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Chapter 1 

GENERAL INTRODUCTION 

There are two objectives of this chapter. First, to review the existing literature on 

inequality, polarization and contests, which have drawn considerable attention of researchers 

over several decades of yore. Second, to delineate the plan of the thesis. 

Given the distribution of income in a population, an index of income inequality measures 

interpersonal differences in income. In case the population comprises a number of subgroups, a 

polarization index captures the extent of identification among individuals belonging to the same 

subgroup and alienation between individuals in different subgroups. It has been observed that 

income inequality plays a determinant role in the studies of development, poverty, social 

outcomes and public finance while polarization throws light on the evolution of the distribution 

of income, economic growth and social conflicts. 

A contest is a non-cooperative game with at least two participants contending for a prize. 

The theory of contests successfully analyzes a variety of phenomena like rent seeking, electoral 

candidacy, sporting tournament and provision of public goods. 

 The chapter has been broadly classified into the following sections: (i) Properties of 

inequality indices: an overview (with specific thrust on subgroup decomposability), (ii) Research 

on polarization: the initial phase, (iii) Income bipolarization: indices and quasi-orderings, (iv) 

Income polarization: indices of multi-polar polarization, (v) Alternative measures of income 

polarization, (vi) Measurement of social polarization, (vii) Polarization in case of ordinal data 

and (viii) Contest success functions: a synoptic account.  

1.1 Subgroup decomposable inequality indices  

1.1.1 Properties of inequality indices : an overview  

In Chapters 2 and 3, we deal with subgroup-decomposable inequality indices. To begin 

with, here we summarise some important properties (including „subgroup-decomposability‟) of 

inequality indices from existing literature. 
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Consider a population of size n. Let
i

x denote the income of the th
i  individual, assumed to 

be drawn from the non-degenerate interval  ,  in the positive part 1


R of the real line 1

R . The 

vector  
n

xxxx ,..,,
21

  represents the distribution of income. For any i , 
i

x  ,  and so,

 
nn

Dx  , , the n-fold Cartesian product of  , .  To allow variability of population size, 

we consider 
Nn

n
DD



 , N being the set of natural numbers. For all Nn  , for all

n
n Dxxxx  ),....,,( 21 ,  



n

i

i
nx

1

, the mean of x , is denoted by  x (or simply by  ). For all

Nn  , n
1  denotes the n-coordinated vector of ones. The non-negative (resp. positive) orthant of 

the n -dimensional Euclidean space n
R is denoted by n

R


 (resp. 
n

R


). Unless specified 

otherwise, we take the domain of an inequality index to be D. In other words, an inequality index 

is a function 1
:


 RDI .  

Mentioned below are some standard properties that an Inequality index is expected to obey. 

Symmetry (SYM): For an arbitrary Nn  , if n
Dx  , then )()( yIxI  , for any permutation y  

of x .  

Principle of Transfers (POT): For an arbitrary Nn  and n
Dx  , suppose that y  is obtained 

from x  by the following transformation 

jii
ycxy  , 

cxy jj  , 

and kk xy   for all jik , ,                          (1.1)                                    

where 0c . Then )()( xIyI  . 

This principle is also known as the Pigou-Dalton transfers principle, named after Pigou (1912) 

and Dalton (1920). 

Principle of Population (POP): For all Nn  , n
Dx  , )()( yIxI  , where ),....,,(

21 l
xxxy  , 

each xx
i
  and 2l  is arbitrary.  
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Normalization (NOM): For all Nn  ,  1 0
n

I c  for all 0c . 

Non-negativity (NON): For all Nn  , n
Dx  , ( ) 0I x   if and only if 

n
cx 1 for some 0c . 

 

According to SYM, a condition of anonymity, I  remains invariant under reordering of all 

incomes. Thus, SYM implies that any characteristic other than income has no relevance in the 

measurement of inequality. POT (popularly known as the Pigou-Dalton principle; also referred 

to as strict Schur-concavity) says that a transfer of income from a rich person j to a poor person i  

that does not change their relative positions reduces inequality while the reverse happens in case 

of a transfer from a poor to a rich. According to POP, inequality remains unalteredunder 

replications of the population. Thus, POP plays significant role in cross population comparisons 

of inequality. NOM stipulates that inequality vanishes if there is perfect equality in the 

underlying distribution. Finally, NON imposes a typical restriction on NOM. It demands that the 

inequality index can never vanish unless there is perfect equality. 

An inequality index can satisfy invariance of scale or of location. A scale invariant index 

is one which remains constant if all the incomes are multiplied by the same positive scalar 

quantity. Similarly, a translation invariant index remains unaltered if all the incomes are 

increased or decreased by the same amount.  

To be precise, an inequality index 1
:


 RDI

R
 is a relative or scale invariant index if 

proportional changes in all incomes do not change inequality, that is, for all Nn  , n
Dx  , 

)()( xIcxI
RR

 ,                                                              (1.2)                                                                

where 0c  is any scalar. Similarly, an inequality index 1
:


 RDI

A
is absolute or translation 

invariant if for all Nn  , n
Dx  , 

   xIcxI
A

n

A
 1 ,                                  (1.3) 

where c  is a scalar such that nn
Dcx  1 . 
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1.1.2 Subgroup decomposability of an inequality index: standard notions:  

In the measurement of income inequality, one may be dealing with a population 

partitioned into a number of subgroups (determined by age, sex, ethnicity, geographical location 

etc.). Then a pertinent question is on the contribution of different subgroups. The subgroup-

decomposability of an inequality index captures this point. Formally, an inequality index 

:I D R is subgroup decomposable if for all 2k  and for all Dxxx
k
,....,,

21  we have, 

     1 2

1 2

1

( ) , 1 , 1 , ....., 1 k

k

nn ni

i k

i

I x n I x I    



  ,        (1.4) 

where in  is the population size associated with the distribution i
x , 



k

i

inn

1

, )(
i

i x  =mean 

of the distribution i
x ,  

k
 ,.....,,

21
 , 

k
nnnn ,......,,(

21
 ), ),(  n

i
 is the positive weight 

attached to inequality in i
x , assumed to depend on the vectors n  and   and  .,.....,,

21 k
xxxx 

The first term, which is a weighted average of subgroup inequalities, is called the within group 

inequality (WI) while the second term is called the between group inequality (BI).  

The notion of subgroup-decomposability of an inequality index came to the fore in the 

eighties of the last century. Shorrocks (1980) identified the class of all symmetric, scale-

invariant, twice continuously differentiable and subgroup decomposable inequality indices 

satisfying POP and NON as follows: 

 

 






















 

 

 






































n

i

ii

n

i i

n

i

c

i

c

c
xx

n

c
xn

c
x

cnc

xI

1

1

1

.1,log
1

,0,log
1

,1,0,1
1

1







       

(1.5)                                                                                                                          

The family 
c

I is popularly known as the generalized entropy family. If ,0c
c

I  coincides with 

the Theil (1972) mean logarithmic deviation     defined by 
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       




n

i i

ML

xn
xI

1

ln
1 

         (1.6) 

For 1c , 
c

I  becomes the Theil (1967) entropy index of inequality      given by 

      


i

n

i

i

TE

xx

n
xI 





1

ln
1

         (1.7) 

 For 2c ,
c

I  becomes half the squared coefficient of variation.  

Shorrocks (1984) introduced the notion of „(aggregative) decomposability‟ of an 

inequality measure. According to this definition, an inequality measure I : D R  is 

decomposable if there exists a function A such that for all ,, Dyx    

                   ynxnyxyIxIAyxI ,,,,,,   ,       (1.8) 

where A  is continuous and strictly increasing in its first two arguments.  

Hence weakening the assumption of continuous differentiability by continuity, Shorrocks 

(1984) established that an inequality measure I : D R  is scale invariant and decomposable if 

and only if there exists a continuous strictly increasing function 



11

: RDG  such that   00
1

G  

and  
c

IIG 
1

 for some member 
c

I  of the family of generalized entropy indices. 

Replacing the arithmetic mean by the „generalized‟ or the „
th

q order mean‟ (in (1.4)) as 

the representative income of a population group, Foster and Sheneyrov (1999) introduced the 

notion of the „general additive decomposability‟. The 
th

q order mean is defined by  

     

















































0,

0,
1

)(
1

1

1

1

qx

qx
n

x

nn

i

i

qn

i

q

i

q
 .        (1.9) 

Hence, it has been shown that a relative inequality measure satisfies the general additive 

decomposability if and only if it is a positive multiple of 
qc

I
,

, where 
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 

 

 

 

   

 

 

 

1,

1
1 , 0 ,

1 1
lo g , 0 ,

1
ln , 0 ,

1
, 0 ,

2

c

c

q

q
n

i i

i q qc q

q

L

x
c q c

c c q x

x x
c q c

q n x xI x

x
c q c

q g x

V x c q c





 





   
     

    
  


 


       




 






 





        (1.10) 

where  xV
L

stands for the variance of logarithms of 
i

x ’s and  
nn

i

i
xxg

1

1












 



 is the geometric 

mean of x. The class of generalized entropy measures is obtained by fixing 1q  among which 

Theil mean logarithmic index and the Theil entropy index are obtained by substituting 0c and  

1c respectively. 
qc

I
,  

satisfies Pigou-Dalton transfers principle if and only if 1,1  qc  or 

1,1  qc . It is also worth noting here that the axiomatic derivation of 
qc

I
,

does not require any 

regularity assumption on the functional form of the inequality measure. Instead, it makes use of a 

typical form of a transfer principle over two-person distributions.  

Blackorby, Donaldson and Auersperg (1981) described a welfare-based approach for the 

measurement of intragroup and intergroup inequality. They considered ethical indices of 

inequality (viz. the Atkinson-Kolm-Sen (AKS) index defined by 

  
 

1 
k e

x
I x

λ x
                    (1.11)  

e
x  being the “equally distributed equivalent” income (EDEI) of distribution  x  defined by 

    n

e
xWxW 1   (1.12) 

where RDW :  is any continuous, increasing and strictly S-concave social welfare function 

and  x
 the mean of x. The intergroup inequality has been defined as the inequality of the 

distribution where everyone enjoys EDEI of one‟s subgroup. The intragroup inequality is given 



7 

 

by the percentage saved in moving from the original distribution to the distribution generated by 

EDEI‟s. The overall inequality can then be decomposed as 

             yIyIyIyIyI
RARA

 ,      (1.13) 

where  yI
A  and  yI

R  denote the intragroup and the intergroup inequality respectively. 

Adopting a normative approach for measurement of inequality, Blackorby, Bossert and 

Donaldson (1999) demonstrated a means of decomposition of the AKS index into the between-

group and within-group components. 

Chakravarty and Tyagarupananda (1998) observed that the absolute counterpart of the 

family
c

I , that is, the class of subgroup decomposable indices that remains invariant under equal 

translation of all incomes comprises 

      



n

i

x
ie

n
xI

1

)(
1

1
)(




, 0 ,              (1.14) 

and    2

1

21
)( 



n

i

iV
x

n
xI .              (1.15) 

Bossert and Pfingsten (1990) argued that a natural generalization of the absolute and 

relative invariance of inequality indices is the intermediate invariance. To be specific, an 

inequality index RDI :


 is intermediate  -invariant  10    if 

     xIxcxI
n


  11       (1.16) 

for and all n
Dx   and Nn  .  

Chakravarty and Tyagarupananda (2009) classified all symmetric, intermediate  -

invariant, twice continuously differentiable and subgroup decomposable inequality indices 

satisfying Population Principle and normalization. The identified class is given by: 
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  

    

 

   

 

 

1

1

1

1
0 1

1

1
0

1
1

r ,
n

i

i

n

r ,

i i

n

i i

i

x t
 ,   r , ,

tn r , r ,

t
I x lo g  , r ,

n x t

x t x t
lo g  , r ,

n t t






 





 







   
   

     



 




  


 








‟    (1.17) 

where       1, rr  and    1t , 10   . Clearly, this class contains the generalized 

entropy family as a special case. 

Chakravarty (2001) pointed out that variance is the only proper subgroup-decomposable 

index satisfying absolute invariance, symmetry, twice continuous differentiability, population 

replication invariance and normalization.  

1.1.3  Alternative notions of subgroup decomposability: 

Bosmans and Cowell (2010) adopted the definition of (aggregative) decomposability 

(also called „absolute decomposability‟) of an inequality index (introduced in Shorrocks (1984)) 

and demonstrated that an inequality measure I : D R  satisfies SYM, POT, POP, absolute 

decomposability and translation invariance if and only if a continuous and strictly increasing 

transform (vanishing at 0) of I is 
V

I or I


(as defined in Chakravarty and Tyagarupananda 

(1998))  for some  . 

Subramanian (2011) defined proper subgroup-decomposability of an inequality index by 

demanding that the weight ),(  n
i  

in definition (1.2) depends only on the subgroup population-

share    ⁄ . Introducing the notion of „level sensitivity‟, the author showed that (a) there exists 

no properly decomposable inequality index satisfying „level sensitivity‟ and (b) there exists a 

relative inequality index satisfying both subgroup decomposability and „level sensitivity‟. 

In a remarkable contribution, Zheng (2007) contended that the notion of invariance 

(scale/ translation/ intermediate) depends on the value judgment of the policy maker. To get rid 

of this problem, he suggested the use of „unit consistency‟ condition (a natural generalization of 
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„scale invariance‟) which demands that for any two distributions x , y D if     I x I y , then 

   I x I y   for all 
 


1

R .  

To illustrate the notion of unit consistency, suppose there are two income distributions 

and an inequality measure demands that the first distribution has greater inequality than the 

second when all the incomes are measured in Indian Rupees. Now, unit consistency of the 

inequality index demands that relative ranking of the two distributions should remain unaltered 

even when the money unit is changed to Dollars. Clearly, „unit consistency‟ is an ordinal 

property.  

Zheng (2007) then characterized all unit-consistent, symmetric, differentiable, population 

replication invariant, strict Schur concave subgroup-decomposable inequality measures that 

satisfy normalization. The resulting index is a positive multiple of 

 

    
  

      
 

  

 
 

1

, 1

1

1

1
, 0 ,1,

1

1
lo g , 0 ,

1
lo g , 1 ..

n

i

i

n

i i

i

n

i i

x x

n x

x x
I x

x xn x

x

xn x






  



 

  


 
















   
  




 


















      (1.18) 

for , R  . 

 

Clearly, this family is a two parameter extension of the generalized entropy family (that 

is, if      , then      coincides with    defined in (1.5)). The extended family includes the 

following generalization of the intermediate measure suggested in Krtscha (1994):  

 
  

   




n

i

i
xx

xn

xI

1

221





,         (1.19) 

where  0 2 . However, it does not include the decomposable intermediate inequality 

measures characterized in Chakravarty and Tyagarupananda (2009).  

Zheng (2005) further observed that while characterizing (1.18), one can replace the 

assumption of differentiablity of the inequality index by a weaker hypothesis viz. continuity. 
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Ebert (2010) put forward the notion of „Weak decomposability‟ of inequality indices.He 

defined an inequality index to be weakly decomposable if for all  
1 2

n , nn  (where Nnn 
21

, ) 

there exist strictly positive weighting functions  
1

 n ,  
2

 n and   n such that  

             
 

    

1 2
n n

1 2 1 1 2 2 1 2

i j

i 1 j 1

I x , x I x I x I x , x  n n n     (1.20) 

for all    (  
    

       
 )    

   and     (  
    

       
 )    

   .               

The sum of the first two quantities on the right hand side may be regarded as the within 

group inequality while the third term, dependent on the sum of inequality between different 

pairs, refers to the between group term. Thus, for calculating „between group inequality‟ 

according to this definition of subgroup-decomposability we don‟t require to consider the 

smoothed distribution comprising of subgroup means.  

Ebert (2010) next classified all weakly decomposable inequality indices satisfying 

population replication invariance and a normalization condition. The resulting expression for I 

satisfies 

   
 

  

n n

i j2

i 1 j 1

2
I x I x , x

n
     (1.21)                 

for all n
Rx


  and n 2 . 

1.2  Research on polarization: the initial phase:   

Last two decades have witnessed a tremendous surge of interest in the study of 

polarization. Research on inequality has been supplemented by the theory of measurementand 

orderings in terms of polarization. Loosely speaking, polarization refers to clustering of 

individuals/attributes around local poles or subgroups in a distribution, It has been observed that 

polarization can reasonably explain a number of social phenomena such as income distribution 

evolution, economic growthand social conflicts.  
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The initial phase of the study of polarization dates back to the eighties of the last century 

with the pursuit on the „disappearing middle class‟. Lester Thurow (1984) and Blackburn and 

Bloom (1985) observed that during the period 1967-1983, the income distribution in the United 

States was getting polarized in the two extremes in the sense that the percentage of income in the 

„middle‟ income-range was coming down. The question was pertinent because it was generally 

believed that the existence of a thriving middle class helps in the growth of „a healthy political 

democracy‟ and an opulent market for domestic goods and services. By the „middle‟ income-

group they meant those with incomes between (a) 75% and 125% and (b) 60% and 225% 

respectively of the median income. However, pursuing a similar query, Levy (1987a, 1987b) 

defined the „middle‟ as the middlemost 3/5 of the population and concluded that the proportion 

of the „middle‟ remained more or less constant. Wolfson (1994) cited a typical example to show 

that for two income distributions it is quite probable that the income share of the middle third of 

the first distribution is lower than that of the second while the ranking is opposite if we consider 

the middle two-thirds of the two distributions. Thus the relative ranking of two income 

distributions on the basis of the „disappearing middle‟ may very well depend on how the 

„middle‟ is defined. 

  Levy (1987a, 1987b) defined the „middle‟ in the 

„people space‟ instead of the „income space‟. His 

definition of the „middle class‟ consists of all the 

p-percentiles, where          . Thus, 

Levy‟s measure of the „middle‟ is:  (   )  

 (   ), where  ( ) denotes the Lorenz-ordinate 

at cumulative proportion p (which equals the 

share of the total income possessed by the 

cumulative p proportion of the population). 

However, this index has been criticized by Foster                  

Fig. 1.1(Levy‟s bipolarization index)
1                 and Wolfson (1992, 2010) for its inability to 

measure the „spread‟ on each side of the „middle‟.  

                                                           
1
 Figure No. 1.1-1.3 are borrowed from Foster and Wolfson (2010). 
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For example, Levy‟s index remains constant for all symmetric distributions; the dispersion away 

from the median is immaterial. 

1.3 Income bipolarization: indices and quasi-orderings:  

Addressing the above shortcoming of Levy‟s measure, Foster and Wolfson (1992, 2010) 

suggested a methodology which allows us to vary the cut-off points of the „middle‟ income 

range. They introduced the notions of „increased spread‟ (IS) and „increased bipolarity‟ (IB) on 

the basis of which they described how to draw polarization curves that determine whether one 

distribution is unambiguously more or less polarized than another. The first property (IS) 

requires that polarization should increase via a median( ( ))-preserving transfer that reduces 

income(s) below  ( ) and increases income(s) above  ( ) while the second (IB) demands that 

polarization should go up via a number of progressive transfers taking place on either side of the 

median. 

To construct an index of polarization, Foster and Wolfson (1992, 2010) and Wolfson 

(1994) defined two types of polarization curves. The first degree polarization curve   ( ) of a 

distribution F is defined by the distance between the median and the income of the person at the 

    percentile. Thus, one distribution has an unequivocally smaller middle class if and only if the 

first degree polarization curve of the former lies everywhere higher than that of the latter.  

 

        Fig. 1.2 (1
st
 degree polarization curve)                   Fig. 1.3 (2

nd
 degree polarization curve) 

The second degree polarization curve   ( ) of a distribution F is given by the area under 

the first degree polarization curve between 0.5 and q.  



13 

 

Wolfson (1994) suggested three distinct indices for measuring bipolarization. The first 

one is the median share (mshare, for short) given by the income share of the bottom half of the 

population. The second statistic is   ⁄ , the ratio of the median to the mean income, which is 

also defined as the „median tangent‟ (mtan). The third one defined by 

  P 2 T G / m ta n ,      (1.22) 

where   twice the area of the trapezoid defined by the 45-degree line and the median-tangent 

(= the vertical distance between the Lorenz curve and the 45-degree line at the 50
th

 percentile) 

and G is the Gini index of inequality. It has been shown that  

  
U L

T /          (1.23) 

with   = mean of those above the median,   = mean of those below the median and   the 

overall mean. 

Wolfson (1994) measures are relative bipolarization indices in the sense that they remain 

invariant under equal relative changes in all incomes, 

The third measure is identical with the one suggested by Foster and Wolfson (1992, 

2010) 

  

1

F W F

0

P 2 B q d q ,     (1.24)  

which is simply twice the area below the second degree polarization curve. It has been shown 

that the measure     satisfies both „increased spread‟ and „increased bipolarity‟. 

Foster and Wolfson (1992, 2010) established that 

  
G G

F W
P B I W I

m


,      (1.25) 

where     and     are the between-group and within-group inequalities of the Gini coefficient, 

where the population has been assumed to be divided into two subgroups: one below the median 
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and the other above it. This clearly underscores the essential difference between polarization and 

inequality.  

Foster and Wolfson (1992, 2010), were pioneers in developing a rigorous definition of 

bipolarization ordering. They introduced the notion of the relative bipolarization curve (RBC). 

For any
n

Dx  , let       
n

xxxx ,...,,
21

0
  be the non-decreasingly ordered permutation of .x  We 

assume for simplicity that n  is odd. Then  
 n

xxm  , where 






 


2

1n
n . Let 0


x  0


x  be the 

subvector of 
0

x  such that    xmx
i
  (    xmx

i
 ). The normalized aggregate shortfall 

 
    












nik

i
xxm

xnmn

k
xRB

1
,  is the deviation of the total income of the population 

proportion nk  from the corresponding total that it would possess under the hypothetical case  

 

      

     RB (x,t)                                   

 

 

 

 

             
 ̅

 
 

   Population proportion 
 

 
  

     Fig. 1.4 (Relative Bipolarization Curve)
2
 

where everybody enjoys the median income, as a fraction of the factor nm , where nk 1 . This 

is the ordinate of the relative bipolarization curve (RBC) of x, corresponding to the population 

proportion nk  , where nk 1 . For incomes not less than the median, the corresponding 

ordinate is
 

    




kin

i
xmx

xnm

1
. A similar construction of the curve runs when the population 

size is even.  (See Wolfson, 1997, 1999, Wang and Tsui, 2000, Chakravarty, 2009). It is shown 

                                                           
2
 This figure is borrowed from Chakravarty (2015). 
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that of two distributions n
Dyx , , the RBC of y  dominates that of x , that is, the RBC of y  is 

nowhere below that of x  and at some places strictly inside if and only if y  is more polarized 

than x  by all relative, symmetric bipolarization indices that satisfy IS and IB (see Wolfson, 

1997, 1999, Chakravarty et al., 2007 , Chakravarty, 2009 and Foster and Wolfson , 2010).  

Extending the works of Foster and Wolfson (1992, 2010), Wang and Tsui (2000) 

characterized a generalized family of bipolarization indices. They also established various 

equivalent forms of a slightly modified version of the partial ordering suggested by Foster and 

Wolfson (1992, 2010). In particular, the modified version of Foster-Wolfson (partial) ordering is 

defined as follows: for any two vectors x and y having the same dimension and a common 

median (m), we say that y is more polarized than x if the sum of the absolute deviations from the 

median of all the observations below the median as well as those above the median are not 

greater than the corresponding quantities for the vector y and if strict inequality holds in at least 

one case. Formally,  

    
   

   

   i i

k i n k i n

x m y m ,1 k n        (1.26) 

and 

   
   

   i i

n i k n i k

x m y m ,  n k n .     (1.27) 

Wang and Tsui (2000) showed that (i) given two such vectors x and y, y is not less 

polarized than x if and only if there exists a vector z with the same dimension and the same 

median such that y has a greater spread than z and z has a greater bipolarity than x and that (ii) 

for a given median, this is equivalent to the condition that Bxy
00


  and 00


 yCx  for all 

bistochastic matrices CB ,  of appropriate orders, and 00


 xy  and/or 00


 xy . (For any two n -

coordinated vectors p and q , qp  means that 
ii

qp  for all ni 1 . An nn  nonnegative 

matrix is called a bistochastic matrix of order n if each of its rows and columns sums to 1.) 

