proofness, which in turn
implies strategy-proofness.

Non-bossiness is an axiom that is pervasive in the literature on assignment rules. The condition
was introduced by Satterthwaite and Sonnenschein (1981) and requires that an agent not be able
to affect other agents’ outcomes without affecting her own.

Definition 13. A rule f is non-bossy if, for all preference profiles R, for all agents i, and all reports
R′i, we have:

[fi(R
′
i, R−i) = fi(R)] =⇒ [f(R′i, R−i) = f(R)]

Non-bossiness negates any effect that an agent can have on other agents’ assignments in cases
where she does not change her own assignment. Its main justification is that it keeps the distribution
of influence in the allocation process from unduly depending on any one agent. Another justification
has to do with its strategic effects. Also, its original use by Satterthwaite and Sonnenschein (1981)
is on the basis of considerations of informational simplicity. Non-bossiness disqualifies rules in
exchange economies that “assign all the resources to one or the other of two agents depending upon
some arbitrary feature of some third agent’s preferences.”3. However, Thomson (2014) also notes
that its main value is in providing technical support for characterisation results.

In the presence of non-bossiness, group-strategy-proofness is equivalent to strategy-proofness
in a wide class of models. This has been demonstrated in several contexts4, so we state it here
without proof. However, it must be noted that this equivalence is not true for all indivisible object
allocation models. In any situation, for example, where objects can be separated as multiple types
(see Hideo Konishi and Wako (2001)), or where markets can be segmented so that not all allocations
are reachable (see Pápai (2003)), the equivalence does not hold.

Proposition 1. A rule f is strongly group-strategy-proof if and only if it is strategy-proof and
non-bossy.

3See Thomson (2014)
4See, for example, Pápai (2000) and Chapter 2 of this thesis.
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4.4 Strategy-Proof Rules and their
Group-Strategy-Proofness

In this section we present some frequently used and important strategy-proof rules in the literature
on allocation problems. We show by example how these rules satisfy (or fail to satisfy) the variants
of group-strategy-proofness presented above.

4.4.1 Constant rules

A constant rule is one that prescribes the same allocation for every preference profile. It is easy to
see that such rules are trivially strategy-proof and group-strategy-proof. A partially constant rule
is one that is constant for some agents, i.e., assigns the same object to them at every preference
profile. Such agents can never be part of a strictly profitable deviating group. If every deviating
group contains one such agent, this rule will be weakly group-strategy-proof. Of course, if any
group is allowed to deviate, then this condition is only satisfied if all but one agent get a constant
allocation, which makes for a limited case.

However, these rules can still be bossy. Consider the following example: There are two agents
{1, 2} and three objects {a, b, c}. For any profile R, the rule assigns object a to agent 1 (f1(R) = a)
and to agent 2 assigns the top-ranked object in R1 that is distinct from a (f2(R) = b if bP1c and
f2(R) = c if cP1b). This is a partially constant rule as agent 1 gets the same object at all profiles.
Yet agent 1 can be bossy with agent 2. Thus this rule is not group-strategy-proof. Yet it is weakly
group-strategy-proof.

4.4.2 Dictatorships and their variants

The serial dictatorship (or serial priority) rule works as follows: There is an exogenous and fixed
ordering of agents σ such that agents sequentially select objects in that order (σ(1) selects first, σ(2)
goes next, and so on). Each agent selects her top-ranked objects from the ones that are available,
given the choices of earlier agents in the sequence. It is easy to see that for any preference profile,
the first agent always gets her top-ranked object, while the second agent always gets her top-ranked
object whenever it is distinct from the selection of the first agent, and so on.

The sequential dictatorship (or sequential priority) rule differs from this rule only by making
the identity of subsequent agents dependent on the assignment of earlier agents in the sequence.
Thus for instance depending on what object σ(1) selects, the identity of σ(2) could differ.

Both these classes of rules are strategy-proof and group-strategy-proof in a wide variety of con-
texts (see Svensson (1999), Pápai (2000), Pápai (2001), Rhee (2011), Hatfield (2009) and Chapter
2 of this thesis for more details).