For determining a generalized class of Foster-Wolfson family of bipolarization indices, 

Wang and Tsui (2000) assumed two particular additive structures at the outset and then imposed 
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the IS and IB axioms. Finally, formulating a normalization axiom, they characterized an index 

which is a weighted sum of the percentage deviations from the median income:  

      
 

 

 1

n
in N

i

i

m x x

P x b
m x



      (1.28) 

where
1

0
n n

i i
b b


   for all i n ; 

1
0

n n

i i
b b


   for all i n ;

1

1 1

n n

n n n

n i i

i i n

b b b



  

    if n is odd and  ( ) 

is the median of x.  

Another significant contribution of Wang and Tsui (2000) is a new family of polarization 

indices which are expressible as weighted sums of the r
th

 powers of the absolute deviations from 

the median: 

      
 

 1

1

1i

n
r

i

n

n
P x x m x





  ,    (1.29)  

    and  
 

 

 

2

2

1

r

n
in

i

x m x

P x
n m x







  .    (1.30) 

where r is a positive fraction and
1

 ,
2

  are positive constants. The characterization-exercise 

involves a postulate on scale compatibility.  

Rodriguez and Salas (2003) observed that the Foster-Wolfson index of bipolarization, 

computed for two groups separated by the mean (instead of the median) transforms to 

  
G G

P B I W I


.       (1.31)  

The authors then defined the extended Wolfson bipolarization measure with inequality-aversion 

parameter v as  

              
G G

R S
P v B I v W I v ,      (1.32)  

where, as before,     and     are respectively the between-groupand the within group 

component associated with Donaldson and Weymark (1980, 1983) welfare-ranked S-Gini 

inequality index(with parameter v ) given by 
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       

1

2

0

1 1 G v v v q q L q d q
 

            (1.33) 

(For  2 , (1.33) yields the well-known Gini index of inequality.) It has then been shown that 

this bi-polarization measure is consistent with the second degree polarization curve (that is, it 

satisfies increased spread and increased bipolarity) if  2 3v , . 

Adopting welfare-based approach, Chakravarty and Majumder (2001) suggested a family 

of bipolarization indices. The first one is based on the Atkinson-Kolm-Sen (AKS) ethical 

inequality index and is given by 

 
      

 

         

 

1 2 1

2 2

k k

n
x I x x x I x B m x x

Q x
m x m x

   
     

   
  ,  (1.34) 

where   m x , as before, is the median of x, x+ (resp.   ) comprises all
i

x ‟s where  i m x  (resp. 

 i m x ),  2k n / , if n is even and  1 2k n /  , if n be odd;  B m ( x )   
r

xm



1

  and 

 H m ( x ) =  
11

2
2

r

m ( x ) / 


  and  
k

I x  denotes the Atkinson-Kolm-Sen (AKS) index of 

inequality defined in (1.10).  

Dealing with absolute polarization indices (which remain invariant under equal absolute 

changes in all incomes), Chakravarty et al. (2007) introduced the absolute polarization curve 

(APC). This curve is obtained from the Foster-Wolfson bipolarization curve on multiplication by 

the median. Thus, the APC measures for any cumulative population proportion the absolute 

difference of its total income, expressed as a fraction of the total population size, from the 

corresponding income that it would enjoy under the hypothetical distribution where everyone has 

the median income. 

Formally, 

    

  

  

1
1

1

i

k i n

A

i

n i k

m x x  if    k n
n

F W x ; k

x m x if  n k n  .
n

 

 


  




 

   






   (1.35)  
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The area under the APC is an absolute measure of polarization. Chakravarty et al. (2007) 

demonstrated that for two income distributions x and y, the APC of x lies below that of y if and 

only if polarization of x is not less than that of y for all absolute, symmetric, population-

replication invariant polarization indices satisfying IS and IB. 

Undoubtedly, IS and IB are the two cardinal principles of bipolarization. (Amiel et. al. 

(2010) studied the acceptance of these two axioms among the researchers through 

questionnaires.) Bossert and Schworm (2008) presented a complete characterization of the class 

of all quasi-orderings satisfying IS and IB and anonymity (which demands that polarization 

should remain invariant under any permutation of the arguments). 

To be specific, a quasi-ordering     satisfies the three axioms if and only if     includes 

  , where two income distributions 
 


n

x , y R (where n is assumed to be even) satisfy       if 

and only if they have the same median and 
L

y  and 
H

y generalized Lorenz dominates 
L

x  and 

H
x respectively. (Here 

     
L

1 n / 2
x x , .., x and 

    
 

H

n / 2 1 n
x x , .., x respectively denote the 

rank-ordered subvector of xconsisting of low-income and high-income individuals.)  

As a corollary it follows that the quasi-ordering     is indeed the quasi-ordering defined 

by Foster and Wolfson (1992, 2010). 

To identify a family of polarization measures, Bossert and Schworm (2008) stated the 

following „Independence‟ axiom:  

For all 
 


n

x , y R with the  same median,  

            
L H L H L H L H

P y , y P x , y P y , x P x , x    (1.36) 

and 

           
L H L H L H L H

P y , y P y , x P x , y P x , x .    (1.37) 

The axiom demands that for any fixed value of the median, 
L

x  and 
H

x  are strictly separable 

from each other. 
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The relevant characterization theorem states that a polarization measure P satisfies 

Anonymity, IS, IB and Independence if and only if for all 
1


 RM and for all 

n
Rx


 with

  Mxm   we have, 

      Φ
L H L L H H

M M M M
P x , x x , x         (1.38) 

where Φ 
2

M
: R R  is increasing, 

 


L n / 2

M
: R R  is non-increasing and S-concave and 

 


H n / 2

M
: R R  is non-decreasing and S-concave.  

The paper concludes with the observation that there is no straightforward generalization 

of the partial ordering in a multi-group context. 

Deustch et al. (2007) defined an index of flatness of an income distribution as follows: 

  
B W

G
P G G / G .       (1.39) 

Then they showed that    can as well be regarded as an index of bipolarization since it satisfies 

IS and IB. This in turn establishes a clear link between an index of kurtosis and one of 

bipolarization.  

Duclos and Echevin (2005) introduced the first order bipolarization dominance. A bi-

polarization index of an income distribution x, according to their definition, is a function of 

  ( )‟s, where   ( ) is the „proprtional spread‟ of individual i‟s income from median income, 

that is,  

   
x i x x

d i x m / m .       (1.40) 

  Then looking at the increasingly ordered transformation  
*

x
d i  of  x

d i ‟s, they 

considered four axioms (homogeneity, population replication invariance, monotonicity and 

symmetry) based on which they define the first order bipolarization dominance. Given two 

distributions x and y, the dominance criterion demands that   is more polarized than    if and 

only if     
* *

x y
d i d i   for all i. Further, defining  
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    
1

1
n

x y

i

Q I d i
n

 



         (1.41) 

(where I denotes the indicator function), Duclos and Echevin (2005) define a second 

bipolarization dominance as follows: x is more bipolarized than y if and only if    
x y

Q Q   

for all  0 . 

Chakravarty and D‟Ambrosio (2010) developed the notion of intermediate invariance of 

bipolarization measures, based on which they define the intermediate polarization curve (IPC). 

This requires that the distributions   and   1 1
n

x c x    should have the same level of 

polarization for any positive constantc and any    (   ). The authors then identified two distinct 

classes of bipolarization indices. The first one is: 

      
  

 

2

1

G
x x A x

F x
m x



 

 
 


 

,    (1.42)  

where  G
A x , the absolute Gini index of inequality for the distribution  x is defined by

     xxIxA
G

G
  .  

The other one is: 

 
  

 

1

1

1

1

r r

ii n
n x m x

C x
m x



 



 



 


,    (1.43) 

where 10  r . 

Chakravarty and D‟Ambrosio (2010) further established that for two income distributions 

x and y, the IPC of x lies below that of y if and only if polarization of x is not less than that of y 

for all intermediate, symmetric, population-replication invariant polarization indices satisfying 

IS and IB. 

Lasso de la Vega et al. (2010) generalized the notion of „intermediate invariance‟. 

Introducing the notion of „Unit Consistency‟ of bipolarization measures, they showed that the 
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only unit consistent indices are related to the Krtscha-type notion of intermediateness (see 

Krtscha 1994).  

1.4  Income polarization: indices of multipolar polarization:  

In the previous section it was assumed a priori that the population under consideration 

consists of precisely two groups. Widening the framework of bipolarization, Esteban and Ray 

(1994) (ER (1994), henceforth) introduced polarization in a multi-group setting. The population 

has been assumed to be fragmented exogenously into different subgroups (with respect to 

religion, ethnicity, geographical region or some such social characteristic). The individuals 

belonging to the same subgroup possess a feeling of identification among them and a feeling of 

alienation against individuals in other subgroups. Polarization, thus, has two components viz. 

„identification‟ and „alienation‟, both being related increasingly to the former. By considering 

numerous examples, it has been shown that in such a situation, polarization is conceptually 

distinct from inequality.  In particular, the notion of inequality is dependent on the „local‟ 

properties such as Pigou-Dalton transfers principle whereas the idea of polarization relies on the 

shape of the entire income distribution and thus behaves „globally‟.  

To pin down an index of polarization, ER (1994) confined attention to the following 

quasi-additive structure: 

       
 

  

n n

i j i i j

i 1 j 1

P , y T J , a y , y     ,    (1.44) 

where    and    respectively denote the population 

proportion and the representative income of the i
th

 

subgroup, J is the identification function, a the 

alienation function and      T J p , a y , y ' gives 

the effective antagonism felt by y towards   . T  has 

been assumed to be continuous in both the arguments 

Fig. 1.5 (the 1
st
 Axiom in ER (1994))

3
        and strictly increasing in the second argument.                   

                                                           
3
 Figure No. 1.5 and 1.6 are borrowed from Esteban and Ray (1994). 
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For characterization of polarization indices, a number of axioms have then been invoked. 

The first one says that merger of two sufficiently small masses separated at sufficiently small 

distance at their midpoint augments polarization. The underlying idea is that lower is the 

dispersion inside the groups and higher is the homogeneity of groups‟ sizes, the greater is the 

polarization.  

The next axiom translates the intuition that polarization increases with an increase in the 

heterogeneity of group-sizes. We begin with three masses p, q and r where qp   , rp  and the 

intermediate point mass q is at least as close to r as it is to p.  Then the axiom demands that a 

small shift of  mass q that brings it closer to  

r augments polarization.    The third 

axiom relies on the fact that the 

disappearance of a middle class into „rich‟ 

and „poor‟ categories results in an 

increment in polarization.  

The final postulate (Axiom 4) demands that 

given three masses p, q and r with q r ,  p 

                       Fig. 1.6 (the 2
nd

 Axiom in ER (1994))   sufficiently small, polarization increases by a shift 

of  population mass from p to r. The intuition is quite clear. The shift brings the sizes of the two 

dominant groups closer to one another, thereby enhancing polarization.   

Employment of the first three axioms along with a condition of homotheticity (which 

requires invariance of polarization ordering under scalar multiplication of population-sizes) on a 

polarization index (of the form (1.41)) reduces it to a positive multiple of 

1

1

n

i j i j

i , j

E R y y


 




  ,      (1.45) 

where 0  is a parameter (to be regarded as a polarization sensitivity parameter),  0
*

,  


ò

with 1 6
*

. .   In fact, the value of   can be restricted within a smaller domain 1
*

, 
 

 if we 

additionally impose Axiom 4. The gretater is the value of  , the greater is the divergence of ER 



23 

 

from inequality. The value     corresponds to the Gini index of inequality. The bimodal 

distribution (that is, a distribution with two modes) is a maximal element for the partial ordering 

generated by the class of polarization measures identified above in the sense that it is more 

polarized than any other income distribution.    

To capture the intergroup distance in ER (1994), D‟Ambrosio (2001) replaced the 

Euclidean distance by the Kolmogorov metric defined by 

     (   )  
 

 
∫ |  ( )    ( )|  
 

 
      (1.46)  

where
i

f  (resp. 
j

f ) is the density of the 
th

i  (resp.    ) income group. 

Notice that ER (1994) measures polarization in a situation where the underlying income 

distribution is discrete. However, in many practical problems, the income distribution may be 

continuous. Extending the ER (1994) measure to such cases, Duclos, Esteban and Ray (DER, 

henceforth) (2004) suggested an index that can be applied to distributions with density functions. 

The authors began with the following form of the polarization index: 

            P F T f x , x y f x f y d x d y∬ .    (1.47)  

To specify the functional form of T, DER (2004) stated a set of axioms. For this, the 

notion of basic densities has been introduced. An unnormalized, symmetric, unimodal density 

having a compact support is called a basic density. A basic density with mean 1 and support [0,2] 

is called a root. A basic density can undergo two types of transformations viz. the slide and the 

squeeze. A slide to the right (resp. left) by x is just a new density g defined by     g y f y x  

(resp.     g y f y x ). A  -squeeze of f is a transformation f


defined by   ( )  

 

 
 .

  ,   - 

 
/.  A squeeze, thus, implies a global compression of a density.  

The statements of the axioms can be summarized as follows. 

(i) Given a distribution comprising a single basic density, a squeeze of the density cannot 

increase polarization.  
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A squeeze of a basic density brings the density closer to its mean, thus making it more 

homogeneous. Consequently, polarization is expected to go down. 

(ii) If in a symmetric distribution there are 

three basic densities with the same root and 

mutually disjoint supports, then a “double 

squeeze”, that is, a symmetric squeeze of the 

two side densities cannot lower polarization.  

In other words, a „local‟ squeeze contributes 

to increment in identification and hence cannot 

reduce polarization. 

Fig. 1.6 (a „squeeze‟ of a basic density)
4
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.7 (a „double squeeze‟) 

 

(iii) Consider a symmetric distribution comprising of four basic densities having the same  

                                                           
4
 Figure No. 1.6-1.8 are borrowed from Duclos, Esteban and Ray (2004). 
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 Fig. 1.8 (a „slide of the two middle densities‟) 

root and mutually disjoint supports. A „slide‟ of the two middle densities must augment 

polarization. 

The reason is evident: a twin „slide‟ of the two inner densities brings the distribution closer to the 

bipolar case, thereby increasing the alienation component. 

(iv) The final axiom is a homotheticity principle: the same ordering of polarization must 

be maintained if populations are multiplied by a scalar constant. This is the same as 

the Axiom 4 in ER (1994). 

DER (2004) characterization theorem states that a polarization measure P (of the form (1.44)) 

satisfies the four axioms stated above if and only if it is a positive multiple of 

     
1

P F f x f y y x d y d x






 ∬     (1.48) 

where  0 2 5 1. ,  .  

The parameter  ̃ may be regarded as a polarization sensitivity parameter. If  ̃   , then 

  ̃ equals the Gini coefficient of inequality. A greater value of   ̃ means a greater amount of 

identification and hence a greater polarization. 

Next comes the problem of estimation and statistical inference. The suggested estimator 

for    ̃( ) is: 
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     
1

1

n

i i

i

P ˆF̂ n f y a yˆ








       (1.49) 

where     
1

1 1

1

2 1 1 2

i

i i j i

j

a y y n i  n yˆ ˆ y



 



 
      

 
 ,  ̂ being the sample mean and  i

f̂ y


 is 

estimated non-parametrically. 

The asymptotic normality of     
0 .5 ˆn P F P F

 
 has then been established.  

Using Luxemberg Income Study (LIS) data, the authors finally show that the behaviors of 

inequality and polarization are entirely different.  

Considering the Shapley decomposition procedure (introduced by Chantreuil and 

Trannoy (1999)) meant originally for inequality indices, Deustch and Silber (2010) showed how 

this could be applied for measuring the marginal impact of an income source on the overall 

polarization. 

Other Modifications of  ER (1994): 

A considerable amount of information may be lost in clubbing individuals into different 

subgroups. Keeping this in mind, Esteban, Gradin and Ray (2007) suggested the following 

modification of the ER- index:  

       


 

   

n n

1

i j i j

i 1 j 1

E G R , er ,


         ,   (1.50) 

where   
1 2 n

, , . ,     and   
1 2 n

, , . ,    , 
i

  and 
i

  being the population frequency and 

the mean of the income class  i 1 i
x , x  for ni ,...,1  and the error term  e r ,  corresponds to 

„the implicit fuzziness of group identification‟ and  0 is a constant. It is fairly interesting to 

note that when  n = 2 and 1  we have,  

        F W

m
E G R , P

2
         (1.51) 
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Maintaining the same spirit, Lasso de la Vega and Urrutia (2006) suggested the use of the 

following index: 

   
1

1 1

  1

n n

G

i j i j i

i j

L U , , I



     



 

    ,       (1.52) 

  being a nonnegative constant representing the degree of sensitivity towards group cohesion and 

  
  the Gini index of group i. It is clear that the LU index is increasing in between-group 

inequality and decreasing in within group inequality. 

1.5  Alternative measures of income polarization: 

Alesina and Spolaore (1997) suggested an alternative measure of income polarization. 

This is given by the median distance from the median. Let F be the distribution with median m. 

Then the proposed measure     is given implicitly by the formula 

       
2

1


ASAS
PmFPmF .       (1.53) 

In course of their empirical study on the regional variation of expenditure in rural and 

urban China, Kanbur and Zhang (2001) proposed an index of polarization, based on a subgroup-

decomposable inequality index. Their index is given by the ratio between the between-group (BI) 

and within-group (WI) components of inequality (I):  


Z K

P B I / W I .       (1.54) 

Here the between-group term can be taken as an indicator of alienation and the within-

group component is inversely related to identification.  

Employing Gini index in (1.54) we get  


G G G

Z K
P B I / W I .       (1.55) 

The increasing transformation  

     
1

1

G

Z K

S D H G

Z K

P
P

P





        (1.56) 
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yields the index of bipolarization suggested by Silber et al (2007). Obviously 
S D H

P  and 
Z K

P  have 

the same properties as they are increasingly related. It has been mentioned that 1
S D H

P  is a 

measure of the kurtosis (that is, the degree of peakedness) of the distribution. 

 

1.6  Measurement of social polarization: 

Besides the study on income polarization, the mid-eighties of the last century saw the 

beginning of another dimension of social sciences viz. the study on conflict. The initial empirical 

research presented income inequality (and distribution of landownership) as the major cause of 

conflict. However, perceptions began to change with the conclusion in Lichbach (1989) that 

theempirical results were not of much significance. Tracing the history of the last century, a need 

was being felt for introduction of ethnic/religious components into the scope of empirical study. 

Following Easterly and Levine (1997), researchers pointed to the ethnic and religious social 

divides as a cause of conflict and low collective action. Some of the pioneering contributions 

include Alesina and La Ferrara (2000), Alesina and La Ferrara (2005), Collier and Hoeffler 

(2004), Desmet et al (2008, 2009), Fearon (2003), Fearon and Laitin (2000), Miguel et al. (2004) 

and Montalvo and Reynal-Querol (2005). 

 
In the beginning, the focus was on the ethnic diversity, of which the most popular index 

is FRAC, the (ethno-linguistic) index of fractionalization. Considering a population with 

subgroup-proportions         …..,  the fractionalizationindex is defined by 

 
1

1

n

i i

i

F R A C  



  .      (1.57) 

Clearly, FRAC measures the probability that two randomly selected individuals belong to two 

different groups. 

A number of papers accepted this as an efficient predictor of ethnic violence and civil 

war. Moreover, they opined that in an ethnically diverse society, the chance of empirical growth 

is low and the level of corruption is likely to be high. Collier and Hoeffler (2004), Fearon and 

Laitin (2003) and Miguel et al. (2004) accepted FRAC as a regressor in their regression analysis 

on conflict. Vigdor (2002) considered a model of differential altruism and used FRAC to show 
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that estimated fragmentation effects can be regarded as a weighted average of within-group 

affinity in the population.                                                                       

A generalization of the fractionalization index can be found in Bossert et al. (2011). 

Building the notion of „similarity matrices‟ containing similarity values     between individuals i 

and j that takes values on [0,1] (0 being the case of perfect dissimilarity and 1 the case of perfect 

similarity), they defined the Generalized index of Ethno-linguistic Fractionalization (GELF). For 

characterization of GELF, the following axioms have been employed: (1) Normalization that 

demands the proposed measure to vanish in a situation of maximal dissimilarity in a society and 

to take on value 1 in case of maximal similarity; (2) Symmetry that demands the index to remain 

invariant under permutations of the arguments; (3) Additivity, which is a typical decomposition 

rule and (4) Replication Invariance that demands the measure to remain constant if the 

population gets multiplied.  It has been shown that a diversity measure (that is, a map



1

: S R , 

where  ⋃     ,    being the set of all n-dimensional similarity matrices) satisfies the four 

axioms mentioned above if and only if it is a positive multiple of  
2

1
1

i j

i , j

G S s
n

   , n being the 

population size.  

In spite of having its intuitive appeal, FRAC was unable to explain a number of issues 

related to the occurrence of civil war. Collier and Hoeffler (2004) claimed that contested 

dominance of one large group increases the chance of civil conflict rather than a high level of 

fractionalization.  

Esteban and Ray (1999) developed a behavioral model that links the onset and intensity 

of social conflict to the society-wide distribution of individual characteristics and studied the 

problems of existence and uniqueness of conflict-equilibrium. Conflict has been viewed as a 

situation in which in the absence of a collective decision rule, social groups with contradictory 

interests make losses in order to increase the chance of obtaining their preferred outcomes. 

Further, it has been assumed that individuals with the same preferred outcome agree in their 

valuations of the remaining outcomes. Conflict is presented by the equilibrium sum of resources 

that are expended for achieving the preferred outcomes.  
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A striking conclusion of the paper is that the probability of conflict attains its maximum 

in a symmetric bipolar situation.This establishes a clear link between conflict and polarization. 

Drawing inspiration from these findings, Montalvo and Reynal-Querol (MR, henceforth) 

(2005) put forward the notion of „ethnic polarization‟ in place of „ethno-linguistic 

fractionalization‟. Citing the seminal paper by Horowitz (1985), they argued that chance of 

ethnic clash is small in a perfectly homogeneous/heterogeneous society. This probability is high 

in case the ethnic majority faces a large ethnic minority. 

Reynal Querol (2002) replaced FRAC by a measure of ethnic polarization defined by 

 
2

1

4 1

N

i i

i

R Q  



         (1.58) 

(which essentially measures the probability that out of three randomly selected individuals, two 

belong to the same group). 

The RQ index equals twice the Ethno-linguistic Fractionalization Index in case there are 

only two ethnic groups. However, the equality relationship breaks up in case there are more than 

two groups. The two indices differ in another respect. In a multi-group setting, the proportional 

contribution of the largest group in case of FRAC is smaller than its relative size whereas the 

opposite is the case with RQ. 

MR (2005) contended that RQ is a strong indicator of civil wars. This has been 

supplemented by the regression analysis in the empirical section. 

 

Fitting a logit regression model for the incidence of civil wars as a function of RQ and 

FRAC, they found that the effect of FRAC on the onset of conflict is not significant whereas the 

impact of RQ is very much significant.  

The theoretical justification behind introducing the RQ index has been furnished in 

Montalvo and Reynal-Querol (2008) (MR (2008), henceforth). The basic structure of a 

polarization index, as assumed by Esteban and Ray (1994) has been kept unaltered. However, 

given the categorical nature of the data, the ER index is required to be modified suitably. As the 

distance across groups (which, in case of ER measure is given by the Euclidean distance) in this 
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situation is to be measured by a „discrete metric (1-0)‟, MR (2008) suggested the family of 

Discrete Polarization (  (   )) measures defined by       

       





n

i

ii
DP

1

1

11
1, 


      (1.59) 

By subsequent imposition of some desirable properties borrowed and redefined from the 

corresponding criteria cited in Esteban and Ray (1994), the authors characterized the RQ- index. 

MR (2008) also studied the causal factors behind genocides. Replacing FRAC by RQ as a 

measure of ethnic heterogeneity, they demonstrated that the latter can successfully recognize the 

dependence of occurrence of genocides on ethnic heterogeneity, as was proposed by Horowitz .  

MR (2005) further concluded that RQ has a highly positive correlation with FRAC. 

Thus, there are two candidates for a plausible indicator of ethnic conflict (viz. FRAC and 

RQ). Considering conflict as a game, Esteban and Ray (2008b) developed a behavioral model to 

compare these two measures as indicators of (a) the intensity and (b) the onset of conflict. Their 

findings are as follows: (i) The intensity and the likelihood of conflict are two different notions. 

They usually run along opposite directions. (ii) The relationship between polarization or 

fractionalization and conflict is not monotonic. (iii) The occurrence of conflict is monotonically 

related to the degree of fractionalization while (iv) the intensity of conflict has a positive 

association with the degree of polarization. Finally, the incidence of conflict depends not only on 

the shape of the distribution, but also on the existing political system.  

In a similar vein, Esteban and Ray (2011) used a second behavioral model of conflict to 

justify the use of FRAC, RQ and the Gini index as measures of polarization. A monotone 

transform of the equilibrium level of resources expended in conflict has been shown to be 

approximately equal to a linear combination of the three indices. In particular, for a large 

population, per-capita conflict is proportional to a convex combination of only FRAC and RQ. 

Further, the higher is the „altruism‟ ( ), the more pertinent are FRAC and RQ in explaining 

conflict. Here   ,   - is given by      

           1
i i i

l i

U k k l      
ò

,       (1.60) 
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  ( ) and   ( ) being respectively the extended utility and the expected pay-off of a group- i 

member k. 

In an empirical follow up, Esteban et al. (2012) verified that the three distributional 

indices suggested above are significant correlates of conflict. Performing a number of robustness 

tests, they concluded that RQ has a highly significant and positive contribution to it, the effect of 

FRAC is significantly positive (to a comparatively lesser extent, though) while the Greenberg-

Gini index (see Greenberg, 1956) defined by  

     




m

ji

ijii
dG

1,

 ,       (1.61) 

with   = population share of the group i and    = “intergroup distance” between groups i and j, 

affects the chance of conflict negatively. To compute ethno-linguistic distances across groups, 

the authors considered the cardinality of intervening nodes on the language tree. 

 

As a generalization of FRAC and RQ, Esteban and Ray (2008b) introduced the following 

index: 

      
2

1
i

i i i

i i

R b
p


   ,      (1.62) 

where   is the alienation felt by the     group from other groups and    is the probability of 

success for the     group in the contest game. Then the effect of a transfer of mass (from one 

group to another), effect of a split (of a group), maximality etc. have been studied.   

One of the basic assumptions in MR (2005) was that the distance between two ethnic 

groups is to be measured by a discrete metric. However, Fearon (2003) argued that the 

intergroup-distance plays a key role in measuring ethnic heterogeneity. This view has been 

seconded in Desmet et al (2009, 2010). Incorporating intergroup distances, they found that the 

resulting index outperforms the RQ index.  In their empirical study, Esteban and Mayoral (2011) 

strongly favored the use of interpersonal distances “driven by the intensity of the ethnic and 

religious attitudes.” (This intensity of feelings is obtained by summing up the responses to a 

number of relevant queries.) Then the interpersonal distance between two persons belonging to 

two different groups has been computed by adding up the intensities while for two persons 
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belonging to the same group, this is given by the absolute distance of their feelings. 

Subsequently, performing a series of robustness tests, they established that the distance-based 

indices of both religious and ethnic polarization (that take into account the intensity of feelings) 

are significant in explaining the occurrence of conflict. 

 

Some indices of social polarization:  

Ethnicity is a social characteristic. Therefore, ethnic polarization can be regarded as a 

particular case of social polarization. Replacing the discrete metric to measure the distance 

between two groups in case of categorical data, Permaneyer (2012) introduced the notion of 

radicalism degree, which is the intensity with which one feels identified with the group one 

belongs to. The alienation between two groups has been posited to be the sum of their radicalism 

degrees.
5
 Next, stating a number of assumptions which bear similarity with the postulates of ER 

(1994), the author characterized the following polarization measure:  

        
 ( )  ∑ ∑   

     (     )   
 
   ,     (1.63) 

where   (   - and    is the mean of the radicalism distribution    (of the     group). It is easily 

seen that the discrete polarization indices form a subfamily of     
  (in case all the   ‟s are 

equal).  

Permaneyer (2012) then stated an additional axiom demanding that when other things are 

kept fixed, the greater is the number of groups, the less polarized the distribution is. Using this 

postulate, he characterized a second class of polarization indices. Moreover, a lower bound on   

has been shown to be:        . 

A second model has then been suggested taking into account the within-group alienation. 

The alienation felt by two persons with radicalism degrees x and y belonging to the same group 

is assumed to be |   | . The author then employed three additional axioms. The first two 

axioms are based on the principle that if different groups are made more homogeneous, 

polarization should go up. The third one is a direct translation of the idea that polarization attains 

its maximum in case of a symmetric bipolar distribution.  

                                                           
5
This approach is similar to the one adopted by Esteban and Mayoral  (2011). 
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Finally, application of this new set of axioms and an earlier one together forces that the 

polarization index has to take the form  

           
1 1

1 1
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n , i i i i
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
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     ∬ ∬f ,   (1.60) 

where    is the density of the    group,   f
1 2 n

f ,   f , , f and 











 1,

23

1

n
 , n being the number 

of social groups.  

 

1.7 Polarization in case of ordinal data:  

An ordinal variable is similar to a categorical variable like gender, ethnicity and religion 

that has one or more categories or types. However, for an ordinal variable there is a well-defined 

ordering rule. For instance, consider self-reported health data of a population. The six health 

categories „very poor‟, „poor‟, „fair‟, „good‟, „very good‟ and „excellent‟  can be provided with 

positive integral values in an increasing order. This assignment of integral values is arbitrary; the 

only restriction is that to preserve the ordering a higher number should be assigned to a better 

category. Thus, in any assignment of numbers to the categories „very good‟ should get a higher 

number than „good‟ (see Allison and Foster, 2004). A second example can be ordering of 

educational achievement levels of individuals in a society starting from illiteracy to university 

education by assigning numbers in an increasing way (see Chakravarty and Zoli, 2012). Thus, in 

all these cases we need to select an ordinal scale which assigns a numerical value to each 

category of the characteristic under consideration so that ranking of categories is maintained.  

This approach is robust to changes in the scale in the sense that if instead of assigning numbers 

in an increasing strictly convex manner, the assignment is done using an affine transformation, 

the ordering remains preserved.  

Using the „self-reported health status‟ (SRHS) data, Allison and Foster (2003) 

demonstrated an „ordinal‟ method for calculating overall health inequality. Their approach is 

median-based and the inequality is viewed as spread away from the median. . It illustrates the 

role of first order stochastic dominance as an unambiguous indicator of population health. 
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Chakravarty and Zoli (2012) demonstrated usefulness of second order stochastic dominance for 

integer variables in this context (see also Chakravarty and D‟Ambrosio, 2006). 

For two health distributions x and y with the same median category m, x is said to have a  

 

Fig. 1.9 (Construction of S-curves)
6
 

greater spread than y (what we denote by    ) if the cumulative population share of the bottom k 

categories of x is greater than the corresponding quantity of y for     while the reverse 

happens for all      . 

If   
  denotes the sum of the population shares of the distribution x of all the categories 

upto category i, then     if and only if 


i i

x y
F F   for all i m  and 

i i

x y
F F   for all i m .     (1.64) 

 

Fig. 1.10 (The partial ordering S) 

                                                           
6
 Figures 1.9 and 1.10 are borrowed from Allison and Foster (2004). 
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Denoting by   ( ) (resp.   ( ) )twice the area below the S-curve of x to the left (resp. right) of 

0.5, it has been shown that (1.64) is equivalent to   ( )    ( ) and   ( )    ( ). The partial 

ordering S is clearly reflexive and transitive but incomplete.  

Moving along the same direction and beginning with self-assessed health data, Apouey 

(2007) developed the notion of polarization in an ordinal context. Taking the median as the 

reference point, Apouey (2007) proposed a number of axioms borrowed from Wang and Tsui 

(2000) and modified suitably. The first two axioms are: Increased spread (IS) and Increased 

bipolarity (IB).  

The IS axiom demands that polarization should not decrease if there is a spread in the 

distribution away from the median.  In other words, greater distancing between the categories 

below and not below the median should not make the distribution less polarized.  

Before stating the IB axiom, Apouey (2007) introduces the notion of „transfer‟, which 

essentially means bunching or clustering of mass in categories lying on the same side of the 

median category. The outcome of a „transfer‟ is enhancement of homogeneity among the 

individuals within the categories, which in turn raises polarization. (For discussion on IS and IB 

in greater details, see Chapter 5.) 

The third axiom, similar to the corresponding one in social polarization, states that the 

maximum value of the polarization index is attained by the symmetric bipolar distribution. 

The final postulate is a compatibility assumption. 

Then assuming an additive structure of the polarization index whose components are 

continuous transforms of the deviation from the symmetric bipolar distribution, Apouey (2007) 

characterized the following  polarization indices:  

  









1

1 2

1

1

2
1

1

n
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n
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

       (1.65) 

and 

 



























 





1

1 2

1

1

1

2
2

n

c n

cn

A

N

N

n

N
FP



 ,     (1.66) 
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where  0 is a constant,  1,0  and 
c

N (resp. 
c

F ) is the cumulative frequency (resp. 

proportion) of the th
c category, the categories being arranged in the ascending order of some 

ordinal characteristic.  

 Using the notion of „concentration curve‟ for health, obtained by plotting the cumulative 

shares of health levels ranked by increasing incomes, Apouey (2010) suggested two „social 

health bipolarization indices‟.  

Based on Reardon‟s (2009) method of cardinal measurement of the degree of inequality 

of an ordered variable, Fusco and Silber (2014) formulated a number of axioms (eg. „swap‟ of 

individuals between unordered population subgroups/ ordered categories) on polarization indices 

in an ordinal context. Considering an I by J matrix (where I = number of population subgroups 

and J = number of ordered categories), several indices have been proposed, some of which are 

closely related to the measures used in information theory, the theory of diversity and the notion 

of dissimilarity.  

1.8 Multidimensional polarization measures: 

 

Multidimensional extensions of the measures of polarization remain largely unexplored 

till now. Esteban and Ray (2012) maintain that the index suggested by Zhang and Kanbur (1.54) 

may serve well in some cases as an appropriate measure of multidimensional polarization. The 

reason is that the groups are exogenously given using some social characteristic such as religion, 

ethnicity or geographical location, whereas the „identification‟ and „alienation‟ components are 

measured in terms of income differences. In a recent survey paper, Permaneyaer (2015) terms it 

a „hybrid polarization measure‟. 

Mogues (2008) suggested a two-dimensional extension (in which one dimension is a 

variable and the other is an attribute) of the (1-dimensional) ER-measure using four basic 

postulates viz. Shrinking of the Middle Class, Population Concentration around Poles, Separation 

of the Poles and Strong Relationship among Individuals‟ Attributes.  

Recently  Merz and Scherg (2013) have proposed extended multidimensional polarization 

indices based on a CES-type well-being function and have presented a new measure to 

multidimensional polarization.  
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Arcagni and Fattore (2014) have showed the relevance of partial order theory in 

measuring multidimensional polarization in case of ordinal data. 

 

1.9 Contest success functions:  

In a discussion on a new behavioral model, Esteban and Ray (1999) present conflict as a 

contest game, thus establishing the link between polarization and contests. 

A contest refers to a non-cooperative game in which two or more participants contend for 

a prize. Models of contest have been employed extensively to analyse a variety of phenomena 

like rent seeking (Tullock 1980, Nitzan 1991, Corchon 2000, Baye and Hoppe 2003, Amegashie 

2006), conflict (Hirshleifer 1991, Skaperdas 1992), polarization (Esteban and Ray 2011, 

Chakravarty 2015), electoral candidacy (Snyder 1989, Skaperdas and Grofman 1995), sporting 

tournament (Szymanzki 2003), provision of public goods (Kolmar and Wagener 2011) and 

reward structure in firms (Rosen 1986)
7
.  In a contest, agents make irretrievable investments, 

which depending on the situation; can be money, effort or any other valuable resource.  

Hirshleifer (1989) formally introduced the notion of Contest Success Function. 

According to his definition, a contest success function (CSF) determines each player‟s 

probability of winning for a given level of efforts. Skaperdas (1996) characterized all CSFs 

satisfying a number of reasonable axioms. Axioms employed include homogeneity and 

translation invariance of the CSF. Deduced functional forms of the CSF are power and logit 

respectively. Extending these results, Clark and Riis (1998) characterized an asymmetric form of 

the „power‟ success function. Generalizing further, Rai and Sarin (2009) considered CSFs in a 

multidimensional framework where each contestant is allowed to invest in multiple areas. 

Munster (2009) considered contest between groups. Using axioms which look quite similar to 

those used in Skaperdas (1996), the author explored the impact of homogeneity in the extended 

framework. Difference form contest success function, introduced by Hirshleifer (1989), was 

studied in greater detail by Baik (1998), Che and Gale (2000), Gersbach and Haller (2009) and 

Corchon and Dahm (2011).  

                                                           
7
The literature has been surveyed by Nitzan (1994), Corchon (2007), Konrad (2009) and Skaperdas and Garfinkel 

(2012). See also Dixit (1987) for a general discussion.  
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In a contest, an increase in each contestant‟s outlay increases his chances of winning and 

reduces his opponents‟ chances. In a highly interesting contribution, Skaperdas (1996) 

characterized this probability for any contestant as the ratio between the level of effective 

investment made by the contestant and the sum of effective investments across all the 

contestants. The effective investment of a contestant can be interpreted as the output determined 

by his effort, which may be regarded as his input in the contest.   It is assumed to be an 

increasing and positive valued function of effort. This is the basic structure of Skaperdas (1996). 

Using his basic structure, Skaperdas (1996) also developed axiomatic characterizations of 

the Tullock (1980)-Hirschleifer (1989) functional forms of CSFs. One of the axioms employed 

by Skaperdas (1996) is an anonymity principle which demands that a contestant‟s probability of 

success depends only on his outlays. Thus, the agents are not distinguished by any characteristic 

other than their outlays.  Clark and Riis (1998) broadened the Skaperdas (1996) framework by 

allowing the contestants to differ with respect to their contest-related personal characteristics. 

Rai and Sarin (2009) generalized the characterizations of Skaperdas (1996) to the situation where 

agents can have investments that are of multiple types in nature. Münster (2009) extended the 

Skaperdas (1996) and Clark and Riis (1998) characterizations to contests between groups. 

Arbatskaya and Mialon (2010) developed a model for a multi-armed contest and characterized 

the CSF axiomatically in this context. 

 

1.10 Plan of the thesis:  

There are five chapters in this treatise. Chapter 1 gives a general introduction to the 

existing literature on inequality, polarization and the theory of contests. The bulk of the thesis 

(chapters 3, 4 and 5) deals with the theory of (income as well as social) polarization while 

inequality and contests have been discussed in chapters 2 and 6 respectively. 

Chapter 2 of this thesis suggests a two-parameter extension of the family of subgroup 

decomposable absolute inequality indices identified in Chakravarty and Tyagarupananda (1998) 

and in Bosmans and Cowell (2010). Maintaining similarity with Zheng (2007), we replace the 

notion of „translation invariance‟ by „translation consistency‟ and hence characterize the relevant 

class of subgroup decomposable inequality indices.  
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Chapter 3 is on a generalization of the polarization indices suggested by Zhang and 

Kanbur (2001) and Rodriguez and Salas (2003). Beginning with the „identification-alienation‟ 

framework suggested by Esteban and Ray (1994), we define a reduced-form polarization index 

in the following way. We consider a population subgroup decomposable inequality index. A 

reduced form polarization index is an increasing function of the between-group term and a 

decreasing function of the within-group term of the inequality index. The between-group term 

represents the „alienation‟ component of polarization and the within-group term can be regarded 

as an inverse indicator of its „identification‟ component. A quasi-ordering for ranking alternative 

distributions of income using such polarization indices has been developed. Several polarization 

indices of the said type have been characterized using intuitively reasonable axioms. Finally, we 

consider the dual problem of retrieving the inequality index from the specified form of a 

polarization index.  

We next look at polarization in case of ethnic data. The main goal of Chapter 3 is to 

characterize the RQ index, suggested in Reynal-Querol (2002). Further, we mention two distinct 

ethnic polarization quasi-orderings that can rank ethnic distributions unambiguously in terms of 

all ethnic polarization indices satisfying certain intuitively reasonable postulates. These two 

quasi-orderings are proven to be independent of one another. In the process, we characterize a 

generalized form of the RQ index.  

The next chapter is meant for measuring polarization for an ordinal data. A family of 

generalized Gini indices of polarization has been introduced. These indices can be applied to 

dimensions of human well-being with ordinal significance such as self-assessed health data and 

literacy. We investigate several properties of this general index and characterize it axiomatically. 

We also look at a quasi-ordering induced by the generalized Gini indices for ranking alternative 

distributions of an ordinally measurable dimension. In addition, implications of some of the 

axioms have been explored.   

The final chapter is on the study of some structural properties of contest success functions 

(CSFs), which stipulate the winning probabilities of the contestants. Two major axioms (viz. the 

scale invariance and translation invariance) used in Skaperdas (1996) have been relaxed to yield 

two ordinal postulates (viz. scale consistency and translation consistency). Further, an 

intermediate invariance axiom, a convex mixture of the two invariance axioms has been 

formulated and the corresponding class of CSFs has been identified. This family contains the 
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Tullock and Hirschleifer CSFs as special cases. We also explore the possibility of existence of 

Nash equilibrium of the corresponding contest game. Next, we look at the two consistency 

conditions and characterize the respective classes of CSFs. It has been demonstrated that if the 

number of contestants is at least three, then scale consistency and translation consistency, in the 

presence of other axioms, characterize the same functional forms identified by scale and 

translation invariances respectively. Finally, we define an intermediate consistency condition and 

classify all CSFs satisfying the same. 
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Chapter 2 
 

TRANSLATION CONSISTENT SUBGROUP DECOMPOSABLE 

INEQUALITY INDICES 

 

2.1  Introduction 

 

As mentioned in Chapter 1, „subgroup-decomposability‟ of an inequality index, is an 

important property for various reasons. In this chapter, we take up a problem related to the 

„subgroup-decomposable‟ inequality indices satisfying certain standard assumptions (discussed 

in the previous chapter). 

Following the argument put forward by Zheng (2007) and Zheng (2005), one may 

wonder if it is possible to find an ordinal counterpart of „translation invariance‟ and axiomatize 

the corresponding class of decomposable inequality indices. This paper makes an attempt to 

answer this question. We first define a „translation consistent‟ inequality index. To illustrate the 

notion, consider two income distributions 
1

D  and 
2

D and let the inequality index I rank 
1

D  

higher than 
2

D . Now, if all the incomes in both the distributions aree increased/decreased by a 

constant amount, then „translation consistency‟ demands that I should rank the former higher 

than the latter. Evidently, „translation consistency‟ is an ordinal property whereas „translation 

invariance‟ is a cardinal one. It is equally clear that a translation invariant inequality index is 

„translation consistent‟, but the converse is not true. Thus, the class of all „translation consistent‟ 

inequality indices includes I  and the variance. In other words, the class characterized in this 

chapter can be viewed as a generalization of the family mentioned in Chakravarty and 

Tyagarupananda (1998).  

Since the basic framework has already been discussed in the previous chapter, we avoid a 

repetition of that. The characterization theorems have been presented in the following section 

and the subsequent one is a formal conclusion. 
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2.2 The Characterization Theorem 

 

In Chapter 1, we have defined scale and translation invariance of inequality indices and 

have explicitly mentioned the structure of the „unit consistent‟ family of subgroup-decomposable 

inequality indices characterized by Zheng (2007) and Zheng (2005). 

 

We begin this section with the formal definition of translation consistency of an 

inequality measure. 

Definition 2.1: An inequality index 1
:


 RDI  is said to be translation consistent if for all

, ,
n

x y D    I x I y  implies    1 1
n n

I x c I y c  
 
for all scalar c such that

1 , 1
n n n

x c y c D   .
8
 

As already mentioned in the previous section, both variance and the Kolm measure, being 

translation invariant, are translation consistent as well. However, it can be demonstrated that no 

member of the generalized entropy class satisfies translation consistency. For example, if we 

consider
2

I , that is, half the squared coefficient of variation, then with  1, 3 , 8x  ,  2 , 3 ,1 0y 

and 1 0c  we have,  2
1 .6 2 5I x  and  2

1 .5 2I y   while  
3

2
1 0 .1 3 2 6I x c  and 

 
3

2
1 0 .1 6 8 9I y c  . Thus,    2 2

I x I y but    
3 3

2 2
1 1I x c I y c   . In other words, 

2
I fails 

to satisfy translation consistency. 

The first result of this section, whose proof is similar to that of Proposition 1 in Zheng 

(2007), is on the necessary and sufficient condition of translation consistency. 

Proposition 2.1: An inequality index 1
:


 RDI  is translation consistent if and only if for all 

x D  and for all 0c  , there exists a continuous function 1 1 1
:f R R R

   
  , which is 

nondecreasing in the second argument such that  

   1 , ( )
n

I x c f c I x           (2.1) 

      

We next mention a result borrowed from Shorrocks (1980). 

 

                                                           
8
 It may be mentioned here that Zheng (2007) defined „unit consistency‟ in terms of strict inequality. But in this 

chapter we have adopted a more general definition using weak inequality.  
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Proposition 2.2: A differentiable inequality index I satisfies SYM, POP, SUD and NOM if and 

only if there exist functions 
11

:


 RR and 1 1
: R R

 
 such that for any n

x R


 , 

      
  

     




n

i

i
xx

xn
xI

1

1



        (2.2) 

where  is differentiable;  is strictly convex and continuously differentiable.  

 

Our first result is on an immediate implication of translation consistency. 

 

Proposition 2.3: If an inequality index I satisfies SYM, NOM, SUD, POT and translation 

consistency, then  

 1 ( )
n c

I x c I x            (2.3) 

for all 0c   and some constant 0 . 

 

Proof: See Appendix. 

 

We now state the main result of the chapter. 

Theorem 2.1: An inequality index 1
:


 RDI  satisfies SYM, NOM, POP, SUD, POT, 

continuous differentiability and translation consistency if and only if it is a positive multiple of 

the form  

   

 

 

( )

,

( )

( )

1

1
, 0 , 0

( )
1

, 0 , 0i

Vx

n

x x

x

i

I x

I x

e e
n x



 

 



 


 
 


 




 

    
 





,       (2.4) 

 

Proof of the theorem uses the following lemma. 

 

Lemma 2.1: Whenever I satisfies (2.3) we have,  

 

     xIxI

n

i

i
ln

1




,          (2.5) 

for all n
x R

 
 .         

 



45 

 

Proofs of Lemma 2.1 and Theorem 2.1: See Appendix. 

 

Remark 2.1: The substitution e


   in (2.4) transforms 
,

I
 

to 


I (with   ). Thus, 
,

I
   

can 

be viewed as a 2-parameter extension of the family  ,
V

I I


 characterized in Chakravarty and 

Tyagarupananda (1998). 

Remark 2.2: It can be easily verified that none of the measures 
,

I
   

is scale invariant. However, 

the variance is the only member of this family which is unit consistent. Thus, there is a subgroup 

decomposable inequality index which is both unit consistent and translation consistent. 

Zheng (2007) talks of extreme rightist and extreme leftist views of inequality 

measurement. An extreme rightist measure I is one which is reduced when all the incomes are 

increased by the same proportion, that is, if    I a x I x  for all 1a  . One can easily see that 

none of the 
,

I
   

indices agrees with the extreme rightist view. Similarly, I is an extreme leftist 

measure if it is increased when all the incomes are augmented by the same amount, that is, if 

   1
n

I x c I x   for all 0c  . A simple calculation shows that 
,

I
   

conforms to the extreme 

leftist view if e


  .  

 

2.3. Conclusion 

 

Following Zheng (2007), we have characterized in this chapter a generalization of the 

class of subgroup-decomposable absolute indices of inequality. It is fairly interesting because we 

have replaced a cardinal property (viz, translation invariance) of a subgroup-decomposable 

inequality index by an ordinal one (viz.translation consistency) and the identified class extends 

the family characterized earlier. 

2.3 Appendix 

 

Proof of Proposition 2.3: Proceeding as in Proposition 3 of Zheng (2007) and maintaining the 

same set of notations we arrive at  

( , ) ( )f c k a c k           (2.6) 

whenever 0c  , for some constant ( ) 0a c  . 
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Equation (2.1), along with equation (2.6) implies that for any x D , 

    ( 1 ) ( ) ( )
n

I x c a c I x            (2.7) 

from which it follows that for arbitrary 
1 2
, 0c c  ,  

     )(1
2121

xIccaccxI
n

          (2.8) 

and        )1(1
1221

nn
cxIcaccxI   

            = )()()(
21

xIcaca         (2.9) 

Equations (2.8) and (2.9) together yield: 

    )()()(
2121

cacacca         (2.10)  

for all 
1 2
, 0c c  .  