Consider, however, a variant of the serial dictatorship that we call a ‘pure’ dictatorship. There
is an exogenous and fixed ordering of agents σ such that for any preference profile, the first agent in
the sequence σ(1) gets her top-ranked object. The next agent σ(2) gets the object that σ(1) ranks
second, and in general agent σ(k) gets the kth-ranked object according to preferences of σ(1).

This rule is strategy-proof. Since it is bossy, it is not group-strategy-proof. Yet it is easy to
check that this rule is weakly group-strategy-proof.
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4.4.3 The Top Trading Cycles Rule

The famous top trading cycles (TTC) rule is attributed to David Gale (see Shapley and Scarf
(1974)). In brief, the generalised TTC works as follows:

Each object is initially owned by one agent, who brings it to the market for trade5. Some agents
may initially own more than one object, while others may own none at all. The procedure works
in stages. In any stage, each agent who is yet to receive an assignment points to the owner of the
object she most prefers from the ones that are available. A top trading cycle is made up of agents
who successively point to the next agent, with the last agent pointing to the first. A cycle can
be a singleton, such that an agent points to herself (she owns the object she most prefers.) Since
there is a finite number of agents, at every stage there must always be a cycle. Agents in a cycle
trade their objects along the cycle until they receive the object they desire. This becomes their
assignment and such agents leave the market along with those objects. If there are still agents and
objects left unassigned, the procedure repeats in the reduced market. If preferences are strict, then
given an initial ownership, the resulting allocation is unique.

The TTC rule is illustrated by an example. Suppose there are three agents (1, 2, 3) and three
objects (a, b, c). Suppose agent 1 initially owns a, b and agent 3 initially owns c. Agent 1 desires c,
while agents 2 and 3 desire b. The TTC procedure would look as follows:

(1, {a, b})

(2)

(3, {c})

Agent 1 ‘points to’ agent 3 who owns c, and agents 2 and 3 in turn point to agent 1 who owns
b. The cycle in this stage is between agents 1 and 3, who consequently trade those objects. The
TTC would assign b to agent 3 and c to agent 1.

TTC rules and their generalisations to inheritance rules (Pápai (2000)) are group-strategy-proof.
They are thus also weakly group-strategy-proof. (An inheritance rule in the above example would
also specify how agent 2 ‘inherits’ the remaining object a. The TTC procedure in the second stage
would just be agent 2 pointing to herself, and a would become her assignment.)

4.4.4 The Deferred Acceptance Rule

In addition to agent preferences, some allocation models assume that each object in turn has a
‘priority’, which is a ranking over agents or subsets of agents. A priority essentially captures the
relative eligibility of an agent for an object vis-a-vis another agent.

The Deferred Acceptance (DA) rule (Gale and Shapley (1962)) uses preference and priority
information and works in a series of rounds, as follows.

In the first round, all agents apply to their most preferred object. Any object that receives more
applications than its maximum capacity is forced to reject the excess agents, provisionally accepting

5Objects that an agent initially owns form a part of his or her ‘endowment’
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the rest. The agents that are rejected are those that are the lowest in that object’s priority among
its pool of applicants. In the next round, all rejected agents apply to their next preferred object
that has not rejected them already. A object considers its existing applications plus any fresh ones
it might receive, and provisionally accepts the top agents according to its priority, rejecting the
lowest ones that are excess to capacity. If any agent is rejected, we go to the next round. The rule
terminates in any round in which no agent is rejected. All provisional acceptances become final.

Consider the following example. There are three agents {1, 2, 3} and three objects {a, b, c}.
Preference and priority information are given in the table below:

Priorities Preferences
a b c 1 2 3

1 2 3 b a a
2 3 1 a c b
3 1 2 c b c

In the first round, agent 1 applies to her top-ranked object b while agents 2 and 3 apply to
a. Since a has two applicants, it rejects the lower-ranked one according to its priority, which is
agent 3. In the next round, agent 3 applies to her next preferred object, which is b. Now b has
two applicants, so it rejects the lower-ranked one according to its priority, which is agent 1. In the
next round, agent 1 applies to his next preferred object, which is a. Again, object a must reject
one application, and so agent 2 is rejected. In the final round, agent 2 applies to c. There are no
more rejections and the rule terminates here, giving us the final matching ((1, a), (2, c), (3, b)).