The only continuous solution to this equation is given by  

c
ca )(         (2.11) 

 

where 0c  (see Aczel, 1966, p. 84). Positivity of  is a consequence of non-negativity of I . 

This completes the proof of the proposition.   

 

Proof of Lemma 2.1: Fix n
x R

 
 and define 1 1

:g R R
 
 by 

)1()(
n

cxIcg          (2.12) 

By differentiability of I  it follows that  

( ) ( 1 ).1
n n

g c I x c           (2.13) 

where v  is the gradient of v .  

By continuous differentiability of  I we have,  

1

'(0 ) ( ) .1 ( )

n

n

i

i

g I x I x



            (2.14) 

But    

( ) ( )
c

g c I x .         (2.15) 

Differentiating both sides of (2.15) we get,  

( ) ln ( )
c

g c I x            (2.16) 

From (2.16) it readily follows that 

'(0 ) ln ( )g I x          (2.17) 
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Comparison of equations (2.14) and (2.17) yields the desired result.  

 

Proof of Theorem 2.1: Let n
x R

 
 . Differentiating (2.2) partially w.r.t.

i
x

 
we get, 

 

 

 

1

2

1 1
( ) ( ) ( ) ( ) ( ) ( )

( )

( )

n

i i

i

i

x x
n n

n I x

         

 



 
    

 
 




.    (2.18) 

Next, taking sum over all i ,  

   

 

1

2

1

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

n

i in

i

i

i

x x

n I x

         

 





    





 .    (2.19) 

 

Combining (2.2), (2.5) and (2.19) we get,  

   
1

( ) ( ) ( ) ( ) ( ) ( )

n

i i

i

x x         



      

                                              =  
1

(ln ) ( ) ( ) ( )

n

i

i

x     



 .       (2.20) 

A rearrangement of (2.20) entails 

     ' '

1 1

( ) ( ) ( ) ( ) ( ln ) ( ) ( ) ( ) 0

n

i i

i i

x x



            

 

        .    (2.21) 

 

Differentiating (2.21) partially w.r.t.
i

x
 
we obtain,  

 
1

1 1
( ) ( ) ( ) ( ) ( )

n

i i

i

x x
n n

         



   
       

   
   

  

  
1

( ) ln ( ) ( ) ( )
i

x
n

       
 

    
 
 

 

 
1

1 1
( ) (ln ) ( ) ( ) ( )

n

i

i

x
n n

       



 
   

 
 

 .      (2.22) 

 

Replacing 
i

x  by
j

x in (2.22) and taking difference of both sides we get, 

   ( ) ( ) ( ) ( ) ( ln ) ( ) ( ) ( )
i j i j

x x x x                  
 

.      (2.23) 

 

Since this holds for all 
1

,
i j

x x R
 

 ,  it follows that  
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( )
,

( )

 


 


           (2.24) 

where   is a constant. 

Solution to (2.24) is given by:  

( ) K


            (2.25) 

for some constant .K Since  is positive-valued, it follows that 0 .K   

Substituting (2.25) in (2.23) we get, 

 ( ) ( ) ln ( ) ( )
i j i j

x x x x            
 

,      (2.26) 

that is, 

   ( ) ln ( ) ( ) ln ( )
i i j j

x x x x                     (2.27) 

It follows that  

 

 ( ) ln ( )
i i

x x b       ,         (2.28) 

for some constant b.  

 

Thus, ( )y x satisfies the differential equation  

 
2

D D y b           (2.29) 

where
2

2

2
,

dx

yd
yD

dx

dy
Dy   and  ln    .  

The complete solution to (2.29) is given by  

   

2

0 1 0

1 2 1 2

; , , , ( 0 )
2

( )

; , , ( 0 )
x

b
c c x x b c c R

y x
b

c x c e c c b R










   




  

    


.     (2.30) 

Using strict convexity of   it further follows that 0b  in the first case and 0
2
c in the second. 

Simplified forms of I  corresponding to the solutions in (2.30) can be described as follows.   

 

Case I: 0  . 

 
 

2 2

0 1 0 1

1

1
( )

2 2

n

i ix

i

b b
I x c c x x c c x

n K


 
 

 
      

 
  

v a r ( )

2
x

b x

K



     (2.31) 
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Case II: 0 .   

 
 

 

 

 
 2

1 2 1 2 2

1

1
( ) i i

n

x xx x

ix x

i

cb b
I x c x c e c x c e e c e

K n K n

  

 


  

 
       

 
 

    (2.32)  

 

Equations (2.31) and (2.32) jointly imply the desired result.  
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Chapter 3 

REDUCED FORM INDICES OF INCOME POLARIZATION9
  

3.1 Introduction 

In Chapters 1 and 2 we have studied the properties of subgroup-decomposable inequality 

indices and have subsequently classified a family of such indices satisfying some desirable 

properties. In this chapter we try to connect the notion of subgroup-decomposability of inequality 

indices with the notion of polarization.  

To recall from Chapter 1, Esteban and Ray (1994) defined an index of polarization using 

identification-alienation framework (where both the components are increasingly related to the 

former). The authors then developed an axiomatic characterization assuming a quasi-additive 

structure of the index. 

It can also be recalled that beginning with a subgroup-decomposable index of inequality, 

Zhang and Kanbur (2001) suggested the ratio of the between-group and within-group 

components of inequality as an indicator of polarization. Clearly, the „between group‟ inequality 

incorporates the intuition behind the „alienation‟ factor while an inverse measure of 

„identification‟ is given by the „within group‟ inequality term.  

A similar approach was adopted by Rodriguez and Salas (2003), who considered bi-

partitioning of the population using the median and defined a bipolarization index as the 

difference between the between-group and within-group terms of the Donaldson-Weymark 

(1980) S-Gini index of inequality.  

A common feature of the Zhang-Kanbur and the Rodriguez-Salas index is that both are 

„reduced-form‟ or „abbreviated‟ indices that can be used to characterize the trade-off between the 

alienation and identification components of polarization. 

As Esteban and Ray (2005, p.27) noted, the Zhang-Kanbur formulation is a „direct 

translation of the intuition behind‟ the postulates that polarization is increasing in between-group 

inequality and decreasing in within-group inequality. Since the Zhang-Kanbur -Rodriguez-Salas 

approach enables us to understand the two main components of polarization, identification and 

alienation, in an intuitive way, this chapter makes some analytical and rigorous investigation 

                                                           
9
 A major portion of this chapter has been published in Chakravarty and Maharaj (2011b). The content of this 

chapter is also related to Chakravarty, Chattopadhyay and Maharaj (2010). 
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using the idea that polarization is related to between-group inequality and within-group 

inequality in increasing and decreasing ways respectively. 

Now, polarization indices can give quite different results. Evidently, a particular index 

will rank income distributions in a complete manner. However, two different indices may rank 

two alternative income distributions in opposite directions. In view of this, it becomes 

worthwhile to develop necessary and sufficient conditions that make one distribution more or 

less polarized than another unambiguously. This is one objective of this chapter. We can then say 

whether one income distribution has higher or lower polarization than another by all abbreviated 

polarization indices that satisfy certain conditions. In such a case it does not become necessary to 

calculate the values of the polarization indices to check polarization ranking of distributions. If 

the population is bi-partitioned using the median, then this notion of polarization quasi-ordering 

becomes close to the Wolfson (1994, 1997) concept of bipolarization quasi-ordering.  

Next, given the diversity of numerical indices it will be a worthwhile exercise to 

characterize alternative indices axiomatically for understanding which index becomes more 

appropriate in which situation. An axiomatic characterization gives us insight of the underlying 

index in a specific way through the axioms employed in the characterization exercise. This is the 

second objective of this chapter. We characterize several polarization indices, including a 

generalization of the Rodriguez-Salas form.  The structure of a normalized ratio form index 

parallels that of the Zhang-Kanbur index. We then show that the different sets of intuitively 

reasonable axioms considered in the characterization exercises are independent, that is, each set 

is minimal in the sense that none of its proper subset can characterize the index. 

Finally, we show that it is also possible to start with a functional form of a polarization 

index and determine the inequality index which would generate the given polarization index. 

Specifically, we wish to determine a set of sufficient conditions on the form of a polarization 

index to guarantee that there exists an inequality index, which would produce the polarization 

index. This may be regarded as the dual of the characterization results for polarization indices.  

In the next section of the chapter we make a requisite discussion pertaining to a specific 

property of subgroup-decomposable inequality indices. The polarization quasi-ordering is 

discussed and analyzed in the following section. The characterization theorems and a duality 

theorem are presented in Section 3.4. Section 3.5 concludes the chapter. Proofs of all the 

theorems are relegated to an Appendix (Section 3.6).  
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3.2 The Background 

 

Consider a population of size n. Let
i

x denote the income of the th
i  individual, assumed to 

be drawn from the non-degenerate interval  ,  in the positive part 1


R of the real line 1

R . 

Since for inequality and SUD to be well defined, we need ,n k   and 
i

n  for all ki 1 , 

we assume throughout this chapter  that 4n , where  1\N .   

Maintaining the same set of notations as in Section 1.1 of Chapter 1, the weight attached 

to the inequality of subgroup i in the decomposition of the generalized entropy family 
c

I  (see 

equation 1.5) is given by      ,
c

i i i
n n n    . The corresponding weights in the 

decomposition of 


I  and VI  (see equations 1.11 and 1.12) are given by 

   ( , ) i

i i
n n e n e

 
    and nn

i
 respectively. Evidently, the sum of these weights across 

subgroups becomes unity only for the two Theil indices and the variance.  

If there is a progressive transfer of income between two persons in a subgroup then 

inequality within the subgroup decreases without affecting between-group inequality. But 

polarization increases because of higher homogeneity/identification of individuals within a 

subgroup. Of two subgroups, a proportionate (an absolute) reduction in all incomes of the one 

with lower mean keeps the subgroup relative (absolute) inequality unchanged but reduces its 

mean income further. Likewise, a proportionate (an absolute) increase in the incomes of the other 

subgroup increases its mean but keeps relative (absolute) inequality unaltered. This in turn 

implies that BI increases. In other words, a greater distancing between subgroup means, keeping 

within-group inequality unchanged, increases between-group inequality making the subgroups 

more heterogeneous. A sufficient condition that ensures fulfilment of this requirement is that the 

decomposition coefficient ),(  n
i

depends only on nn
i

. The only subgroup decomposable 

indices for which this condition holds are the Theil mean logarithmic deviation index ML
I , 

which corresponds to 0c  in (1.5)
10

, and the variance. We denote the set  
VML

II ,  of these two 

                                                           
10

  Buourguignon (1979) developed a characterization of using . ML
I ( , )

i i
n n n  
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indices by SD . For further analysis, we restrict our attention to the set SD . Note that the 

members of SD  are onto functions and they vary continuously over the entire non-negative part 

of the real line. (It may be mentioned here that the Esteban-Ray  (2005) discussion on the 

Kanbur-Zhang index is based on the functional form .
ML

I ) We also assume throughout the 

chapter that the number of subgroups  k  is exogenously given.  

3.3 The Polarization Quasi-ordering 

Following our discussion in Section 3.1, we define a polarization index P as a real valued 

function of income distributions of arbitrary number of subgroups of a population, partitioned 

with respect to some homogeneous characteristic.  Formally,  

Definition 3.1: By a polarization index we mean a continuous function
1

: RP  , where 


 














 

k kin

n

i

iD

1,

. 

For any   
k

xxxx ,...,,
21 , k ,the real number  xP indicates the level of polarization 

associated with x . 

Often economic indicators abbreviate the entire income distribution in terms of two or 

more characteristics of the distribution. For instance, a „reduced-form‟ welfare function 

expresses social welfare as an increasing function of efficiency (mean income) and a decreasing 

function of inequality (see Ebert, 1987; Amiel and Cowell, 2003 and Chakravarty, 2009, 2009a).  

Likewise, we have   

Definition 3.2: A polarization index P is called abbreviated or reduced-form if for all

  
k

xxxx ,...,,
21 , k ,  P x  can be expressed as       xWIxBIfxP , , where SDI   

is arbitrary and the real valued function f  defined on 2


R  is continuous. 

We refer to the function f  considered above as a characteristic function. Clearly, the 

polarization index defined above will be a relative or an absolute index depending on whether  

we choose ML
I  or VI  as the inequality index. 

Since the characteristics „identification‟ and „alienation‟ are regarded as being intrinsic to 

the concept of polarization, in order to take them into account correctly we assume that the 
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function f is monotonic, that is, it is increasing in BI  and decreasing in .WI  Such polarization 

indices are called feasible. Formally, 

Definition 3.3: A reduced–form polarization index       xWIxBIfxP , , where SDI  ,

  
k

xxxx ,...,,
21 , k  are arbitrary and the real valued function f  defined on 2


R  is 

continuous,  is called feasible if f is increasing in BI  and decreasing in .WI  

It will now be worthwhile to compare the index presented in Definition 3.3 with the 

Esteban-Ray (1994) index, which is given by  

     
 


k

i

k

j

jiji
zzppAzpER

1 1

1
,,


 

  where
i

z  is the representative income, defined in an unambiguous way, of subgroup i, 
i

p  is its 

population size, z is the vector of 
i

z 's, 0A  is a constant and  6.1,0  (see (1.45)). A 

positive value of  , and hence the identification function 


i
p , underlines the differences 

between inequality and polarization. On the other hand, the distance function 
ji

zz   is an 

indicator of the alienation component. Clearly, both identification and alienation are directly 

related to ER . Thus, while in our case, identification is formulated in terms of inverse within-

group inequality, in the case of ER , it is a function of population proportions. In contrast, in both 

cases, the alienation component is based on income distances. While ER  directly incorporates 

the subgroup-sizes, in the reduced-form index the subgroup-sizes are taken into account in the 

within-group component of inequality. (See the definition of the family SD  in Section 3.2.) 

Thus, for the latter, identification is formulated involving both subgroup-sizes and subgroup 

inequality levels.  

In the Esteban-Ray framework, the postulates are formulated in terms of population shift 

and minimum polarization arises when there is perfect homogeneity in the sense that the entire 

population is concentrated in a subgroup, that is, identification is maximum. In the reduced-form 

set up the notion of polarization is based on inequality indices and therefore, the postulates 

involve, among other conditions, scaling/ translation of incomes and redistribution of incomes. 

The minimum polarization arises in this case when both alienation and identification are 

minimum, that is, when 0BI  and WI is maximum. In the ER -case, polarization is maximized 

when the population is equally split into two subgroups and the remaining subgroups have zero 
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population-size, whereas in our case, maximum polarization arises if identification is maximized 

 0WI  and alienation  BI  is also maximum. Thus, while for the ER -case, these extreme 

situations are specified in terms of population concentration, in the present case, they are 

consequences of income concentration. These differences arise because of different basic 

formulations. 

Note that as the number of subgroups increases and k  ends up in n , each individual 

constitutes a subgroup. Since for the concept of subgroup inequality to be defined, there should 

be at least two persons in a subgroup, within-group inquality is undefined. That is, now there is 

only one subgroup, the entire population. Consequently, inequality is represented only by the 

between-group term, a direct indicator of polarization. Thus, in this polar case in the absence of 

identification component inequality and polarization are directly related. In fact, Esteban and 

Ray (1994) also did not „claim that the notion of polarization always conflicts with that of 

inequality (op. cit., p.825)‟. 

There are some more differences between our approach and ER-approach. For instance, 

in the ER-approach, the impact of merger of two equally-sized groups at the midpoint will 

depend on the shape of the entire distribution. However, in the Zhang-Kanbur set up, this will 

lead to reduction of inequality as well as polarization. This difference arises because while the 

latter looks at polarization simply in terms of identification and alientation with a fixed number 

of groups, the former allows variability of groups as well as shifts of populations across groups. 

While our objective is definitely not to supplant the ER -index,  we see a clear merit in the 

Zhang-Kanbur approach given that the number of groups as well as group sizes are fixed, 

because it takes into account the alienation and identification factors in a very easy and intuitive 

way. Since polarization is a multifaceted phenomenon, our attempt to look at polarization from a 

different perspective appears to be quite sensible. Intersting on this issue is the remark by 

Nissanov et al. (2011): “The ZK-measure and the ER measure seem to be complementary 

measures of polarization since the former is able to capture the effects of within-group inequality 

(that the ER measure leaves out of the analysis) while the latter performs better when no changes 

in within-group inequality are observed.” 
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3.3.1. The Quasi-ordering 

In order to develop a polarization quasi-ordering of the income distributions, consider the 

distributions    kk
yyyyxxxx ,...,,,,...,,

2121
 



k

i

n
iD

1

, where 2k , 2
i

n , ki 1 are 

arbitrary. Then we say that x  is more polarized than y , what we write yx
P

 , if    yPxP   

for all feasible polarization indices 1

1

: RDP
k

i

n
i 



. Our definition of P
  is general in the sense 

that we do not assume equality of the total income of the distributions.  

As we have noted in the previous section, given  k
yyyy ,...,,

21
 



k

i

n
iD

1

, we can 

generate  k
xxxx ,...,,

21
 



k

i

n
iD

1

, which is more polarized than y , by one of the following 

three polarization increasing transformations: (i) decreasing WI (keeping BI unchanged), (ii) 

increasing BI (keeping WI unchanged), and (iii) decreasing WI  and increasing .BI We can 

write these three conditions more compactly as    yBIxBI   and    yWIxWI   with strict 

inequality in at least one case. The following theorem demonstrates equivalence of this with

yx
P

 . 

Theorem 3.1: Let    kk
yyyyxxxx ,...,,,,...,,

2121
 



k

i

n
iD

1

, where 2k , 2
i

n , ki 1 , 

are arbitrary. Then the following conditions are equivalent: 

  yxi
P

 . 

     yBIxBIii  and    yWIxWI   for any inequality index I  in SD , with strict inequality in 

at least one case. 

Proof: See Appendix. 

 

What Theorem 3.1 says is the following: if condition (ii) holds then we can 

unambiguously say that distribution x is regarded as more polarized than distribution y by all 

reduced-form polarization indices that are increasing in BI and decreasing in .WI Note that we 

do not require equality of the mean incomes of the distributions for this result to hold. Clearly, 

condion  ii  in the theorem can be verified easily. 
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3.3.2. Discussion 

The polarization quasi-ordering defined in the above theorem is a quasi-ordering   it is 

transitive but not complete. To see this, consider the bi-partitioned distributions     6,2,5,3,1x  

and     4,2,5,3,1y . Let us choose 
V

I as the index of inequality and denote its between and 

within-group components by 
V

B I and 
V

W I respectively. Then       .0,256  yBIxBI
VV

 Also

   516xWI
V

,   2yWI
V

. Thus, we have    yBIxBI
VV

  and    yWIxWI
VV

 . This 

shows that the distributions x and y are not comparable with respect to P
 and hence P

  is not 

a complete ordering. Next, suppose that for three distributions yx ,  and z, partitioned with 

respect to the same characteristic into equal number of subgroups, we have yx
P

  and zy
P

 . 

Then it is easy to check that zx
P

  holds, which demonstrates transitivity of P
 . 

Now, to see that inequality quasi-ordering of income distributions is different from 

polarization quasi-ordering, consider the bi-partitioned distributions     dbcay ,,,  and

    dbcax ,,,   , where dcba  and   20 bc   . Then it is easy to see that 

   xBIyBI
VV

  but    xWIyWI
VV

 . Hence for all feasible polarization indices ,P we have

   xPyP  . But by the Pigou-Dalton transfers principle,      .xIyI
VV


 
Next, let us consider 

the income distribution  
1 2
, , ...,

k
x x x x 



k

i

n
iD

1

and generate the distribution 

 
1 2
, , ...,

k
y y y y from x  by the following transformation: ii

xy   for all ji  and j
y  is 

obtained from 
j

x  by a progressive transfer of income between two persons in subgroup .j  By 

construction,    yBIxBI   and    ,xWIyWI   where .SDI  This in turn implies that for any 

orderis    .yIxI  Thus, in these two cases  polarization and inequality rank the distributions in 

completely opposite ways. The intuitive reasoning behind this is that while each of the two 

components BI  and WI is related to inequality in an increasing manner, for polarization the 

former has an increasing relationship but for the latter the relationship is a decreasing one. It 

should be evident that polarization quasi-ordering will depend on the way partitioning of the 

population is done. For instance, with ethnic group partitioning, one population may be regarded 

as more polarized than another while for geographic location partitioning the reverse situation 
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may arise. This is natural because the identification of the subgroups depends on the 

characteristic on the basis of which the partitioning is done. 

 

 

3.3.3. A Comparison with the Bi-polarization quasi-ordering 

To relate P
  with the bi-polarization quasi-ordering, which relies on the increased 

spread and increased bipolarity axioms, suppose that the distributions are partitioned into two 

subgroups with incomes below and above the median. The increased spread axiom says that 

polarization should go up under increments (reductions) in incomes above (below) the median. 

The increased bipolarity axiom, which requires bi-polarization to increase under a progressive 

transfer of income on the either side of the median, is a bunching or clustering principle.   

Note, on the other hand, that in the same set up, alienation refers to increase in the 

distance between the subgroups below and above the median and this can be achieved by 

increasing (decreasing) incomes proportionately above (below) the median. Hence, alienation is 

similar in spirit to the increased spread axiom. Now, a progressive transfer of incomes between 

two individuals on the same side of the median increases identification. Thus, the increased 

bipolarity axiom possesses the same flavor as the identification criterion. Hence the two notions 

of polarization ordering are essentially the same when the two population subgroups are formed 

using the median
11

. 

 

3.4. The Characterization Theorems 

A polarization quasi-ordering often may not be able to rank two distributions 

conclusively. Then in order to look at the directional rankings of the distributions in terms of 

polarization, it becomes necessary to calculate values of one or more polarization indices. Use of 

a particular index involves a set of implicit value judgements. We know that a characterization 

exercise gives us a set of necessary and sufficient conditions for identifying an index uniquely. 

These conditions, which are referred to as axioms, become helpful in understanding the 

underlying polarization index in an intuitive way. In other words, characterization of an index 

                                                           
11

 In a recent contribution, Bossert and Schworm (2008) showed that the two-group approach can be

interpreted in terms of treating polarization as an aggregate of inverse welfare measures of the two groups under 

consideration.See also Duclos and Echevin (2005) and Chakravarty et al. (2007) for a  related discussion.  
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enables us to get insight of the implicit value judgements in an explicit manner. These axioms 

seem to be appropriate for a polarization index in a particular framework.  

All the polarization indices considered in this section are assumed to be feasible (as defined in 

Definition 3.3). 

We can very well conceive of a „threshold level‟/ „tolerance limit‟ of polarization 

exceeding which a society becomes turbulent
12

. In this case, a small increment in 

alienation/identification is likely to escalate tension to a degree, which may generate conflict, as 

characterized by higher polarization. This is strengthened further by an argument of Esteban and 

Ray (1994, p. 844) which says that "...when the population is already largely bunched at the two 

extreme points, further bunching will serve to accentuate polarization."  It is likely that the net 

increment in polarization will not be lower for a society characterized by a higher level of 

conflict/ polarization. Now, the tolerance limit is likely to vary from society to society, 

particularly, for a highly peaceful society it is expected to be quite low. This, therefore, permits 

us to assume that the change in polarization is non-decreasingly related to alienation and 

identification over the entire domain. As we have said, while in the Esteban-Ray set up the 

axioms are based on population concentration, in our case the notion of polarization is based on 

income concentration between and within-groups.  Consequently, for the latter polarization 

change should be related to inequality change.  

The following two axioms can now be stated: 

 1A  For all   
k

xxxx ,...,,
21 , k and for any non-negative  ,       xWIxBIf ,

    xWIxBIf , =        gxWIxBI ,  for some continuous functions  : 2 1
R R

 
  and

11
:


 RRg , where   is non-decreasing in its first argument, g is increasing,   00 g  and

SDI  .  

 2A  For all   
k

xxxx ,...,,
21 , k  and for any non-negative  , 

           xWIxBIfxWIxBIf ,,        hxWIxBI ,  for some continuous functions :

                                                           
12

 The term „tolerance limit‟ is borrowed from the theory of Statistical Quality Control. 
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2 1
R R

 
  and 11

:


 RRh , where   is non-increasing in its second argument, h is increasing, 

  00 h  and SDI  .   