The DA rule is strategy-proof. But it is bossy. To see this, consider a profile where only agent
2 changes her preferences such that she now ranks c above a and b. Evaluating the DA rule for
this profile, we get that agent 2 continues to get c, as in the first profile, but now agents 1 and 3
swap a and b with each other. Thus despite not changing her own assignment, agent 2 affects the
assignments of the other agents.

Thus the DA rule is not group-strategy-proof. It is, however, weakly group-strategy-proof. We
will show that it satisfies our sufficient conditions for weak group-strategy-proofness.

4.5 Weaker Conditions on Allocation Rules

In this section we define our notions of partial weak Maskin monotonicity and weak non-bossiness
which we will show are sufficient for a strategy-proof rule to be weakly group-strategy-proof. We
first define some useful concepts.

The strict upper contour set of an object at a preference is the set of all objects that are preferred
to it. Consider an agent i, a preference Ri and an object a. Formally, the strict upper contour set
of a at Ri is given by U(Ri, a) = {b ∈ Z : bPia}.

Let R be a preference profile and f(R) the corresponding allocation produced by a rule f .
For an agent i, we say that a preference R′i is a strict monotonic transformation of Ri at fi(R)
if U(R′i, fi(R)) ⊂ U(Ri, fi(R)). A preference is a strict monotonic transformation of another if
the strict upper contour set of the assignment at the old preference is a strict superset of the
strict upper contour set of that object in the new preference. We say that a preference R′i is a
monotonic transformation of Ri at fi(R) if the subset relation in the above condition is weak.
A particular kind of monotonic transformation is an upper-contour-set preserving transformation
where, as the name suggests, the upper contour set remains the same in the new preference as well.
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In particular, a preference R′i is an upper-contour-set preserving transformation of Ri at fi(R) if
U(R′i, fi(R)) = U(Ri, fi(R)).

We can extend these concepts to profiles in a natural way. A profile R′ is a monotonic trans-
formation of R at f(R) if R′i is a monotonic transformation of Ri at fi(R) for all i ∈ N . We
say that R′ is a strict monotonic transformation of R at f(R) if in addition we have that R′j is
a strict monotonic transformation of Rj at fj(R) for some j ∈ N . Similarly, a profile R′ is an
upper-contour-set preserving transformation of R at f(R) if U(R′i, fi(R)) = U(Ri, fi(R)) for all
i ∈ N .

We will use these concepts to define our two conditions: partial weak Maskin monotonicity and
weak non-bossiness.

4.5.1 Partial Weak Maskin Monotonicity

A rule is Maskin monotonic if the allocation at any profile that is a monotonic transformation of
another remains the same. Weak Maskin monotonicity relaxes the requirement that the allocations
remain the same. A rule is weakly Maskin monotonic if every agent weakly prefers her assignment
at a monotonic transformation of a profile to her assignment at that profile.

Formally, a rule satisfies Maskin monotonicity (Maskin (1999)) if for all R,R′ such that R′ is a
monotonic transformation of R at f(R), we have that f(R′) = f(R). A rule satisfies weak Maskin
monotonicity if for all R,R′ such that R′ is a monotonic transformation of R at f(R), we have that
fi(R

′)R′if(R) for all i ∈ N .

Weak Maskin monotonicity plays an important role in the characterisation of DA rules (see
Kojima and Manea (2010)). It is also shown in that paper that the DA rule is the only stable rule
at an exogenously specified priority profile that satisfies weak Maskin monotonicity.

In this paper we weaken the notion of Maskin monotonicity further. Partial weak Maskin
monotonicity weakens the condition by requiring that only at least one agent weakly prefer her
assignment at a strict monotonic transformation. Formally:

Definition 14. A rule satisfies partial weak Maskin monotonicity if for all R,R′ such that R′ is a
strict monotonic transformation of R at f(R), we have that fi(R

′)R′if(R) for some i ∈ N .

It is clear that a Maskin monotonic rule is also weakly Maskin monotonic and that a weakly
Maskin monotonic rule is also partially weak Maskin monotonic. But the reverse implications do
not hold in general.

4.5.2 Weak Non-Bossiness

Our other main property is weak non-bossiness. As its name suggests, this is a relaxation of
the requirements of non-bossiness. Non-bossiness requires that assignments for all agents remain
fixed for any deviation by any agent at any profile that does not change her assignment. Weak
non-bossiness restricts the type of preference for which this invariance is true. In particular, if
an agent’s assignment does not change when she changes her preference via a upper-contour-set
preserving transformation of her original preferences, then no other agent’s assignment should
change. Weak non-bossiness places no restrictions on bossy behaviour at other kinds of preference
changes. Formally:
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Definition 15. A rule f is weakly non-bossy if, for any preference profile R, agent i and preferences
R′i such that R′i is an upper-contour-set preserving transformation of Ri at fi(R), we have that:

[fi(R
′
i, R−i) = fi(R)] =⇒ [f(R′i, R−i) = f(R)]

Non-bossiness implies weak non-bossiness but the reverse implication does not hold in general.

4.6 Results

We are now ready to state our main theorem. Theorem 4 shows that the combination of strategy-
proofness, weak non-bossiness and partial weak Maskin monotonicity is sufficient to give us weak
group-strategy-proofness.

Theorem 4. If a strategy-proof rule f is weakly non-bossy and partially weak Maskin monotonic,
then it is weakly group-strategy-proof.

Proof : Let f be strategy-proof, weakly non-bossy and partially weak Maskin monotonic. Let R be
a profile. Let M be a subset of agents, and R′M be preferences for M such that fi(R

′
M , R−M )Rifi(R)

for all i ∈M . Define the profile R′ as (R′M , R−M ).
For f to be weakly group-strategy-proof, we must show that fj(R

′) = fj(R) for at least one
agent j ∈ M . For contradiction, suppose that fi(R

′)Pifi(R) for all i ∈ M . Construct R̂ such that
for every i ∈M , top(R̂i) = fi(R

′) and other objects are ranked the same as in Ri. Set R̂j = Rj for
all j 6∈M .

By assumption, fi(R
′)Pjfi(R) for all i ∈ M . Thus by construction R̂ is an upper-contour-

set preserving transformation of R at f(R). Consider the sequence of profiles R0 = R,R1 =
(R̂1, R−1), R2 = (R̂{1,2}, R−{1,2}), ..., R

N = R̂. By strategy-proofness, f1(R1) = f1(R0) since R̂1

is an upper-contour-set preserving transformation of R1 for f1(R0) and by weak non-bossiness,
f(R1) = f(R0). Repeating the argument for other agents and noting that for every i, Rii is an
upper-contour-preserving transformation of Ri at fi(R

i−1), we have by strategy-proofness that
fi(R

i) = fi(R
i−1) and by weak non-bossiness that f(Ri) = f(Ri−1). Thus f(R̂) = f(R).

It is easy to see that R̂ is also a monotonic transformation of R′ at f(R′). If it is not a strict
monotonic transformation, then it must be an upper-contour-set preserving transformation. In that
case, by the arguments above, we have that f(R̂) = f(R′). So let R̂ be a strict monotonic transfor-
mation of R′ at f(R′). Then by partial weak Maskin monotonicity, we have that fJ(R̂)R̂JfJ(R′)
for some J ∈M . In particular, we can find a J ∈M such that fJ(R̂) = top(R̂J).

But then fJ(R̂) = fJ(R′) (since by construction top(R̂J) = fJ(R′)), fJ(R̂) = fJ(R) (as demon-
strated above), but fJ(R′)PjfJ(R) by assumption. Since preferences are strict, this is a contradic-
tion. Thus our initial supposition was false, and there is at least one i ∈M such that fi(R

′) = fi(R).
Since R, M and R′M was arbitrary, this is true for all R, for all M and for all subprofiles R′M . Thus
f is weakly group-strategy-proof. �

4.6.1 Discussion

As discussed earlier, partial weak Maskin monotonicity is a weaker version of the axiom of weak
Maskin monotonicity used in the characterisation of DA rules by Kojima and Manea (2010). In an
independent paper closely related to ours, Barberà et al. (2014) derive sufficient conditions for a
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strategy-proof rule to also be (weakly) group-strategy-proof. We discuss the relation to this paper
here. Their conditions of ‘H-strategy-proofness’ and ‘H-top rich domains’ are implicitly present
in our assumptions as well, since we assume strategy-proofness, and consider the full domain of
preferences. Their other two conditions are ‘H-top monotonicity’ and ‘H-respectfulness’, which are
related to our conditions of partial weak Maskin monotonicity and weak non-bossiness, respectively.
H-respectfulness is a weaker version of non-bossiness in two ways. Firstly, it imposes requirements
only on some agents H such that |H| ≤ |N | (whereas ours is true for |H| = |N |). Secondly, the
change in preferences is also restricted. H-respectfulness requires the change in preferences to be
both upper- as well as lower-contour-set preserving. In our case, we insist on the change only to be
upper-contour-set preserving, and is thus a weaker requirement in this context.