 Clearly, these two axioms specify the rate of increase in B I  and that of decrease in W I

respectively in a specific but very simple way. Axiom  1A  says that increment in polarization 

resulting from an increase in BI by the amount   is proportional to an increasing transform of 

 . More precisely, it stipulates that the increment can be decomposed into two continuous 

factors, one a non-negative function of   alone and the other a non-negative valued function of 

BI and WI, which is non-decreasing in BI . In other words, given differentiability of the function 

f , the polarization index becomes convex in BI. Increasingness of the function g  reflects the 

view that polarization is increasing in BI. The assumption   0g 0 ensures that if there is no 

change in BI, there will be no change in the value of the polarization index (assuming that WI 

remains unaltered). Given other things, with a higher value of  , there will be more increment 

in alienation. Axiom  2A  can be explained similarly. The functions g  and h  may be 

interpreted respectively as alienation and identification sensitivity functions. 

 It may be worthwhile to note that decompositions of the type specified in axioms  1A  

and  2A  can as well be satisfied by some bipolarization indices. To see this, consider the 

distribution  
54321

,,,, xxmxxxx  , where 
i

x ‟s are non-decreasingly ordered and m is the 

median. Now, consider the bipolarization index  








 











5

1

exp
5

1
1

i

i
mxxQ . This absolute, 

symmetric index of bipolarization satisfies the increased spread and increased bipolarity axioms. 

It takes on the value 0 when the income distribution is perfectly equal. Next, suppose that the 

distribution y is obtained from the distribution x  by increasing the highest income 
5

x  by an 

amount 0c , that is, 
ii

xy  , for 41  i  and .
55

cxy   Then the change    xQyQ   can be 

expressed as the product   cmx
i

i










 


exp1exp
5

1 5

1

. That is, the change has been 

decomposed into two components, one depends on the original distribution x  and other on the 

increment c .  

 Often we may need to assume that a polarization index is normalized, that is, for a 

perfectly equal distribution the value of the polarization index is zero. Formally, 
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 3A  For arbitrary k , if  k
xxxx ,...,,

21
   is of the form i

ni
cx 1 , where 

i
n  for all 

ki 1  and 0c  is a scalar, then for any SDI  ,      0, xWIxBIf . 

Since for a perfectly equal distribution x ,     0 xWIxBI , we may restate axiom  3A  as

  00,0 f . 

  The following theorem can now be stated.  

 

Theorem 3.2: Assume that the characteristic function is continuously differentiable. Assume 

also that the right partial derivative of the characteristic function at zero with respect to each 

argument exists and is positive for the first argument and negative for the second argument. Then 

a feasible polarization index 
1

: RP  with such a characteristic function satisfies axioms   ,1A

 2A  and  3A  if and only if it is of one of the following forms for some arbitrary positive 

constants 1
c  and 2

c : 

       xWIcxBIcxPi
211

 ,  

        ,1
log

2

1

2
xWIca

a

c
xPii

xBI
 1a , 

           ,0,10,
log

1
22

1

3















  caxWIcxWI

a

c
axPiii

xBI  

         ,1,1
log

2

14
 bb

b

c
xBIcxPiv

xWI  

           ,0,10,
log

1
1

2

15















  cbxBI

b

c
bxBIcxPv

xWI  

         1
log

1
log

21

6


xWIxBI
b

b

c
a

a

c
xPvi , 1,1  ba , 

         1
log

1
log

21

7


xWIxBI
b

b

c
a

a

c
xPvii +      11 

xWIxBI
ba , 10,1  ba ,

1
log0 ca   , 

         1
log

1
log

21

8


xWIxBI
b

b

c
a

a

c
xPviii +      11 

xWIxBI
ba , 1,10  ba , 

0log
2

 bc  , 
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 ix        1
log

1
log

21

9


xWIxBI
b

b

c
a

a

c
xP +      11 

xWIxBI
ba , ,1,0  ba

b

c

a

c

loglog

21
  , 

where   
k

xxxx ,...,,
21 , k and SDI   are arbitrary. 

Proof: See Appendix. 

 

 In Theorem 3.2 the only assumptions we make about f are its continuous 

differentiability and existence of partial derivatives at the end point 0. Many economic indicators 

satisfy these assumptions. It is known that if the partial derivatives exist at the end point 0, then 

they are right partial derivatives (Rudin, 1987, p.104). 

The constants 1
c  and 2

c  reflect the importance of alienation and identification in the 

aggregation. They can be interpreted as scale parameters in the sense that, given other things, an 

increase in 1
c increases polarization. Likewise, ceteris paribus, if 2

c
 decreases then polarization 

increases. The other parameters can be interpreted similarly. For 1
21
 cc , 1

P  becomes the 

Rodriguez-Salas index of polarization, if we subdivide the population into two non-overlapping 

groups using the median and use the Donaldson-Weymark S-Gini index  ˆ
I x




  
ˆˆ ˆ

1

ˆ1 1

n

i

i

i i x n
 





   as the index of inequality , where ˆ 1   is an inequality sensitivity 

parameter and   
n

xxxx ˆ,...,ˆ,ˆˆ
21

 is that permutation of x such that 
n

xxx ˆ....ˆˆ
21

  . For ˆ 2 , 

ˆ
I


  becomes the Gini index. In the Rodriguez-Salas case for 
1

P  to increase under a progressive 

transfer on the same side of the median, it is necessary that ˆ2 3  . 

However, Rodriguez-Salas index regards all income distributions that have equal 

between-group and within-group components of inequality as equally polarized. Thus, a 

distribution x  with     3. xWIxBI  becomes equally polarized as the equal distribution y  

with     .0 yWIyBI  Therefore, in situations of the type where WIBI  , 1
P  can avoid this 

problem if we make different choices of 1
c  and 2

c . The same remark applies to the choices of 
1

a  

and 
2

a in the normalized ratio form index  

 

 1 2

1

,

2

1

B I x

a a W I x

a
P x

a

 
  
 
 

 , which is obtained as a 
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particular case of 
7

P  as follows. If in 
7

P  we set 
b

c

a

c

loglog

21
1 , then on simplification 

we get      
1

7


xWIxBI
baxP , which we can rewrite as  

 

  












 1

2

1

7 xWI

xBI

a

a
xP , where 1

1
 aa  

and .11
2
 ab Therefore for suitable choices of the parameters we get the normalized ratio 

form index 

 

  












 1

2

1

xWI

xBI

a

a
as a special case of

7
P . 

In order to discuss eventual differences among the indices 
91

PP  , we look at the 

following properties.  

Property 1: P is strictly convex in BI. 

Property 2: P is strictly concave in WI. 

These propertie underline the choice of the policy-maker in fixing up the rate of increase 

in identification and alienation factors. It is readily seen that 
1

P  satisfies none of these properties 

(and hence can be seen as a rather 'weak' indicator); 
2

P  and 
3

P  satisfy the first property, but not 

the second one; 
4

P  and 
5

P  obey Property 2, but not Property 1 while each one of the indices

6 9
P P  meets both the properties (and so, they can be considered as 'strong' indicators). Indices 

97
PP   are identical; they vary only in terms of the restrictions on the parameters. 

However, if two distributions x  and y can be ranked unambiguously by the quasi-

ordering discussed in Section 3.3, then from quasi-ordering perspective essentially no difference 

arises among the indices characterized in Theorem 3.2. 

 In order to demonstrate independence of the three axioms, we need to construct indicators 

of polarization that will fulfill any two of the three axioms but not the remaining one. The 

feasible characteristic function    
2

1
,f s t s t   satisfies axioms  1A and  3A  but not axiom

 2A . Likewise, the feasible characteristic function    
2

2
,f s t s t   fulfills axioms  2A and 



64 

 

 3A  but not axiom  1A . Finally, the feasible characteristic function    3
, 1f s t s t    is a 

violator of axiom  3A  but not of axioms  1A and  2A . We can therefore state the following: 

Remark 3.1:  Axioms  1A ,  2A  and  3A  are independent. 

For the index given by (i) the ratio 12
cc is the marginal rate of substitution of alienation 

for identification along an iso-polarization contour. This ratio shows how WI  can be traded off 

for BI  along the contour. In fact, we can take this trade-off into account in a more general way 

through some changes in the original distribution. Suppose all the incomes in the subgroup with 

the minimum subgroup mean are proportionately scaled down or reduced by the same absolute 

amount. Because of increased differences in subgroup means BI , that is, alienation increases, by 

some amount  , say. The resulting increase in polarization can be compensated by a decrease in 

identification through a sequence of regressive transfers within one or more subgroups. Since the 

corresponding reduction in identfication depends on the size of  , we denote it by  
1

g . That 

is, because of an increase in BI by  , for keeping the level of polarization unaltered it becomes 

necessary to increase WI  by some amount  
1

g . By a similar argument, if WI  increases by   

then a corresponding positive change in BI by  
2

g , say, will be necessary to keep level of 

polarization constant (see also Esteban and Ray, 1994, p.828, pp.845-6 and  Chakravarty and 

D‟Ambrosio, 2010, for a related discussion). Formally, 

 4A  For all   
k

xxxx ,...,,
21 , k and for any non-negative  ,     xWIxBIf , =

      
1

, gxWIxBIf   =         xWIgxBIf ,
2  for some continuous functions

11

21
:,


 RRgg . 

 Using axiom  4A  we can develop a joint characterization of the normalized ratio form 

index 
1 2

,a a
P  and the difference form index

1
P . This is shown below.  

Theorem 3.3: Assume that the characteristic function is continuously differentiable. Assume 

also that the right partial derivative of the characteristic function at zero with respect to the first 

argument exists and is positive. Then a feasible polarization index 
1

: RP  with such a 

characteristic function satisfies axioms  1A (or  2A ),  3A  and  4A  if and only if it is of one 

of the following forms: 
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       xWIcxBIcxPi
cc 21,

21

 for some arbitrary constants 0,
21
cc , 

   
 

  












 1

2

1

,
21 xWI

xBI

aa

a

a
cxPii for some arbitrary constants 0c , 1,

21
aa , 

where   
k

xxxx ,...,,
21 , k and SDI   are arbitrary.  

Proof: See Appendix. 

Since the constants 
1

c  and 
2

c  in the above theorem are arbitrary, we can choose them to 

be equal to the corresponding constants in Theorem 3.2 and therefore use the same notation. The 

same remark applies for the constants 
1

a  and
2

a . 

To check independence of axioms  1A ,  3A  and  4A , consider the characteristic 

functions 
1 3
,f f (as defined earlier) and    4

, 2 1
s t

f s t s t


    . Then  
1

f  satisfies axioms  1A  

and  3A  but not axiom  4A , 
3

f  is a violator of axiom  3A  but not of the other two, while 
4

f  

fulfills all the axioms except  1A . We therefore have 

Remark 3.2: Axioms  1A ,  3A  and  4A  are independent. 

Again, the characteristic function 
2

f  meets axioms  2A  and  3A  but not  4A . On the 

other hand 
3

f  violates axiom  3A  but not the remaining two. Finally, 
4

f  fulfills all the axioms 

except  2A . This enables us to state the following: 

Remark 3.3: Axioms  2A ,  3A  and  4A  are independent. 

The transformed ratio form index  
1 2

,
1

a a
P  has a structure similar to the Zhang-Kanbur 

index      Z K
P x B I x W I x . However, one minor problem with 

Z K
P is its discontinuity if 

  0W I x  .The transformed index and hence
1 2

,a a
P  do not suffer from this shortcoming. 

However, the alienation and identification components of polarization are incorporated correctly 

in the formulation of
Z K

P . 

In the literature on income-inequality measurement, it is a common practice to relate an 

inequality index with a welfare function in a negative monotonic way and vice -versa. For 

instance, we may define the welfare function U associated with any inequality index I defined 

on D as      xI
exxU


  . When efficiency considerations are absent, that is, the mean income 
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 x  is fixed, an increase in inequality is equivalent to a reduction in welfare and vice-versa. A 

proportionate or an absolute increase in all incomes will increase U depending on whether I is a 

relative or an absolute index (see Shorrocks, 1988 and Chakravarty, 2009). Note also that given a 

functional form of ,U we can generate the form of the inequality index I . In a similar attempt, 

Chakravarty et al. (1985) determined the functional form of the underlying social welfare 

function from the knowledge of the ethical income mobility index suggested by them. 

Likewise, a similar problem can be the issue of generating an inequality index from a 

specific polarization index. More precisely, for a polarization index with a particular structure, 

we identify one possible corresponding subgroup decomposable inequality index. In other words, 

given the polarization index, we determine the functional form of the underlying subgroup 

decomposable inequality index by constructing an appropriate algorithm. Thus, we may regard 

the problem as the dual of generating polarization indices from inequality indices. For this 

purpose we assume at the outset that for fixed k and   k

k
nnn ,....,,

21 , the polarization 

index 1

1

: RDP
k

i

n
i 



satisfies the following axiom: 

 5A : For all   


k

i

nk
iDxxxx

1

21
,...,, ,        i

i
xgnvxPyP , , where  k

yyyy ,...,,
21

  

with   i
nii

xy 1  and jj
xy   for ij  ; 

i
v  is a positive real number, assumed to depend on the 

vector  ,n  and g  is a non-negative valued function defined on 
k

i

n
iD

1

. 

 Note that we are not assuming here that the polarization index is feasible. However, it 

will be demonstrated that feasibility drops out as an implication of our structure. The 

transformation that takes us from x  to y  makes the distribution i
y  in subgroup i  perfectly 

equal and leaves distributions in all other subgroups unchanged. Given positivity of
i

v , axiom

 5A  states that the resulting change in polarization, as indicated by    xPyP  , is non-negative 

(since g is non-negative). This is quite sensible. Assuming that
i

x  is unequal, a movement 

towards perfect equality makes the subgroup more homogeneous and because of closer 

identification of the individuals in the subgroup, polarization should not decrease. Since the 

transformation does not affect the distributions in all subgroups other than subgroup i , we are 
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assuming that the change does not depend on unaffected subgroups‟ distributions. However, it is 

assumed to depend on
i

x , the original distribution in subgroup i , and the vectors of population 

sizes of the subgroups and their mean incomes.  

Theorem 3.4: If the continuous polarization index 1

1

: RDP
k

i

n
i 



satisfies axiom  5A , then 

there exists a corresponding subgroup decomposable continuous inequality index

1

11

:




















 RDDI

k

i

n
k

i

n
ii    of the type  k

n

k

nn
I 1,.......,1,1 21

21
 +    



k

i

i

i
xIn

1

,   which takes 

on the value zero for the perfectly equal distribution on 
k

i

n
iD

1

.  

Proof: See Appendix. 

Note that Axiom  5A  does not say anything about the identification and alienation 

factors of  P. However, using Theorem 3.4, we can clearly extract them since the retrieved index 

is subgroup decomposable. 

 

Remark 3.4: From equation (3.44) in the appendix we observe that P  can be expressed as 

 WIcBIc
21

  for some subgroup decomposable inequality index I  that becomes zero for the 

perfectly equal distribution on 
k

i

n
iD

1

, where 0,
21
cc  are arbitrary constants. Therefore, it is a 

feasible index of polarization for the inequality index defined in equation (3.43) in the appendix.  

 

Remark 3.5: Since Theorem 3.4 is concerned with the existence of a subgroup decomposable 

inequality index, we have considered an inequality index that can be generated by an algorithm 

from the polarization index satisfying Axiom  5A  and which satisfies subgroup-

decomposability. If we assume that    
2

,, cnvn
ii

   depends only on nn
i

, then given the 

domain, this inequality index is a member of SD . Furthermore, I  will be symmetric whenever

P  and g  are. Finally, if g takes on positive values for all distributions which are not perfectly 

equal, then I will satisfy NON also. 
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Remark 3.6:  Since   



















k

i

n
k

i

n
ii DD

11

 is a closed subset of D  and I is continuous, I can be 

continuously extended to D (Rudin, 1987, p.99). (Here we assume that D  can be identified with

1,1 , 1

j j

j

ll
m m

jm j l j

l

D D

   



  

  

   

 .) 

3.5 Conclusion 

Polarization is concerned with clustering of incomes in subgroups of a population, where 

the partitioning of the population into subgroups is done in an unambiguous way. A reduced-

form polarization index is one which abbreviates an income distribution in terms of „alienation‟ 

and „identification‟ components of polarization. The between-group term of a subgroup 

decomposable inequality index is taken as an indicator of alienation, whereas within-group 

inequality is regarded as an inverse indicator of identification. A criterion for ranking different 

income distributions by all reduced-form indices is developed under certain mild conditions. 

Some polarization indices have been characterized using alternative sets of independent axioms. 

Finally, the dual problem of generating an index of inequality from a given form of polarization 

index is investigated.  

 

3.6 Appendix 

Proof of Theorem 3.1: Suppose yx
P

  holds. Consider the polarization index 

     xWIxBIxP 


 , where 0 is arbitrary. By definition,  xP


 is a feasible index. Now, 

   yPxP


  implies that      yBIxBI     yWIxWI  . Since 0 is arbitrary, letting

0 , we get    yBIxBI  . 

Next, consider the feasible index      xWIxBIxP  


, where 0 is arbitrary. Then 

   xP


 yP

  implies that    yWIxWI      yBIxBI   . Again because of arbitrariness of

0 , we let 0  and find that    yWIxWI  . 

Now, at least one of the inequalities    yBIxBI  and    yWIxWI   has to be strict. 

This is because if    yBIxBI   and    yWIxWI  , then       xWIxBIfxP , = 

    yWIyBIf , , that is,    yPxP  , which contradicts the assumption yx
P

 . 
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The proof of the converse follows from the defining condition of the feasible polarization 

index, that is, increasingness in the first argument and decreasingness in the second argument.

 

Proof of Theorem 3.2: Since the components of the two inequality indices considered are onto 

functions, we can restate axioms  1A  and  2A  as follows: 

       tsf ,       gtstsf ,,  ,                                              (3.1) 

            htstsftsf ,,,  ,                                               (3.2)   

where 0,,, ts are arbitrary.  Putting 0s  in (3.1) and assuming positivity of  we get   

            gttftf ,0,0,  .                                                    (3.3)                                              

For a fixed
1


 Rt , define 

11
: RRf

t



by    tsfsf

t
, , where .0s  Then continuous 

differentiability of f  implies that 
t

f  is also continuously differentiable and moreover, it is increasing. 

Further, by assumption,  0 0
t

f    which implies that    , 0 ,f t f t   for all 0  . Also, by 

increasingness of g we have,     00  gg  . This, along with (3.3) yields:  0 , 0t   for all 
1


 Rt . 

Hence, for all 
1

,s t R


  we have,    , 0 , 0s t t    . 

 From (3.1) and (3.3) it then follows that  

    
   

   

 

 t

ts

tftf

tsftsf

,0

,

,0,

,,













 ,                                                    (3.4) 

for all 0, ts . 

  We rewrite (3.4) in terms of 
t

f  as follows: 

    

   

   

 

 t

ts

ff

sfsf

tt

tt

,0

,

0 











.                                                      (3.5)     

 Note that the right hand side of (3.5) is independent of  . So we can divide the 

denominator and numerator of the left hand side of (3.5) by  and take the limit of the resulting 

expressions as 0 . Then (3.5) becomes  

     
 

 

 

 t

ts

f

sf

t

t

,0

,

0 







,                                                              (3.6) 
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where
t

f   stands for the derivative of
t

f . By assumption the right hand side of (3.6) is positive. 

This along with positivity of  0
t

f  (by assumption) implies that   0 sf
t

 for all 0s . From this 

it follows that 
 

0
,






s

tsf
 for all .0, ts  

 Because of independence of the right hand side of (3.5) of , the derivative of the left 

hand side of (3.5) with respect to   is zero. This gives

             
tttttt

fsfsfsfff  0 , from which it follows that 

     
   

   






0
tt

tt

ff

sfsf



  

 



t

t

f

sf




.                                             (3.7) 

Equations (3.5), (3.6) and (3.7) jointly imply that 
 

 



t

t

f

sf




=

 

 0
t

t

f

sf




, which gives    sf

t

      0
ttt

ffsf   . Define the function 
11

: RR
t




 by  s
t

    0
tt

fsf  . Then the previous 

equation becomes  

     
ttt

ss                                                    (3.8) 

for all 0, s . Since f is continuously differentiable, 
t

  is continuous. The general nontrivial 

solution to the functional equation (3.8) is given by     
s

t
tas  for some continuous function

11
:


 RRa , where 0s  is arbitrary (Aczel, 1966, p.41). Letting    twf

t
 0 , we can now 

write 
t

f  as    sf
t

    twta
s

for some continuously differentiable maps .:,
11


 RRwa

Integrating 
t

f   we get 

 

    

 
   

     












,1,

,1,
log

1

1

tatwtsw

tatw
ta

twta

sf

s

t
                                         (3.9) 

where 0s  is arbitrary and 11

1
: RRw 


 is continuously differentiable. We rewrite (3.9) more 

explicitly as 

 

    

 
   

     












.1,

,1,
log,

1

1

tatwtsw

tatw
ta

twta

tsf

s

                                      (3.10) 

where 0, ts  are arbitrary.  
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We now show that  ta  is a constant for all .0t  First, note that there is nothing to prove 

if   1ta  for all .0t  If   1ta  for some ,0t then consider the set   1:0  tatB , which 

is assumed to be non-empty. Now, (3.4) along with the first equation in (3.10) implies that for all 

Bt   and for all ,0s  

    

 

    

 ta

twta

ta

twta
ss

loglog




=     gts , .                                 (3.11) 

Putting 0s  in (3.11) we get
     

 




ta

twta

log

1


    gt,0 , which gives  

     1


ta     gt ,                                                            (3.12) 

where   t       twtat log,0  and Bt   is arbitrary. Since by assumption   1ta  for all

Bt  , the right hand side of (3.12) is non-zero for all .0 Substituting 1  and 2  in (3.12) 

we get      1ta    1gt  and      1
2

ta    2gt  respectively. Dividing the right (left) 

hand side of the second equation by the corresponding side of the first equation, we get

       121 ggta  , which implies that for all ,Bt    ta     cgg  121 , a positive 

constant. But   1ta  for all nonnegative
c

Bt  , the complement of .B Since  ta is a continuous 

map on its domain and B  is a non-empty set, c
B  must be empty. Thus,   ,cta   a positive 

constant not equal to one, for all .0t  Hence in either case  ta is a constant. In the sequel we 

will write a in place of  ta . 

Therefore, equation (3.10) now can be written as  

 

 
 

   












,1,

,10,
log,

1

1

atwtsw

atw
a

twa

tsf

s

                                           (3.13) 

where 0, ts  are arbitrary, 1
, ww  are continuously differentiable and w  is positive valued. 

 Proceeding in a similar manner and making use of axiom  2A we get  

 

 
 

   












,1,

,10,
log,

1

1

bsst

bs
b

sb

tsf

t






                                           (3.14) 
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for some continuously differentiable maps ,:,
1

1
RR 


  being negative valued. We can also 

show that 
 

0
,






t

tsf
 for all .0, ts  

Now, for comparing (3.13) and (3.14) we need to consider various cases. 

Case I:        twtswtsf
1

,    sst
1

  .                                                                  (3.15) 

By axiom  3A ,   0
1

w  0
1

 =0. Putting 0s in (3.15), we get   tw
1

 .0t  Likewise, 

for 0t , we have   0sw  .
1

s  Substituting these expressions for 1
w and 1

 in (3.15), we get

     0ttsw    0swst  , from which it follows that       0wtws     0 st . Since this 

holds for all 0, ts , there exists a constant   such that     twtw  0  and     ss   0 . 

Hence       twstsf 0,  0t . Differentiating this form of f  partially with respect to s  and

t , we get
 

s

tsf



 ,
=    00  tw   and 

 

t

tsf



 ,
=    00  s . Now, if 0 , then negativity of 

 

t

tsf



 ,
cannot hold for all 0s . On the other hand, if 0 , then positivity of 

 

s

tsf



 ,
cannot 

hold for all sufficiently large positive t . Hence the only possibility is that 0 . Consequently,

      tcsctswtsf
21

00,   , where   00
1

 wc and   00
2

 c  (by positivity and 

negativity of partial derivatives of f with respect to s  and t  respectively, as shown earlier). 

Case II:  
 

 tw
a

twa
tsf

s

1
log

,  =     10,
1

 asst  .                                             (3.16) 

By axiom  3A ,  

 
 0

log

0

1
w

a

w
 =  0

1
 =0.                                                           (3.17) 

Putting 0s in (3.16) and using the information  0
1

 =0 from (3.17) in the resulting 

expression we get  
 

   tw
a

tw
tf

1

log
,0  0t . Substituting the expression for  tw

1  obtained 

from this equation into (3.16) we have  

 

 
   

a

twa
tsf

s

log

1
,


 +  0t .                                          (3.18) 
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Similarly, putting 0t in (3.16) we find
 

 0
log

0

1
w

a

wa
s

 =  s
1

 , which, in view of 

    aww log00
1

 (obtained from (3.17)) gives  
   

a

wa
s

s

log

01

1


 . Substituting this value of 

 s
1

  into (3.16) we get 

 
   

 st
a

wa
tsf

s





log

01
, .                                                    (3.19)                                                       

Equating the functional forms of f given by (3.18) and (3.19) we then have

      
    0

log

01
 


st

a

wtwa
s

, from which it follows that for all ,0, ts
   

 




















aa

s

s
log1

0

    

t

wtw 0
=constant=  (say). This gives      0 s

 
a

a
s

log

1
  for all ,0, ts and

    twtw  0 . Substitution of the functional form of  s  into (3.19) yields 

 
    

 0
log

01
, 


t

a

twa
tsf

s




  .                                         (3.20)    

Now, 
 

s

tsf



 ,
=    00  twa

s
 for all 0, ts . For 0s this implies that  

   00  tw                                                                (3.21) 

holds for all 0t . Hence 0 , otherwise for a sufficiently high value of t ,   tw 0  will be 

negative.  

Also 

        

 






t

tsf ,  
  00

log

1





a

a
s

 ,                                                   (3.22) 

for all .0, ts  

Sub-case I: .1a Then 
 

a

a
s

log

1
 is increasing and unbounded in .0s So if 0 , then 

choosing 0s sufficiently large, we can make the left hand side of the inequality in   (3.22) 

positive, which is a contradiction. So the only possibility is that 0 . Plugging 0  into 
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(3.20) we get,  
    

 0
log

10
, t

a

aw
tsf

s




 , which, in view of our earlier notation, can be 

rewritten as  
 

tc
a

ac
tsf

s

2

1

log

1
, 


  with   00

1
 wc and   00

2
 c . 

Sub-case II: .10  a In this case also (3.21) holds so that 0 . We rewrite the 

inequality in (3.22) as 
 

 s
a

a





1

log0
  for all 0s , which implies that   alog0  . Using our 

earlier notation, we have     tct
a

c
atsf

s

2

1

log
1, 














  , where,   00

1
 wc ,

  00
2

 c and alog  . Also  
2

0log0 ca   . 

Case III:        twtswtsf
1

,
 

 s
b

sb
t

1
log




 , .10  b  

Solution in this case is similar to that of Case II and (by symmetry) is given by 

 

 

 




































,10,
log

1

,1,
log

1

,

2

1

21

bt
b

c
bsc

b
b

b
csc

tsf

t

t



 

where 0,
21
cc  are same as before and  0

1
  c  is a constant. 

Case IV:  
 

   tw
a

twa
tsf

s

1
log

,
 

 s
b

sb
t

1
log




 , ,1,0  ba                                     (3.23)                                      

for all .0, ts  

  Applying axiom  3A  to (3.23) we get  

           

 
 0

log

0

1
w

a

w
 =0 and 

 
  00

log

0

1
 



b
.                                                (3.24) 

Putting 0s in (3.23) we get
 

   tw
a

tw

1
log

 
 0

log

0

1





b

b
t

, which in view of the second 

equation in (3.24) can be rewritten as
 

   tw
a

tw

1
log

   

b

b
t

log

01 
.  Substituting the value of  tw

1  

obtained from this equation into the first expression for  tsf , in (3.23) we have 
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 
   





a

twa
tsf

s

log

1
,

   

b

b
t

log

01 
.                                          (3.25)           

 Next, put 0t in (3.23) to get
 

   0
log

0

1
w

a

wa
s  

 s
b

s

1
log




 . We solve these two 

equations to get   s
1


 

   0
log

0

1
w

a

wa
s  

b

s

log


, which in view of  

 

a

w
w

log

0
0

1
 (from the first 

equation in (3.24)) gives   s
1


   




a

wa
s

log

01  

b

s

log


. Substitution of this form of   s

1
  into the 

second expression for  tsf , in (3.23) yields 

 
   





a

wa
tsf

s

log

01
,

   

b

sb
t

log

1 
.                                         (3.26) 

Equating (3.25) and (3.26) and simplifying we get 

    

      

a

wtwa
s

log

01 
 =

      

b

sb
t

log

01  
,                                     (3.27)       

for all .0, ts  As in the earlier cases    
 

a

a
s

s

log

1
0


   and   tw   0w

 
b

b
t

log

1
  for 

some constant . Substituting this form of  s into (3.26) we get 

 
   





a

wa
tsf

s

log

01
,

 
 



























 




a

a

b

b
st

log

1
0

log

1
 .                    (3.28) 

 Now, 
 

0
,






s

tsf
 implies that  

 
  00

log

1



w

b

b
t


                                                      (3.29) 

for all .0t  On the other hand, 
 

0
,






t

tsf
 implies that 

 
  00

log

1







a

a
s

,                                                    (3.30)  

for all .0s  

Again various sub-cases come under consideration. 
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Sub-case I: .1,1  ba Applying the same logic as in the case II, we get 0 . So the 

general solution in this case is      1
log

1
log

,
21


ts

b
b

c
a

a

c
tsf , where 

    00,0
21

 cwc are the same as in Case I. 

Sub-case II: .10,1  ba Considering (3.30) and noting that 
 

a

a
s

log

1
 is positive and 

unbounded above we conclude that 0 . From (3.29) we get 
 

 t
b

bw





1

log0
  for all ,0t  

which implies that   bw log0 . Thus, the general solution given by (3.28) becomes

     1
log

1
log

,
21


ts

b
b

c
a

a

c
tsf    11 

ts
ba , where   00

1
 wc ,  0

2
c 0  and

ba loglog


  , with 1

log0 ca    . 

Sub-case III: .1,10  ba Here using (3.29) we conclude that 0 . Moreover, from 

(3.30),
 

 s
a

a





1

log0
  for all ,0s which implies that   alog0  . Thus,   .log00 a 

Consequently,      1
log

1
log

,
21


ts

b
b

c
a

a

c
tsf    ,11 

ts
ba  where  0

1
wc   and 

 0
2

c  are positive and 0log
2

 bc  with
ba loglog


  . 

Sub-case IV: .10,10  ba  Applying the same logic as before we get 

     1
log

1
log

,
21


ts

b
b

c
a

a

c
tsf    ,11 

ts
ba  where     abw log0log0   , which 

implies that
b

c

a

c

loglog

21
  , with

ba loglog


  . This completes the necessity part of the 

proof. The sufficiency is easy to check. 

  

 Proof of Theorem 3.3:  We will prove the Theorem for axioms  1A ,  3A  and  4A . A 

similar proof will run if axiom  1A  is replaced by axiom  2A . From the proof of Theorem 3.2 
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we know that axioms  1A  and  3A  force f to take one of the two forms given by (3.13). Now, 

suppose f  is given by the second form in (3.13). Applying axiom  4A  to this case we have  

       twtsw
1

 =         twtwgs
12 ,                         (3.31) 

for all 0,, ts . Putting 0s  in (3.31) we get     twtw
11  =     twg

2 , which when 

subtracted from (3.31), on simplification, gives     twtws   = 0 , from which we get 

   twtw    for all .0, t Thus,  tw = a constant= 1
c , say. Substituting this value of  tw in 

the equation     twtw
11  =     twg

2 , we get     twtw
11  =  

3
g  for all 0, t , 

where    
213

gcg  . Note that by axiom  3A ,   00
1

w . So,    
13

wg  , which implies 

that      
111

wtwtw   for all .0, t The only continuous solution to this functional 

equation is   tqtw 
1 for some 1

Rq  (see Aczel, 1966, p.34). Hence in this case f is given by

  tqsctsf 
1

, . By increasingness of f  in s , .0
1
c  Note also that     00,01,0  ffq

(by axiom  3A ). So we rewrite the general solution as   tcsctsf
21

,  , where 0,
21
cc . 

 Next, we take up the first form in (3.13). By axiom  4A , 

    
 

 
 

 
 











tw
a

twa
tw

a

twa
gss

11
loglog

2

                           (3.32) 

for all 0,, ts . Putting 0s in both sides of (3.32) we have 

    
 

 
 

 
 







 tw
a

twa
tw

a

tw
g

11
loglog

2

.                               (3.33) 

Subtracting the left (right) hand side of (3.33) from the corresponding side of (3.32) and then 

rearranging the resulting expression we get 

   
     0

log

1
2 


twtwa

a

a g

s




.                                            (3.34) 

  But 
 

0
log

1




a

a
s

 for all .0s  This shows that  

 
     02  twtwa

g



                                                         (3.35)         

for all .0, t  

Now, recall from (3.13) that   0tw  for all .0t   Therefore, from (3.35) we get  



78 

 

 

 

 
2

g
a

tw

tw 



                                                                     (3.36) 

for all .0, t Putting 0t  in (3.36) we have  

 

 

 
2

0

g
a

w

w 
 .                                            `   (3.37) 

From (3.36) and (3.37) it follows that  

 

 




tw

tw   

 0w

w 
                                                                     (3.38)               

for all .0, t  As we have noted in the proof of Theorem 3.2, the general solution to this 

equation is given by   t
ctw   for some constants .0,  c  A comparison of (3.33) and (3.35) 

gives     twtw
11  for all ,0, t so that   tw

1  constant=  , say. Hence the complete 

solution in this case is   .
log

, 






a

ca
tsf

ts

By axiom  3A , .
log a

c 
 Consequently, 

   .1
log

, 



ts

a
a

c
tsf   Increasingness and decreasingness of f in its first and second 

arguments respectively require that 1a  and .1 So the solution can be written as

 













 1,

2

1

t

s

a

a
ctsf , where 0c and 1,

21
aa  are constants. This completes the necessity part 

of the proof. The sufficiency is easy to check.  

 Proof of Theorem 3.4: Given   


k

i

nk
iDxxxx

1

21
,...,,  and  i

i
x  , define a 

sequence   iy  as follows: 

  ,0 xy   

   kn
xxy ,...,11

2

1
1 , 

   12
jj

yy  for 2j ,   212
2

2 n
y  , 

   23
jj

yy  for 3j ,   313
3

3 n
y  , and so on. Finally, 

   1 kyky
jj for kj   and   k

n

k

k
ky 1 . 
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Thus, for any ,1, kii  we have    kin

i

nn
xxiy i ,....,,1,.....,1,1

1

21

21 
  . Note that for all i  and

,j      jj
xiy   ,     xiy    and    .1,.......,1,1 21

21
k

n

k

nn
ky   

It is given that for any ,1, kii           .,1
i

i
xgnviyPiyP   Summing over all i , we get 

     0yPkyP  =    


k

i

i

i
xgnv

1

,  . That is,       

    xPP k
n

k

nn
1,....,1,1 21

21
  =    .,

1




k

i

i

i
xgnv                     (3.39)                                                       

Now define 1

11

:




















 RDDI

k

i

n
k

i

n
ii    by the following relation: 

 

 

     

 





































,

,,..,,
1

1,...,1,1
11

1

1

21

2

21

21

21


k

i

n

k

i

nkn

k

nn

i

ik

Dxifxg

DxxxxforxP
c

P
cc

xI



    

(3.40)     

where 0,
21
cc  are arbitrary constants. Clearly, there is no ambiguity in the definition of .I By 

continuity of IP ,  is continuous. From the above definition it follows that 

   .1,.......,1,11,.......,1,1 2121

21121
kk

n

k

nnn

k

nn
IcP    and    ii

xIxg  , .1 ki  Substituting 

this into (3.39) we get 

  xP  k
n

k

nn
Ic 1,.......,1,1 21

211
     ,,

1

2 


k

i

i

i
xgnc                                                (3.41) 

where    
2

,, cnvn
ii

  . This in turn gives: 

  xI        xPP
c

P
c

kk
n

k

nnn

k

nn
 1,.......,1,1

1
1,.......,1,1

1
2121

21

2

21

1

   

        =   k
n

k

nn
I 1,.......,1,1 21

21
 +    



k

i

i

i
xIn

1

,  .  

Thus, I  is subgroup decomposable. To show that I  takes on the value zero for the perfectly 

equal distribution on 
k

i

n
iD

1

; observe that         ,nvxPyPxI
i

i
 , which implies that 

  01 i
n

cI  for all kii 1,  and for all .0c  
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Chapter 4 

ETHNIC POLARIZATION QUASI-ORDERINGS AND INDICES13 

4.1. Introduction 

The previous chapter was devoted to a particular problem on income polarization. 

Several indices were characterized and a polarization quasi-ordering was developed. It goes 

without saying that the same treatment applies to an arbitrary continuous variable.  

However, in many important situations there may not be information on a continuous 

attribute to measure distance across groups or individuals. For example, in the case of ethnic 

classification the only information we may have is whether an individual belongs to a particular 

ethnic group or not. Such cases pertain to the discussion on „social polarization‟ in Chapter 1, of 

which „ethnic polarization‟ is a particular case. As already mentioned thereat, the RQ index 

suggested by Montalvo and Reynal-Querol (2005) is the most popular index of ethnic 

polarization.  

Several properties of ethnic polarization indices have been investigated by Montalvo and 

Reynal-Querol (2005, 2008), Esteban and Ray (1999, 2008b) and Chakravarty and Maharaj 

(2011). Taking cue from such investigations, we develop some new reasonable axioms for ethnic 

polarization indices. The first goal of this chapter is to characterize the RQ index using these 

axioms and some additional ones borrowed from Montalvo and Reynal-Querol (2005, 2008) and 

Esteban and Ray (1999, 2008b). These characterizations enable us to understand the RQ index 

from alternative perspectives in greater detail. None of our characterization results begins with 

any specific assumption like additivity. From this perspective these results are quite general. 

More precisely, our characterization reveals how within a general structure we can isolate a set 

of necessary and sufficient conditions for identifying the RQ index uniquely. In the process we 

characterize a generalization of the RQ index, which we refer to as the ‘Generalized RQ-Index of 

order ’.  

                                                           
13

 A major portion of this chapter has been published in Chakravarty and Maharaj (2012). 
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It is true that a particular index of ethnic polarization will order different ethnic groups in 

a complete manner. However, two alternative indices of ethnic polarization may not rank the 

ethnic groups in the same way. It is, therefore, natural to develop an ethnic polarization quasi-

ordering that will rank two different ethnic groups in an identical manner. Such a quasi-ordering 

determines the necessary and sufficient conditions for one ethnic group to be regarded as more or 

less polarized than another by all ethnic polarization indices that satisfy certain desirable criteria. 

It may be worthwhile to mention here that no such ethnic polarization quasi-ordering has been 

suggested in the existing literature.  

One of the major objectives of this chapter is to develop two quasi-orderings of this type 

without any specific structural assumption e.g., additivity. One of these quasi-orderings can be 

easily verified using the population concentration curve. The population concentration curve of 

an ethnic distribution is the graph of the cumulative population shares against the cumulative 

number of groups, with groups ranked from the largest to the smallest.  

The chapter is organized as follows. After discussing the background material in Section 

4.2, we present the characterization theorems in Section 4.3. The two quasi-orderings are 

discussed in Section 4.4. Finally, Section 4.5 concludes. 

 

4.2 The Background 

For a population consisting of k ethnic groups
1

E ,
2

E ,....,
k

E , where  1\Nk  , N

being the set of positive integers, let 
i

  denote the proportion of individuals in
i

E .Therefore,

0 1
i

  ,  ki 1  and  


k

i

i

1

1 , k  being arbitrary. This generates a probability 

distribution  =  
k

 ,...,,
21

, which we will refer to as 'ethnic distribution'.  

The RQ index suggested in Montalvo and Reynal-Querol (2005, 2008) is based on the ER 

index of income polarization (defined in (1.45)). 

In order to identify ethnicity of an individual, it becomes necessary to verify if he 

„belongs to‟ or „does not belong to‟ a particular ethnic group. Montalvo and Reynal-Querol 
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(2005, 2008) argued that in such a situation it is essential to replace the Euclidean metric  in 

(1.45) by the discrete metric
14

  and hence deal with the class of discrete polarization indices 

 
1

, DP

 

defined in (1.59).  

For relating  
1

, DP with the RQ index, Montalvo and Reynal-Querol (2008) 

considered three properties, which are taken directly from Esteban and Ray (1994) and redefined 

in terms of group‟s size only. We will also invoke these properties for our characterizations. The 

first property is: 

Property 1: If there are three groups of sizes p, q and r, and p q  and q r , then if we merge 

the two smallest groups into a new group, q , the new distribution is not less polarized than the 

original one. That is,    , , ,P O L p q r P O L p q , with  q q r  . 

According to this property for three groups with relative frequencies p, q and r, where 

p q  and q r , polarization should not decrease under merger of the two smallest groups 
15

. It 

corresponds to the Esteban-Ray (1994) Axioms 1 and 2. 

Montalvo and Reynal-Querol (2008) showed that a necessary and sufficient condition for 

Property 1 to hold for  
1

, DP  is that 1  . We obtain the same boundary restriction on the 

value of   if Property 1 is replaced by Property 1b, whose formulation does not need the 

assumption that the number of groups is three.   

Property 1b: Suppose that there are two groups with sizes 
1

  and
2

 . Take any one group, say 

2
  and split it into 2m   groups in such a way that 

1
  = 

1 i
   for all  2 , .. . , 1i m  , where 

                                                           
14

It may be added here that an ethnic polarization index need not take the distance between two ethnic groups as 

unity.  For instance, in Fearon, (2003) and Desmet et al. (2008, 2009) computation of intergroup distance is based on 

linguistic distance, whereas Spolaore and Wacziarg (2009) used genetic distance. However, following Reynal-

Querol (2005, 2008) we assume that the intergroup distance is unity.  

15
 In Montalvo and Reynal-Querol (2008) the three properties have been stated using strict inequality. However, we 

use weaker versions of these properties and none of our results changes if we replace weak inequality by strict 

inequality. It may be mentioned that in Esteban and Ray (1994) the axioms have been stated using weak inequality.  
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  is the new vector of population shares, and clearly
1

2

2

m

i

i

 





 . Then the polarization under   

is not higher than that under .  

The following property, which may be regarded as a particular version of Property 1b, 

has been established and analyzed by Esteban and Ray (1999).  

Property 1c: Let 3G  . Consider a distribution of the population across G groups. Suppose that 

i j
   for some i and j. Then polarization is increased by a merger of any 1G   smallest groups 

into one. However, if the initial distribution of population is uniform, then polarization is 

unchanged. 

The next property, which is based on Axiom 3 of Esteban and Ray (1994), says that if 

there are three groups, two of which have equal population share, then polarization should not 

decrease under shift of population mass from the group with unequal size equally to the other 

two groups. Formally,  

Property 2: Assume that there are three groups of sizes p, q and p. Then if we shift mass from 

the q group equally to the other two groups, polarization does not decrease. That is,

( , , ) ( , 2 , )P O L p q p P O L p x q x p x    , where 20 qx  . 

Montalvo and Reynal-Querol (2008) also demonstrated that  
1

, DP  satisfies Property 

2 for any distribution if and only if 1 .   Given 1  , if we choose 4
1
 , then the resulting 

index  1, 4D P becomes the RQ index defined in (1.58), which can also be expressed as      

     RQ = 











 


k

i

i

i

1

2

5.0

5.0
1 


.                      (4.1)                           

This expression for RQ incorporates a weighted sum of population fractions, where the 

weights are squared deviations of population shares of different groups from the maximum 

population share 5.0  as a proportion of 5.0 . It is worth noting here that the index RQ is actually 
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a positive multiple of the probability that out of three randomly selected persons in the 

population,  two will belong to the same group.
16

 

 Dealing with a general model of conflict, Esteban and Ray (1999, 2008b) considered a 

particular situation in which each group feel equally alien towards all other groups and suggested  

       


k

i

ii

i

i
b

p
IC

1

3

1 


,         (4.2)  

as an indicator of intensity of conflict, where 
i

b equal distance of the  
th

i  group from any other 

group, 
i

p  probability of success of the
th

i  group in a conflict game, defined in an 

unambiguous way. If , 1
i i i

p b   for all i, then IC equals 4RQ . 

 

4.3 Axioms, Discussion and Characterizations 

We begin this section by presenting some axioms existing in the literature. We then 

develop two new axioms as implications of some observations made by Esteban and Ray (1994, 

1999, 2008b) and Montalvo and Reynal-Querol (2005, 2008). All these axioms are used to 

characterize the RQ index and study the partial orderings. While the characterization theorems 

are presented in this section, the partial orderings will be analyzed in the next section. 

We write 
k

 for the set of all discrete probability distributions of dimension k  on the real 

line R and Δ for the set of all probability distributions on R. Obviously, 





2k

k
. 

We start with a general definition of a polarization measure in case of an ethnic data. 

Definition 4.1: An „Ethnic Polarization Index‟ (EPI) is a continuous real-valued function defined 

on  , that is, :P R  , which is symmetric in its arguments (that is, for all k ,
k

 ,

  ( ) ,P P    where    is an arbitrary permutation of  ) and which satisfies zero-

                                                           
16

 We are grateful to Joan Esteban for drawing our attention to this fact in course of a personal correspondence. 
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frequency independence (that is, for all k , 
k

 , we have, 

   0,,..,,,..,,
2121 kk

PP   ).  

For any    , an EPI simply aggregates components of   in an unambiguous way. 

Given    , the real number ( )P   indicates the level of ethnic polarization associated with

   .  

Continuity of an EPI ensures that minor changes in '
i

s  will generate only minor changes 

in P .  Anonymity or symmetry demands that P remains invariant under any reordering of '
i

s . 

Next, given the ethnic groups
1

E ,
2

E ,....,
k

E  and their relative frequencies , if a new ethnic group 

is created with zero frequency, then this does not have any impact on ethnic conflict and hence 

the level of polarization should remain unaffected. In other words, we say that an EPI satisfies 

zero-frequency independence
17

. It may be noted that these defining minimal conditions on an 

EPI are satisfied by RQ. 

The following axioms, which have been discussed by Montalvo and Reynal-Querol 

(2005, 2008) and are satisfied by RQ, will be necessary for our characterizations (see also 

Esteban and Ray, 1994). 

Axiom 1: For all k , 
k

 ,  0 1P    .  

Axiom 2: For all k , ( )P  =0 if 
k

  is some permutation of (1, 0,…, 0). 

Axiom 3: For all k , ( )P  =1 if
k

  is some permutation of  1 1, , 0 , . . . . , 0
2 2

. 

Axiom 1 is a boundedness principle. The next axiom says that the EPI achieves its 

minimum value, zero, if there is complete homogeneity in the sense that all the individuals 

                                                           
17

We may mention here that a continuous, symmetric function need not satisfy zero-frequency independence. For 

example, the continuous, symmetric function  does not satisfy zero-frequency 

independence. 

 

 1 2
1

, , . . . . , m in
k i

i k

P    
 


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belong to a particular ethnic group. Finally, according to Axiom 3 the EPI is maximized if there 

is an equal splitting of the entire population into two groups, that is, in the bipolar situation. 

Given the existence of a large ethnic group, if the ethnic minority is not divided into many 

groups and is large as well, then chances of ethnic conflicts increase (Horowitz, 1985). Since 

ethnic conflicts are likely to increase with a bipolar ethnic distribution, it is sensible to assume 

that ethnic polarization is maximized in the case of a bipolar ethnic distribution (see also Esteban 

and Ray, 1999, 2008b)
18

. Thus, an EPI is an indicator of divergence of the actual ethnic 

distribution from the extreme distribution  1 1, , 0 , . . . . , 0
2 2

. 

 While for our characterizations we will employ Properties 1, 1b, 1c, 2 and Axioms 1-3, 

one additional postulate we wish to use is a multiplicative decomposability condition. Let

 
ki

i
 0,...,0,,...,,

21

)(
 , where ki 1 .  For 0

i
   , define 

( )i


 =

 1 2
, , . . . . , , , 0 , . . . , 0

i
    

k
 . Thus, 

( )i


 is obtained from 

( )i

  by splitting the population 

coming from
i

E  into two subpopulations with respective masses
i

   and  , that is, by shifting 

a mass   from
i

E to 
1i

E . A question that arises naturally in this context is: how does 

polarization change due to such a split? Answers to this query have been provided by Esteban 

and Ray (1994) (see Lemma 1, p. 838) and Montalvo and Reynal-Querol (2008) (see Properties 

1, 1b and 2, pp. 7-8) in terms of „merger of groups‟ and „shift of mass‟. However, they did not 

specify any functional form for the resulting change in polarization. 