H-top monotonicity requires that when preferences of H agents change in such a way as to make
their original assignments their top-ranked objects under the new preferences, then these agents
should retain the same outcome at the new profile. We depart from this condition in two ways.
Firstly, partial weak Maskin monotonicity does not require the change in preferences to make the
original assignment the top-ranked object in the new preferences; instead we ask only for a strict
monotonic transformation. Moreover, we do not insist that the outcome remain the same for all
agents changing their preferences; instead, we require that at least one get an outcome she weakly
prefers in the new profile (which may not necessarily be the same object.)

Thus we have two qualitatively different conditions from Barberà et al. (2014). Nevertheless,
our result is similar in spirit - as both exercises draw a connection between strategy-proofness and
(weak) group-strategy-proofness.

4.6.2 Independence of Conditions

We will now show that our two properties are independent.

Partial Weak Maskin Monotonicity

Consider a situation with three agents N = {1, 2, 3} and three objects Z = {a, b, c, }. For any
preference Ri and subset of objects X, let bottom(Ri, X) be the last-ranked object in X according
to Ri.

Let R be a preference profile. Then the rule is defined as follows: f2(R) = bottom(R1,Z),
f3(R) = bottom(R2,Z \ {f2(R)}), and f1(R) = bottom(R3,Z \ {f2(R), f3(R)}).

Let R be a profile as given below. The allocation is given in boxes.

Preferences
R1 R2 R3

c a b

a b c
b c a

This rule is strategy-proof. No agent can alter her own assignment via any change in preferences.
To see this, suppose an agent changes her bottom-ranked object, affecting some other agent’s
assignment. This may in turn affect the third agent’s assignment. However, the changing agent’s
assignment is predicated on the bottom-most available alternative, which will either be the same or
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the object previously assigned by her to the next agent, which is less preferred to her assignment.
Thus she never gets an object that she prefers to her original assignment.

Moreover, the assignment is invariant under any shuffling of the strict upper-contour set. Thus
the rule satisfies weak non-bossiness. But the rule is not partially weak Maskin monotonic. To see
this, consider the following profile R′, where each preference R′i is a strict monotonic transformation
of Ri at fi(R).

Preferences
R′1 R′2 R′3
a b c

b c a
c a b

Partial weak Maskin monotonicity requires that at least one of the agents gets an object weakly
preferred to the original assignment at the new profile. But this is not the case here, as fi(R)P ′ifi(R

′)
for all i ∈ N . Moreover, the rule is not weakly group-strategy-proof. In particular, agents 1, 2, 3
can manipulate at R′ via profile R making them all strictly better off according to R′.

Weak Non-bossiness

Let N = {1, 2, 3} be two agents and Z = {a, b, c, d, e, h} be a set of objects. For any preference Ri
and set of objects X, let bottom(Ri, X) denote the last-ranked object in X according to Ri. Let
R be a profile and let the rule work as follows: f3(R) = h. If bP1a then f2(R) = d. If aP1b then
f2(R) = e. Also, f1(R) = bottom(R2, {a, b, c}).

Consider a preference profile R as in the table below. The allocation is marked in boxes.

Preferences
R1 R2 R3

b h a
a a b
c b e

e d h
d c c
h e d

It is easy to see that this rule is strategy-proof. No agent can affect her own assignment via
any other preference report. It is also partially weak Maskin monotonic as agent 3 gets object h
for all preference profiles. However, it is not weakly non-bossy. In particular, let a profile R′ be
given as follows, where R′1 is an upper-contour-set preserving transformation of R1 at f1(R) and
other preferences remain the same.
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Preferences
R′1 R′2 R′3
a h a
b a b
c b e

e d h
d c c
h e d

Even though agent 1 gets the same object as before, the allocation is no longer the same as
agent 2 now gets e. This rule is also not weakly group-strategy-proof. Consider the following profile
R′′:

Preferences
R′′1 R′′2 R′′3
b h a
a a b
c c e

e d h
d b c
h e d

It is easy to see that agents 1, 2 will manipulate at R′ via (R′′1 , R
′′
2).

4.6.3 The Rules

It should be reiterated here that the conditions outlined above are together sufficient only for weak
group-strategy-proofness; they are in general not sufficient for group-strategy-proofness. In what
follows we will elaborate by showing that the rules we described earlier that are weakly group-
strategy-proof but not group-strategy-proof do indeed satisfy our properties.

‘Pure’ Dictatorship

Recall the ‘pure’ dictatorship rule in this context. There is an exogenous and fixed ordering of
agents σ such that for any preference profile, the first agent in the sequence σ(1) gets her top-
ranked object. The next agent σ(2) gets the object that σ(1) ranks second, and in general agent
σ(k) gets the kth-ranked object according to preferences of σ(1).

It is clear that this rule is strategy-proof. Note that the upper-contour-set for the first agent
is empty. Also, that any reshuffling of the upper-contour-set for other agents does not affect any
agent’s assignment. Thus the rule is weakly non-bossy. Also, the first agent always gets her
top-ranked object for any profile, and so the rule is partially weak Maskin monotonic.

Deferred Acceptance

The Deferred Acceptance rule is strategy-proof (Roth (1982b), Dubins and Freedman (1984)). For
any agent, and two objects she prefers to her assignment, reversing their order in the upper-contour-
set will not affect the allocation. To see this, first note that the strategy-proofness of the DA rule
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ensures that this agent gets the same assignment. For any other agent, if she gets a different
assignment, it is either more or less preferred than the original assignment. If it is less preferred,
this will result only if she is rejected by the original object, which is now assigned to some other
agent. For this agent, the object cannot be strictly preferred, or the original DA allocation would
be invalid. Thus this agent must also get an assignment less preferred to the original. We can then
find a set of agents who all get assignments less preferred. This will cause a contradiction to the
original DA assignment. Instead, if the assignment is preferred, then it must be that the original
claimant of that object has received something else, which must be preferred as well. Thus we can
find a set of agents collectively better off. This violates the constrained efficiency of the DA rule
(citation). Thus no other agent’s assignment will change Thus the DA rule is weakly non-bossy. It
is also partially weak Maskin monotonic. In particular, if an agent strictly raises her assignment in
her preference, then by strategy-proofness of the DA rule, she continues to receive the same object.
Thus at least one agent is at least as well off in the new profile as the old one. This argument also
follows from axioms of IR monotonicity and weak Maskin monotonicity used in the characterisation
of the Deferred Acceptance rule by Kojima and Manea (2010).

4.7 Conclusion

The distinction between group-strategy-proofness and weak group-strategy-proofness is non-trivial
as there are significant classes of rules that satisfy the weak property only. The connection be-
tween strategy-proofness and group-strategy-proofness have been well studied. In this chapter we
contribute to this literature by identifying conditions that along with strategy-proofness are suffi-
cient for weak group-strategy-proofness. These conditions, partial weak Maskin monotonicity and
weak non-bossiness, are both weaker forms of well-known conditions in the literature. We also
demonstrate that a rule satisfying all these properties need not be group-strategy-proof. Thus our
conditions are ‘weak enough’ to fill the gap between the two versions of group-strategy-proofness.

A comment on extensions is in order. The conditions that we have identified are merely sufficient
for weak group-strategy-proofness. Showing the necessity of these conditions is a difficult exercise.
Firstly, note that weak group-strategy-proofness implies strategy-proofness. It is also possible to
show that weak group-strategy-proofness implies partial weak Maskin monotonicity, but only when
the number of agents that we consider is 2. Furthermore, weak non-bossiness is not a direct
implication of weak group-strategy-proofness.

Finding suitable variants of these properties that are both necessary and sufficient for a full
characterisation, i.e., to ensure that a strategy-proof rule is also weakly group-strategy-proof, is
therefore an open question.
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