To be precise, in the above set-up we are interested in looking at the polarization 

difference    
( ) ( )i i

P P


  . Since we are keeping 
1 2 1
, , ......,

i
E E E


 constant, it seems reasonable 

to enquire if the reduction/increase in the level of conflict due to the population shift can be 

attributed to the internal conflict between 
i

E  and
1i

E


. In other words, does this difference have 

any direct relation with 1 ,

i i

P
 

 

 
 

 

, the level of polarization of the population consisting of 

                                                           
18

 Esteban and Ray (1994) proved that a polarization index should achieve its maximum value for the distribution

 1 1, , 0 , . . . . , 0
2 2

. 
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the ethnic groups 
i

E  and
1i

E


?  Given the population masses of
1 2 1
, , ......,

i
E E E


 ; Axiom 4 

provides a very simple way of relating the difference with 1 ,

i i

P
 

 

 
 

 

. 

For a concrete formulation of the axiom, we use arguments put forward in Esteban and 

Ray (2008b). In their discussion on IC  these authors noted that “a split of a group with 

population  into two groups with   and   ,   , increases IC  if and only if the 

group-size is sufficiently large. If   is small, the split will decrease IC .” (They also studied the 

effect of such a split on RQ and FRAC.) Taking cue from this, it is apparent that there should a 

threshold level, say 
0

 , of the size ( ) of the splintered group, such that whenever
0

  , a split 

results in a decrease of polarization, whereas the reverse happens if 
0

  . 

Observation 4.1: A necessary condition for Property 1 to hold is that 
0

2 3  .  

Proof: See Appendix. 

Now, consider
( )i


 =  1 2

, , . . . . , , , 0 , . . . , 0
i

     , which is obtained from 

 
( )

1 2
, , . . . , , 0 , . . . , 0

i

i
     by a „rank-preserving equalizing transfer‟ from 

i
E to 

1i
E


. For small 

i
 , Esteban and Ray (2008b, p. 175) contends that  „the equalization of population brings 

polarization down‟. So,    
( ) ( )i i

P P


   whenever
i


2

1
0  . Symmetry of P  ensures that 

the same result holds for 
1

2
i i

    . 

Next, let 
1 2

0 2
i

     . Clearly,
1

( )i


  is obtained from ( )i

  by an „equalizing 

progressive transfer‟ and 
2

( )i


  is derived from 

1

( )i


  by another such transfer. Thus, 

     
2 1

( ) ( ) ( )i i i

P P P
 

   
 
which implies that 

       
2 1

( ) ( ) ( ) ( )

0
i i i i

P P P P
 

       ,       (4.3) 

whenever 
1 2

0 2
i

     .  
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Now, observe that for fixed 
i

 , 1 ,

i i

P
 

 

 
 

 

 is an increasing function of   for 

0 2
i

    (since an increment in   in this range brings the distribution 1 ,

i i

 

 

 
 

 

 closer to 

the bipolar situation
1 1

,
2 2

 
 
 

, see Montalvo and Reynal-Querol, 2005). This along with the non-

negativity of the polarization index implies that  

1 1 2 2
0 1 , 1 ,

i i i i

P P
   

   

   
      

   

        (4.4) 

whenever 
1 2

0 2
i

     . Thus, from (4.3) and (4.4) it follows that in the range

1 2
0 2

i
     , the polarization-difference    

( ) ( )i i

P P


   and 1 ,

i i

P
 

 

 
 

 

are related 

in a negative monotonic way. We can arrive at the same conclusion for 
1 2

2
i i

      and 

1 2
0 2

i i
       . The above implication of the Esteban-Ray observation suggests that the 

polarization difference    
( ) ( )i i

P P


   can be taken to be negatively proportional to 

1 ,

i i

P
 

 

 
 

 

. Given that this two-group polarization has no relationship with population 

masses of the unaffected groups, we can decompose the change     
( ) ( )i i

P P


   into two 

components, one depending on the population masses of the unaffected groups and other is

1 ,

i i

P
 

 

 
 

 

. This motivates us to state the following axiom: 

 Axiom 4: For all 3k  , let 
( )i

 , 
( )i


 , ki 1 , 

0
  be as above and 

0
 

i
. Then 

   
( ) ( )i i

P P


  =  1 2 1
, , . . . . . , 1 ,

i

i i

f P
 

  
 



 
 

 

,           (4.5) 

where  
 

Rf
i


1

1,0:  is continuous and negative-valued. 
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In Axiom 4 it is assumed that the population proportion of 
i

E  is not of highly significant 

size. According to the axiom, the marginal polarization, the decrement in ethnic polarization, 

which can be attributed to the inner conflict in 
i

E  resulting from the split, is the product of a 

negative-valued continuous function of the population proportions of the unaffected groups and 

the polarization of the two groups resulting from the split.  Clearly, alternative formulations of 

marginal polarization are possible, for instance, the additive decomposability   
121 i

,,,f  

1 ,

i i

P
 

 

 
 

 

 is also a very simple possibility. Since  
121 i

,,,f     is arbitrarily negative 

and by Axiom 1, 0 1 ,

i i

P
 

 

 
 

 

1 , additive decomposability in the presence of Axiom 1 

does not ensure that     
( ) ( )i i

P P


   is non-positive. Axiom 4 avoids this problem and the 

formulation specified in the axiom is simple; easy to understand, and it recognizes the 

dependence of the change on the population sizes of the unaffected groups in a general way. We 

will use this general form of the axiom for characterizations, but for ordering of ethnic profiles, 

we will assume that f is additive (see Axiom 4  below).  

To understand the essential message of Axiom 4, let‟s consider 







 0,

3

1
,

3

2
  and

 










6

1
,

6

1
,

3

2
6

1

 , 
 











9

1
,

9

2
,

3

2
9

1


 
obtained from   by transfers of masses 

6

1
and 

9

1

respectively from the ethnic group 
2

E  to 
3

E . Now, let us consider a property viz. Property A, 

which states that for an ethnic distribution  
kk

  ,....,,
21

, a shift of mass from a larger 

group 
i

E  to a smaller group 
j

E  (where 2 ij ) reduces polarization. (Ths property is 

discussed more elaborately in the next section.)  

By Property A, (i) each one of
 

9
1

  and
 

6
1

  is less polarized than  and (ii) 
 

9
1

  is 

more polarized than 
 

6
1

 . This clearly implies that the polarization difference 
     PP 9

1

 is 

greater than 
     PP 6

1

. On the other hand, as discussed earlier, the level of polarization of 
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the subpopulation comprising ethnic groups 
2

E  and 
3

E is 























2

1
,

2

1

31

61
,

31

61
PP  in the first 

case and 























3

1
,

3

2

31

91
,

31

92
PP  in the second case so that the internal conflict of the former is 

larger than that of the latter. Thus, the decrement in polarization and the measure of the internal 

conflict of the distribution formed by the splintered groups move along opposite directions.

 

This is precisely the intuition behind Axiom 4.  

The next axiom is concerned with polarization in 2-group situations. For 10   , 

consider the map      1,P . Montalvo and Reynal Querol (2005) argued that  

polarization is maximized at  21,21  and the greater is the distance between   1,  and 

 21,21 , the lower is the level of polarization in the 2-group case.   

To motivate the axiom from another angle, let us begin with 
 











3

2
,

3

11
  and 

 










4

3
,

4

12
 . For comparing polarizations between 

 1
  and 

 2
 , we note that 

 2
  is more 

homogeneous than 
 1

  (that is, closer to the perfectly homogeneous (1,0) distribution). 

Alternatively, we can apply Property A (put forward in the subsequent section) and observe that 

 2
  is obtained from 

 1
  by a rank preserving progressive transfer. Using either argument, a 

polarization index should give the former a higher value than the latter. However, it is interesting 

to note that 
 1

  is closer to the extremal 








2

1
,

2

1
 distribution, whereat the polarization measure 

takes its maximum value (1). So, it is reasonable to demand that the polarization measure in the 

2-dimensional case is related to the distance from 








2

1
,

2

1
 in a negative monotonic way.  

Therefore,    can be taken as a decreasing function of         1,,21,21
2

d , 

where d denotes the Euclidean distance in 2


R . In other words,    can be regarded as a 

decreasing function of   .  
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Note that any function meeting this requirement can be taken as a candidate for   . 

For simplicity of exposition, we take a decreasing linear transform of    and suggest the 

following axiom, which will be used for both characterization and the partial ordering: 

Axiom 5:  For 10   ,   1,P  is a decreasing linear transform of      1,,21,21
2

d .  

We are now in a position to state and prove our characterization theorems.  

Theorem 4.1: The only EPI :P R   that satisfies Axioms 2-5 and Property 1c is RQ. 

Proof of Theorem 4.1 relies on the following lemma. 

Lemma 4.1: An EPI :P R   satisfies Axioms 2-5 and Property 1 only if it is of the form  

 
 

3 4
, ,. . . ,

k

R Q
  

  4  
2

1

1

k

i i

i

 



 +  
3

k

i i

i

S 



 ,                              (4.6) 

where   
1 2 3

1 2 3
1 ...

....
l

l

l i i i i

i i i i k

S     

     

  , 
l

R   are arbitrary constants, kl 3 and 

 1 2
, , . . . ,

k k
      are arbitrary. 

Remark 4.1: Clearly,  
l

S  is a positive multiple of the probability that l  persons chosen at 

random from the population belong to l different groups. If
3 4

.... 0 ,
k

     
 3 4

, ,...,
k

R Q
  

 

coincides with RQ. Therefore, 
 3 4

, ,...,
k

R Q
  

 may be regarded as a ‘Generalization of the RQ-

Index.’ 

Proofs of Lemma 4.1 & Theorem 4.1: See Appendix. 

The function f, introduced in Axiom 4, is general in the sense of its dependence on the 

population share vector of the unaffected groups. However, as a special case, one can consider a 

situation where f is dependent on the merged entity 
1

1

i

j

j







  only. In this case, (4.6) becomes:  

 
   

( ) ( )i i

P P


  =  1 1 2 1
. . . . . 1 ,

i

i i

f P
 

  
 



 
    

 

,           (4.7)  
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where
1

: [0 ,1]f R  is continuous and negative-valued. 

In view of the relation 

 1

1




i

j

j
 ,           (4.8) 

this is same as:   

   
( ) ( )i i

P P


   















ii

i
Pg








 ,1

1     
   (4.9) 

Therefore, in this case, we can reformulate Axiom 4 as:  

Axiom 4  : For all 3k  , let 
( )i

 and 
( )i


 , ki 1 , 

0
  be as in Axiom 4 and 

0
 

i
. Then  

(4.9) holds for some is continuous and negative-valued function   Rg 1,0:
1

.
19

  

 Alternatively, Axiom 4  can also be motivated in the following way. As proposed in the 

discussion preceding Axiom 4,    
( ) ( )i i

P P


   can be assumed to be negatively proportional 

to 1 ,

i i

P
 

 

 
 

 

. Notice that in the transformation 
   ii


  , sizes of the the groups 

121
,....,,

i
EEE

 

remains unchanged. So, in calculating the above polarization difference one can 

ignore the sizes of these  1i
 
groups. (For example, consider the additive set up suggested in 

Chakravarty and Maharaj (2011a), where the polarization index P is assumed to have the 

structure: 

 P =  


k

i

iP

1

 ,                   (4.10),  

 
iP

  being the influence function of 
i

E . The influence functions of 
121

,....,,
i

EEE
 
in the 

aforesaid polarization difference cancel out each other). On the other hand, in course of this 

transformation, the group-sizes of 
i

E and
1i

E  vary, but their the sum remains unaltered (and 

                                                           
19

 It can be shown that this assumption leads to a violation of „globality‟ mentioned in Esteban and Ray (1994). 

However, this is a common drawback to all EPIs that are additive across their arguments. 
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equals to
i

 ). So, we posit that the constant of proportionality in this transformation depends 

exclusively on .
i

  This is precisely what Axiom 4   has to say.   

We now state our second result, which replaces Axiom 4 and Property 1c in the previous 

Theorem by Axiom 4  and Property 1 respectively. 

Theorem 4.2: The only EPI :P R   that satisfies Axioms 1-3, 4  , 5 and Property 1 is RQ. 

The following lemma will be necessary for proving Theorem  4.2. 

Lemma 4.2: An EPI :P R   satisfies Axioms 1-3, 4   and 5 if and only if it is of the form  

 R Q


  4  
2

1

1

k

i i

i

 



 +
1 2 3

1 2 3
1

i i i

i i i k

   

   

 ,                                   (4.11)  

where  0 , 3  . 

Remark 4.2: Notice that the terms  
2

1

1

k

i i

i

 



  and 
1 2 3

1 2 3
1

i i i

i i i k

  

   

 appearing in (4.10) give 

respectively positive multiples of the probability that out of 3 randomly selected persons, 2 will 

belong to a single group and the third to another and that all the three belong to three different 

groups. A perfect homogeneity in the population demands that all the three persons belong to the 

same ethnic group. Thus, the right hand side of (4.11), being a linear combination of the two 

probabilities, measures an extent of heterogeneity of the population and hence can reasonably be 

taken as an index of ethnic polarization. We define 


RQ  to be the ‘Generalized RQ-index of 

order  ’. 

Remark 4.3: It follows from the proof of Lemma 4.2 that the only EPI satisfying Axioms 2, 3, 

4  and 5 is of the form R Q


where R . Thus, given these axioms, Axiom 1 becomes necessary 

and sufficient for fixing the lower and upper bounds on   as 0 and 3 respectively. 

Proofs of Lemma 4.2 & Theorem 4.2: See Appendix. 

The next characterization of RQ is based on Property 1b. 
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Theorem 4.3: The only EPI :P R   that satisfies Axioms 1-3, 4  , 5 and Property 1b is RQ . 

Proof:  See Appendix. 

Finally, we show how Property 2 can be employed to characterize RQ . 

Theorem 4.4: The only EPI :P R   that satisfies Axioms 2, 3, 4  , 5 and Property 2 is RQ . 

Proof:  See Appendix. 

The next axiom, which is taken from Chakravarty and Maharaj (2011a), is specified in 

terms of population heterogeneity. Following arguments put forward by Horowitz (1985), 

Montalvo and Reynal Querol (2005, p. 797) argued that “there is less violence in …highly 

heterogeneous societies”. Now in a society consisting of k  ethnic groups 
1 2
, , ...,

k
E E E , 

heterogeneity will be maximum if all the 
i

E ‟s are of equal population share 1 k .  The index 

value  1 ,1 , . . . . ,1P k k k  should be quite small here. So, if k  is allowed to vary, then for larger 

values of k , size of 
i

E  will be even smaller and one can expect that polarization vanishes in the 

limit.  This motivates us to state  

Axiom 6:  1 ,1 , .. . . ,1 0P k k k  as k   . 

The following theorem can now be demonstrated. 

Theorem 4.5: The only EPI :P R   that satisfies Axioms 2, 3, 4  , 5 and 6 is RQ. 

Proof:  See Appendix. 

Since Theorems 4.1-4.5 axiomatically characterize the same polarization index using 

alternative sets of postulates, the following theorem can be stated: 

Theorem 4.6: Let :P R   be an EPI. Then the following statements are equivalent: 

(i) P satisfies Axioms 2-5 and Property 1c. 

(ii) P satisfies Axioms 1-3, 4  , 5 and Property 1. 

(iii) P satisfies Axioms 1-3, 4  , 5 and Property 1b.  

(iv) P satisfies Axioms 2, 3, 4  , 5 and Property 2. 

(v) P satisfies Axioms 2, 3, 4  , 5 and 6 
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(vi) P coincides with RQ given by (4.1).  

 

 The following corollary to Lemma 2 shows that in each of the Theorems 4.1-4.5 we can 

replace Axioms 2 and 3 by their stronger versions (that is, Axioms 2   and 3   respectively), 

where  

Axiom 2  : For all k ,   0P  if and only if 
k

  is some permutation of (1,0,…,0). 

Axiom 3  : For all k ,  P =1 if and only if 
k

  is some permutation of  0,,0,
2

1,
2

1  . 

Corollary 4.1: Let RP :  be an arbitrary EPI satisfying Axioms 1, 4   and the strong versions 

of Axioms 2 and 3 (Axioms 2   and 3   respectively) if and only if it is of the form  

   R Q

 4  

2

1

1

k

i i

i

 



 +
1 2 3

1 2 3
1

i i i

i i i k

   

   

 ,                                 

where )3,0[  is an arbitrary constant, k    and  1 2
, , . . . ,

k k
      are arbitrary,  

Proof:  See Appendix. 

 

4.4 Ethnic Polarization Quasi-orderings 

In Section 4.3 we have characterized RQ and its generalizations using alternative sets of 

axioms. However, all these indices may not rank two different ethnic distributions in the same 

way. It therefore becomes worthwhile to investigate whether two ethnic distributions can be 

ordered by a class of EPIs satisfying certain desirable properties. The first question we address 

along this line is: is there any possibility of uniform ranking of ethnic profiles by the family

 : 0 3R Q


  ? That is, we examine the possibility of identical ranking of ethnic profiles by 


RQ  for all values of  3,0 . 



96 

 

Definition 4.2: An ethnic distribution  
kk

  ,....,,
21

 is said to be at most as polarized 

as  
kk

  ,....,,
21

, what we write  
POL

, if we have,      PP   for all EPI 

:P R   satisfying Axioms 1-3, 4   and 5. 

The following result identifies an equivalent form of the quasi-ordering. An attractive 

feature of the result is that instead of looking at all values of  ,, 30    we can confine our 

attention to only two values of   viz. 0  and 3 . Thus, once specific directional 

inequalities involving 


RQ  for these two values of   are satisfied, we can be sure about the 

partial ordering of ethnic distributions using 
POL

 . 

Theorem 4.7:For arbitrary 
k

 ,  the following conditions are equivalent: 

 i  
POL

. 

 ii  (a)      RQRQ and (b)         
33

33 RQRQ , where 

 
1 2 3

1 2 3

3

1

i i i

i i i k

   

   

   . 

Proof:  See Appendix. 

Remark 4.4: The quasi-ordering 
POL

  is clearly transitive but not complete. To see this, 

consider two ethnic distributions 
1 1

, ,
2 2

 
 

 
 

 and
1 1 1

, ,
3 3 3

 
 
 

, where 0  is small. Then 

1 1
, ,

2 2
R Q  

 
 

 

1 1 1
, ,

3 3 3
R Q

 
  

 

; but 
3

1 1
, ,

2 2
R Q  

 
 

 

 .,,RQ 1
3

1

3

1

3

1

3









  

It is easy to see that the distribution  0,...,0,
2

1,
2

1m  [0 being repeated  2k  times 

for any pre-fixed 3k ] is a maximal element in 
k

  with respect to 
POL

  in the sense that there 

does not exist any other ethnic distribution 
k

  such that 
POL

m  . Similarly, one can 

verify that  0,...,0,,1  is a minimal element with respect to 
POL

 . 
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Condition  ii in Theorem 4.7 is not easily implementable. We therefore develop an 

alternative notion of quasi-ordering, which is easy to verify using a simple graphical device. For 

this purpose, in the rest of the section we assume that the given k  ethnic groups  
k

EEE , . . . ,,
21    

( 3k  ) are non-increasingly ordered with respect to their population sizes. We denote the set of 

all non-increasingly ordered ethnic profiles for k ethnic groups by 
*

k
 . Following Esteban and 

Ray (1994), we also assume that there is a „small number of significantly sized groups‟.
 

We begin by specifying the following property of an EPI. 

Property A: A rank-preserving population shift from
i

E  to 
j

E  (with 2 ij ) cannot increase 

polarization.  

The idea behind this property relies on the following observation of Esteban and Ray 

(2008b; p.175): “…. If the two groups are small enough, the equalization of population will” 

make IC lower. It is also seen that RQ satisfies Property A. [This follows from the simple fact 

that   32
1


ii

  as each one of
i

  and 
1i

  is at most 31 ; for otherwise 31
1
  which 

implies that   1
11


ii

 , a contradiction.] 

The next property is specified in terms of the population shift between the first two 

groups. 

PropertyB: A rank-preserving population shift from
1

E  to 
2

E cannot decrease polarization.  

The reasoning behind this postulate is simple. As is widely known in the literature, when 

the sizes of other groups are not significantly large, the ethnic polarization attains its maximum 

when sizes of the two largest groups come close to one another (Montalvo and Reynal Querol, 

2005; p. 798). Since we have assumed that there is „a small number of significantly sized 

groups‟, an equalization of the sizes of the two largest groups brings them closer so that 

polarization goes up. This again is supported by the Esteban and Ray (2008b, p.175) observation: 

“A transfer of population from a group to a smaller one increases IC if both groups are larger 

than 1 3 ”. It may also be noted that RQ obeys property B if   32
21

  . In particular, RQ 

satisfies it for 3k  .  
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Definition 4.3: For two ethnic distributions  
k

,.....,, 
21

 ,   *

21
,....,,

kk
  , we 

say that   is at most as polarized as   , what we denote as  
P , if for all EPI RP

k


*
:  

satisfying Axioms 1-3 and Properties A and B we have      PP . 

An example of an EPI satisfying Axioms 1-3 and Properties A and B is:  0 1 2
4P    . 

The following theorem gives some simple necessary conditions for  
P  to hold. 

Theorem 4.8: Let ,
*

k
 . A set of necessary conditions for  

P  to hold is given by: 

2 2
    and

2 2

3 3

2 2

l l

i i

i i

   

 

   
      

   
   for all 3 l k  .        (4.12) 

Proof: See Appendix. 

Remark 4.4: The above necessary conditions stated in terms of  1k inequalities involving 

population proportions of the two distributions are very easy to check. The last inequality implies 

that    
2121

  . However, these conditions are not sufficient for  
P . To see this, 

let  3.0,3.0,4.0 and  32.0,34.0,34.0ˆ  . Then the system of inequalities in (4.12) holds. But 

observe that 
2121

 ˆˆ
**
  so that for the EPI  

210
4  P ,     ˆPP

*

00
  and hence 

 ˆ
P

*

  does not hold. 

The following result gives an easily verifiable sufficient condition in terms of population 

concentration curve for 
P

  to hold. The population concentration curve of an ethnic distribution 

is a plot of the cumulative population shares against the cumulative number of groups, with 

groups ranked from the largest to the smallest. 

Theorem 4.9: For ,
*

k
 , a set of sufficient conditions for  

P  is given by:  

11
 

 and  


l

i

i

l

i

i

11

  for all  12  kl .      (4.13) 

What Theorem 4.9 says is the following. If the population share of the largest ethnic group under 

  is at least as large as that under    and the population concentration curve of 
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 1 2 3
, , . . . . . ,

k
     is dominated by (that is, does not lie above) that of , 

then  is regarded at least as polarized as  by all EPIs satisfying Axioms 1-3 and Properties   

 

 Fig. 4.1 (a sufficient condition for  the odering 
P


 
using population concentration curves) 

A and B. Since it is easy to check the inequality between the highest population groups of the 

distributions concerned and dominance between the required population concentration curves, 

condition (4.13) can be quickly implemented. Therefore, the sufficient condition for the quasi-

ordering  given in Definition 4.3 becomes a useful tool for ranking alternative ethnic 

distributions. 

Proof of Theorem 4.9: See Appendix. 

Remark 4.5: (a) Since , the last condition in (12) implies that . 

(b) To see that the set of conditions in (4.13) is not necessary, consider and

, for which condition (4.13) is violated but by definition, . 

 1 2 3
, , . . . . . ,

k
      

  
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 (c) Since a population concentration curve satisfies Zero-frequency- independence, we can 

extend Theorem 4.9 to the case where the number of ethnic groups is variable. The 

corresponding EPIs will, of course, have to satisfy Axioms 1-3 and Properties A and B.  

 (d) The quasi-ordering 
P

  defined on    is obviously transitive but is incomplete, as has been 

observed in the previous remark. Since a necessary condition for the quasi-ordering  
P  to 

hold is given by (4.12), incompleteness in the quasi-ordering arises because of violation of one 

or more of the  1k conditions. Given two ethnic distributions, there is no guarantee that these 

two conditions will be satisfied simultaneously and hence the quasi-ordering is incomplete. 

Given  ,
*

k
 , we have thus evolved a mechanism for verifying the ranking relation 

P
   . First, we have to check the conditions in (4.12). If one or more of them fails to hold, 

the possibility of 
P

    is ruled out. Once they are satisfied, we move to the conditions in 

(4.13). If they also hold, then the underlying profiles can be ranked by 
P

 . In case of violation of 

one or more of them, no specific conclusion can be drawn. 

The following proposition demonstrates a relationship between the two orderings 

considered in this section. 

Proposition 4.1:
POL

  does not imply 
P

  and P
  does not imply 

POL
 . 

Proof:  See Appendix.  

 

4.5 Conclusion 

An indicator of ethnic polarization is an indicator of the extent of „identification‟ and 

„alienation‟ of an ethnic population. Reynal-Querol (2002) introduced an index of ethnic 

polarization, which is referred to as the RQ index. Montalvo and Reynal-Querol (2005, 2008) 

investigated its properties in detail and explained its role empirically as an explanatory variable 

for incidence of civil wars. In this chapter we have developed two different ethnic polarization 

quasi-orderings that can rank alternative ethnic profiles unambiguously by all possible ethnic 
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polarization indices satisfying certain axioms. One of these quasi-orderings can be easily 

checked using the population concentration curve. In the process, we also characterize the RQ 

index and a generalized version of it. Our quasi-orderings and characterizations rely mostly on 

some axioms and propositions of polarization suggested by Montalvo and Reynal-Querol (2005, 

2008) and Esteban and Ray (1994, 1999, 2008b).  

4.6 Appendix 

Proof of Observation 4.1: If possible, let  0
2 3   , where 0   is small. In view of the 

above discussion, the distribution  2 3 2 ,1 3 2   should be less polarized than

 1 3 2 ,1 3 ,1 3 2   ), which is obtained from the former by a split of the larger group. But 

this contradicts Property 1. Hence, 
0

2 3  . 

Proof of Lemma 4.1: Suppose P is an EPI satisfying Axioms 2–5 and Property 1. By Axiom 5 

we have, 

  1,P
21

aa       1,,21,21
2

d ,    (4.14) 

where
1 2
,a a  are constants with 

2
0a  . By Axiom 3,   1 2 ,1 2 1P  . Putting 21  in (4.14) 

we get, 
1

1a  . Also, by Axiom 2,  1, 0 0P  . Putting 0  and using 
1

1a   in (4.14) we 

further get 
2

2a   . 

Substitution of 
1

1a   and 
2

2a    in (4.14) yield:  

       142111,
2

P .     (4.15) 

Consequently, (4.5) becomes:  

       
( ) ( )i i

P P


  =
 

 1 2 12

4
, , .... . ,

i

i

i

f
  

  





,               (4.16) 

whenever 
0i

  . 
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Now, let 3k  and  1 2 3
, ,     . Note that one of the sums  1 2

  ,  2 3
   and 

 3 1
   has to be at most

0
 , for, otherwise their sum, that is,  1 2 3

2      exceeds 
0

3 2 
 

(in view of Observation 1, 32
0
 ). This then gives  1 2 3

1     , which is a 

contradiction. So, without loss of generality we can assume that  2 3 0
    .  

For ,3k  equation (4.16) gives  1 2 3
, ,P      

 
 

2 3

1 2 3 12

2 3

4
, , 0P f

 
   

 

 



, 

which in view of zero frequency independence becomes 

  
 

 
 

12

1

212

321

1

14
, 




 fP




  

   1 1
4 1   +  2 1 2

1     1
g  ,                                    (4.17) 

where      
2

1 1 1
4 1g f     and 

1
0  . 

By symmetry we can replace the second expression in (4.17) by  2 2
4 1  +

 1 1 2
1     2

g  and rearrange terms in the resulting expression to get  

           1 1 2 2 1 2 1 2 2 1
4 1 1 1 g g                ,       (4.18)  

from which it follows that 

   1 2 1 2
4 1       =  1 2

1        1 2 2 1
g g    .      (4.19) 

Equation (4.19), on simplification, becomes 

    1 2 2 1
g g    =  1 2

4    (since  1 2
1   ), from which we get  

         1 2 2 1
4 4g g      .      (4.20)               

Equation (4.20) implies that 
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   1 2

1 2

4 4g g 

 

 
 ,        (4.21) 

whenever 
1 2
, (0 ,1)   ,  1 2

1    and 
2 1

  . 

Define : (0 ,1)h R  by   ( ) 4h p g p p  , where 0 1 .p  Then from (4.21) it 

follows that    1 2
h h  whenever 

1 2
, (0 ,1)   ,  1 2

1    and
2 1

  . Clearly,  

 ( ) 1 2h p h  ,                                             (4.22)            

whenever 0 1p   and  1 2p  <1, that is, whenever 0 1 2p   . If 1 2 1p  , then there 

exists  0 ,1 2   such that  1p   . So, by (4.20) we have, ( ) ( )h p h   [   1p   ]. 

But by (4.21),  ( ) 1 2h h  . Combining (4.20) and (4.21) we have,  ( ) 1 2h p h . Thus, in all 

cases,  ( ) 1 2h p h c  , a constant, whenever 0 1 .p   Then   4g p c p  , for some constant 

c, which implies that 

 ( ) 4g p c p  ,       (4.23) 

for some constant c, where 0 1p  .  By continuity of g , this holds for all [0 ,1]p  .  

From (4.15) we have,    
i

i

i
P  



14,
2

1

2

21
, where   

21
,  .  Using (4.22), it can 

be shown that  1 2 3
, ,P    = 4  

3

2

1

1
i i

i

 



 +
3 1 2 3

    , where 
3

R  and  1 2 3
, ,     . 

Next, let us consider the case 4k  . Let  1 2 3 4
, , ,      . Without loss of generality 

we can assume that  3 4 0
    . (Since given 32

0
 ,  3 4 0

     implies that 

      1 2 3 4 0 0
1 1            .) From (4.16) for 4k   , 

   0,,,
4321

 
i

 and 

4
  , we then have 

 1 2 3 4
, , ,P      
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=  
 

 
3 4

1 2 3 4 2 1 22

3 4

4
, , , 0 ,P f

 
     

 

 



 

 

 

=     
4

2

3 4 3 4

1

4 1 4 2 3
i i

i

     



    +  3 1 2 3 4
     +

 
 

3 4

2 1 22

1 2

4
,

1

f
 

 

  

 

=  
4

2

1

4 1
i i

i

 



     3 4 2 1 2 1 2
4 , 3 1g          3 1 2 3 4

      ,      (4.24) 

where  
 

 

2 1 2

2 1 2 2

1 2

,
,

1

f
g

 
 

 



 

. Equation (4.24), on rearrangement, becomes  

 1 2 3 4
, , ,P       

4

2

1

4 1
i i

i

 



  3 4 2 1 2
4 ,h     3 1 2 3 4

      ,     (4.25) 

with  2 1 2
,h        2 1 2 1 2

, 3 1g       . By symmetry we have,  3 4 2 1 2
4 ,h   

 3 1 2 3 4
      =  2 4 2 1 3

4 ,h     3 1 3 2 4
      =  2 3 2 1 4

4 ,h     3 1 4 2 3
      . 

The first two expressions of the above equation, after rearrangement and simplification give 

   2 1 2 3 1 2

1 2

4 ,h     

 

 
 = 

   2 1 3 3 1 3

1 3

4 ,h     

 

 
. 

Thus, 
   2 1 2 3 1 2

1 2

4 ,h     

 

 
 is independent of 

2
 . Similarly, dealing with the last two 

expressions we can conclude that 
   2 1 2 3 1 2

1 2

4 ,h     

 

 
 is independent of 

1
 . 
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Hence, 
   2 1 2 3 1 2

4

1 2

4 ,h     


 

 
 , a constant. Substituting the value of  

212
, h  in (4.25) 

we get,  1 2 3 4
, , ,P       

4

2

1

4 1
i i

i

 



 4 1 2 3 4
         3 1 2 3 4 3 4 1 2

             

       =  
4

2

1

4 1
i i

i

 



 +  
4

3

i i

i

S 



 .        (4.26)                           

To conclude the proof of the lemma, we use induction on k. So, let us assume that 

 1 2
, , . . . ,

k
P     4  

2

1

1

k

i i

i

 



 +  
3

k

i i

i

S 



 , for arbitrary  1 2
, , . . . ,

k
     . Consider 

 1 2 1
, , . . . , ,

k k
   


  . As before, without loss of generality, we can assume that 

 
01

 
kk

. Then 

 1 2 1
, , . . . , ,

k k
P    


  

 
 

1

1 2 1 1 2 12

1

4
, , . . . , , 0 , , . . . ,

k k

k k k k

k k

P f
 

      

 



 



 



 

=     
1

2

1 1

1

4 1 2 3

k

i i k k k k

i

     



 



 
    

 
 +  

1

3

k

i i

i

S 





 +  
1 2

1 2

3 1

1

i i k k

i i k

    


  

 +

 
1 2 3

1 2 3

4 1

1

i i i k k

i i i k

     


   

 +…..+  
1

1

1

k

k i k k

i

   







  +  1 1 2 1
, , . . . . ,

k k k k
g    

 
,   

where  
 

1 2

1 2
1 .... 1

...
l

l

l i i i

i i i k

S    

     

    for  3 1l k   . Simplifying the above equation we get, 

 1 2 1
, , . . . ,

k
P   


 4  

1

2

1

1

k

i i

i

 





 +  1 2 1

3

, , . . . ,

k

i i k

i

S   




 +  1 1 2 1
, , . . . . ,

k k k k
h    

 
,  

for some function  1 2 1
, , . . . . ,

k k
h   


. By symmetry  

 1 1 2 1
, , . . . . ,

k k k k
h    

 
=  1 2 1 1 1 1

, , ...., , , ..., , , ...,
i j k i i j j k

h        
   

   (4.27)        
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for all ji  . Hence, 
 1 2 1

1 2 1

, , . . . . ,

. . . .

k k

k

h   

  





= constant =
1k




, say.  Consequently, 

 1 2 1
, , . . . ,

k
P   


 4  

1

2

1

1

k

i i

i

 





 +  
1

1 2 1

3

, , . . . ,

k

i i k

i

S   







 , thereby proving our induction 

hypothesis.  

Proof of Theorem 4.1: Suppose :P R   satisfies Axioms 2-5 and Property 1c. First observe 

that Property 1c implies Property 1. Thus, all the conditions of Lemma 4.1 are met. So, P must 

be of the form (4.6) with arbitrary constants 
l

R  for 3 l k  . But by Property 1c, 

1 1 1 2 1
, , ,

3 3 3 3 3
P P
   

   
   

 so that
3

1 1 1 2 1 1
, , ,

3 3 3 3 3 2 7
R Q R Q 

   
    

   

 , which implies that 
3

0  . 

We complete the proof using induction on l . Suppose we have shown that 0
i

   for all 

i l . We shall show that 0
l

  . Consider the uniform distribution 
1 1 1

, , .. . . ,
l l l

 
 
 

, which, after the 

merger of last  1l   groups gives rise to the distribution 
1 1

,1
l l

 
 

 

. Property 1c then demands 

that 







 


















 ll
RQ

lll
S

lll
RQ

l

i

ii

1
1,

11
,...,

1
,

11
,...,

1
,

1

3

  , which in view of induction hypothesis 

becomes 
1 1 1 1 1 1
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Consequently, we must have 0
l

  , thereby proving our claim. Hence, by induction, 0
i

   for 

all   ,i ki 3 whence we catch hold of R Q . 

The fact that RQ satisfies Axioms 2-5 is demonstrated in the 'converse' part of the proof of 

Lemma 4.2 stated below. Satisfaction of Property 1c by RQ follows from Theorem 2 of  

Montalvo and Reynal Querol (2008) and (4.28).  
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Proof of Lemma 4.2 Suppose an EPI satisfies Axioms 1–5. In addition, if P satisfies Axiom 4  , 

then 
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for some function  2
: 0 ,1f R . 

Proceeding exactly in the same way as in the proof of Lemma 4.1 and applying condition 

(4.29) we get: 0
l

   for all 4l  . This, in turn, yields R Q


, as defined in (4.11). 

Now, to find the required bounds on   in (4.11), we note that for any fixed  2\k  , 

for the vector 
kk

kkk











1
,,

1
,

1
 ,  





































32
3

1
1

4

k

k
k

kk

P
k


  =

 
  

22
6

21
1

4

k

kk
k

k





 . By Axiom 1 we have,   10 
k

P  , which implies that

 
  

1

6

21
1

4
0

22





k

kk
k

k


. From the last inequality we get, 

 
0

6

2
4 




k
 and

 




6

2k

  















4

1

2

k

k
, from which it follows that 

 2

24






k
 and 

 

 1

26






k

k
 . This holds for 

all 3k . So, we must have, 0 3  . Therefore, we are through with one half of the proof of 

the lemma.  

Now, we proceed for a proof of the converse. It is trivial to verify that R Q
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Axioms 2, 3 and 5. Take 
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Hence Axiom  follows. 

To prove Axiom 1, observe that the non-negativity of  is quite clear. Next, we have 

to show that . Clearly, if and so in this case the proof follows directly 
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from (4.1). Then, for various values of , we employ the method of Lagrange Multipliers to 

find the extreme values for  at the interior of . Note that for a given

,  is an increasing function of . This implies that for all ,

. Therefore, to show that  for all , it is enough to show that .  

Case 1: k=3: Applying the method of Lagrange multipliers, the extreme points of  

in  turn out to be  and all those points which are permutations of . 

Now,  = 1 and  =  = 

 Hence, for all in the interior of , we have, . 

Next, we need to show that the value of  on the boundary  of  is less than or 

equal to 1. Observe that = . Then it is easily seen that 

  = 1. This shows that  in this case also. 

Case 2: k 4: Using the method of Lagrange multipliers again, extreme points of  are found 

as  and all those points which are permutations of 

.            

Now, observe that =  = 

 =  since, given ,  = 
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= , 

say. To see that  for all , let us now define a map  by =

= . Clearly, 

Also  and , where  and 

 denote respectively the first and second order derivatives of  . Therefore,  for all 

 , which indicates that  is increasing on . Also note that  = 876 0. 

Consequently, 0 for all . So,  is increasing on , from which it 

follows that  0 for all . This proves that the denominator of  is greater than its 

numerator. Thus,  for all . 

Hence, <1, where denotes the interior of . It 

follows that  , which is  =1, cannot be 

attained at any interior point of . But since  is compact and  is continuous on it, the 

maximum has to be attained at some point on the boundary  (Rudin, 1987, p. 89). It is easily 

seen that = . So finding  in  amounts to 

finding the maximum in . Repeating the same argument, this maximum can again be found 

only on the boundary . 

Descending thus, finally we come down to  wherein, by Case1, the maximum is 1. 

This establishes the fact that  satisfies Axiom 1. The proof of the lemma is now complete.  

Proof of Theorem 4.2: By Lemma 4.2, we know that  given by (4.10) is the only EPI that 

satisfies Axioms 1-3, , 5. We now show that the only value of , , for which  

satisfies Property 1 is  Note that
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 if and only if , where and .  

This should hold for all  satisfying  and . Let be fixed. 

Choosing , , we require . Now, letting , we 

demand that , which implies that . So the only possibility is , in which 

case  coincides with RQ. Theorem 1 of Montalvo and Reynal-Querol (2008) shows that RQ 

satisfies Property 1. With this we complete the proof of the theorem.  

Proof of Theorem 4.3: Lemma 4.2 shows that  given by (4.10) is the only EPI that satisfies 

Axioms 1-4. We now apply Property 1b to  with m=2 and proceed exactly in the same way 

as in the proof of Theorem 1 to conclude that . Theorem 2 of Montalvo and Reynal-Querol 

(2008) shows that RQ satisfies Property 1b. This completes the proof of the theorem.  

Proof of Theorem 4.4: In the proof of Lemma 4.2 it was shown that the only EPI satisfying 

Axioms 2-3, , 5 is of the form , where . (Axiom 1 was necessary and sufficient to 

prove that ) Let =  , where .  Then =

.  Now, let  satisfy Property 2. So, we require 

, that is,  Equivalently, we require =

 for all . Now, first let . Then choosing a 

sequence  in such that  we require,  for all  and hence we 

demand that . But as a matter of fact we find: 

, a contradiction. So, we necessarily have . But 

then  and the discriminant of E = = . Hence the minimum 
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value of E is , which is negative unless . Consequently, the only possibility is 

. This generates RQ. Theorem 3 of Montalvo and Reynal-Querol (2008) shows that the RQ 

index satisfies Property 2. This completes the proof of the theorem.  

Proof of Theorem 4.5: It has already been observed that RQ verifies Axioms 2, 3,  and 5. To 

check satisfaction of Axiom 6, simply note that as . 

Conversely, by Lemma 4.2, the only EPI  satisfying Axioms 1-3, , 5 is of the form 

(4.11). So, as . So, by Axiom 6, , 

which yields RQ. 

Proof of Corollary 4.1: Let  satisfy Axioms 1, ,  and . Obviously, then  

satisfies Axioms 1-3, . Hence by Lemma 2,  must be of the form , with . 

However, the value  is not admissible since in that case, = 1, 

contrary to Axiom 3. Thus, . 

To prove the converse, we have to verify that  verifies Axioms 1, - . In the 

proof of Lemma 4.2, we have already checked that  satisfies Axioms 1-3 and . So all that 

remains to be shown are „only if‟ parts of Axioms and . First observe that  can vanish 

only if , that is, only if  for some ,  and  for all 

, , which means that  is a permutation of . Hence, Axiom 

 holds. 

To prove validity of Axiom , consider first the case  Then  and so, 

from (4.1),  only if .  Next, let . As seen in the proof 
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of Lemma 4.2, for all in the interior of , we have,  and 

consequently, for all , <1= . 

Since  is closed and bounded, it is compact. Continuity of  on  ensures that it 

achieves its global maximum at some point inside (Rudin, 1987, p.89). However, it is evident 

from our discussion in the previous paragraph that this point is not in the interior of . 

Therefore, it must lie somewhere on the boundary of , which is given by = 

. So, it clearly follows that  =  = 1, 

the maximum being attained only at those points which are permutations of . 

Finally, the case can be dealt with in exactly the same way as in the proof of 

Lemma 4.1. All we have to do is to replace  by . The conclusion is: 

 will be attained only at those points, which are permutations 

of . This completes the proof of the corollary. 

Proof of Theorem 4.7: : By Lemma 4.2, the only EPI  satisfying Axioms 1-

3,  and 5 is of the form (10). Suppose  holds. Then  for all . 

Putting  and  in this inequality we get (a) and (b) respectively.  

: Assume (a) and (b). Given , let  so that . Then 

. This holds for all

Therefore, we have . 
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Proof of Theorem 4.8: Note that the EPIs , , defined by 

 and  for  satisfy Axioms 1-3 and 

Properties  and . Hence the result follows by the defining condition on . 

Proof of Theorem 4.9: Let  be an EPI satisfying Axioms 1-3 and Properties A and 

B. Also let,  

        (4.30) 

and          (4.31) 

for all . Note that (4.31) holds for all  since the last sum is simply unity in 

both the cases. Now, transform  into by a shift of mass 

 from to . This transformation is rank-preserving since 

, by (4.31) and 

, by (4.30). Hence, by Property B, this 

shift cannot decrease polarization; that is,  

.       (4.32) 

Again,  and  have the same mean and 

 (where  denotes the element of ) for all . Since

, it follows that  for all . Hence by a Theorem of Hardy et al. 

(1934; see Chakravarty, 2009, p. 6), it follows that  can be transformed into  by a 

sequence of rank-preserving population shifts from higher to lower groups. Clearly, these shifts 

keep  unchanged. Consequently by Property A,   cannot be more polarized than . So, 
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.     (4.33) 

(4.32) and (4.33) together yield: for all EPI  satisfying Properties A 

and B. Hence, .    

Proof of Proposition 4.1: Let  3.0,3.0,4.0  and  32.0,34.0,34.0 . We observe that

as well as  so that  
POL

. But, as we have seen 

already,  and  are not comparable with respect to . Thus,  does not imply . 

To demonstrate the other part of the proposition, consider and 

. Then, using condition (12), . However, a simple calculation shows 

that  and  so that  are not comparable with respect to 

. Hence  does notimply .  
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Chapter 5 

GENERALIZED GINI POLARIZATION INDICES FOR AN 

ORDINAL DIMENSION OF HUMAN WELL-BEING20 

5.1. Introduction 

This chapter is going to be a natural continuation of the previous two chapters. In Chapter 

3, we worked on income polarization while in Chapter 4 we discussed polarization in case of an 

ethnic data (more generally, in a categorical set up). Henceforth one may be interested in 

developing  the theory of polarization in an ordinal context. 

It is now well-known that human well-being is a multidimensional phenomenon (Sen, 

1985, 1987). Examples of such dimensions are income, wealth, health, literacy and so on.  While 

some of the dimensions correspond to ratio scale variables (e.g., income, wealth), dimensions 

like health and literacy are represented by ordinal variables.   

To recall from Chapter 1, considering the data on self-assessed health status, Apouey 

(2007) characterized a family of bipolarization indices in case of ordinal data. This chapter is 

going to be an extension of her work.  

The Gini index of income inequality is the most popular index of inequality. (For a 

discussion, see, among others, Sen, 1973; Blackorby and Donaldson, 1978; Lambert, 2001 and 

Chakravarty, 2009.) It has also been used in other income distribution-based measurement 

problems, including poverty (Sen, 1976; Takayama, 1979), deprivation (Yitzhaki, 1979; 

Kakwani, 1984; Chakravrty, 2009) and polarization (Wang and Tsui, 2000; Chakravarty and 

Majumder, 2001; Foster and Wolfson, 2010).  Generalized versions of the Gini index have been 

analyzed, among others, by Mehran (1976), Donaldson and Weymark (1980, 1983), Weymark 

(1981), Yaari (1987, 1988), Bossert (1990) and Ben Porath and Gilboa (1994). It is a natural 

question whether a family of generalized Gini indices of polarization can as well be constructed 

for an ordinally significant dimension.  

                                                           
20

 A major portion of this chapter has been published  in Chakravarty and Maharaj (2015).  
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The objective of this chapter is to make an attempt along this direction and suggest a 

family of the generalized Gini indices of polarization for an ordinal dimension using an 

axiomatic framework. An advantage of this family is that its members can be used to make inter-

population comparisons of polarization. While making such comparisons we assume that the 

number of ranked categories is the same across the populations. Some implications of the axioms 

are also investigated. Apart from analyzing the properties of the suggested family and 

characterizing it axiomatically, we develop a quasi-ordering induced by the family of indices for 

ranking two alternative distributions of the ordinal dimension. This type of investigation is quite 

common in the literature. For instance, Foster and Shorrocks (1988) studied the variable-line 

poverty orderings for the members of the Foster-Greer-Thorbecke (1984) family. Foster and Jin 

(1998) characterized similar orderings for the Dalton utility-gap poverty measures. Examples of 

indices that are included under this class are the Chakravarty (1983) and Hagenaars (1987) 

indices. Partial orderings obtained from specific indices may offer new insights into what a 

particular index is trying to measure. 

Generalized Gini indices of income inequality aggregate incomes of different individuals 

using some sequence of weights of real numbers. However, in the present case in order to 

formulate the axioms, following the literature, we start with the cumulative proportions of 

persons in different categories of the dimension under consideration. This forces us to use the 

distribution function instead of the population proportions. Although the aggregation procedures 

in the generalized Gini indices of income inequality and in our case are essentially the same, the 

restrictions imposed on the sequences turn out to be different. (See Section 5.4.) 

The chapter is organized as follows. In the next section we present the axioms for an 

index of polarization of a dimension with ordinal characteristic. Section 5.3 looks at some 

implications of the axioms. The generalized Gini indices are analyzed and characterized in 

Section 5.4, while the induced quasi-ordering is discussed in Section 5.5.   Finally, Section 5.6 

concludes. 
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5.2 Axioms for an Index of Polarization of a Dimension with Ordinal 

Significance 

Consider a population comprising n categories , ,...., , ranked in ascending order 

of some ordinal characteristic, where , the set of positive integers.   Let  denote the 

proportion of individuals in . Therefore, ,  and ,  being 

arbitrary. This generates a probability distribution , which we will refer to as 

'ordinal distribution'. We write for the set of all (ordered) discrete probability distributions of 

dimension  and Δ for theset of all probability distributions. Evidently, . The 

cumulative proportion of persons who are in category  and lower ones in the distribution  is 

defined as . We write for the median category so that for any , 

and .  

Note that corresponding to each , there is a vector of cumulative 

proportions , where 

 (and vice versa). Define . 

By a polarization index for an ordinal dimension (PIO), which we denote by  we mean 

a continuous real-valued function defined on , that is, .Thus, for any ,

 indicates the level of polarization associated with the ordinal distribution  or 

equivalently, with the distribution function . 

Intrinsic to the notion of polarization for an ordinally measurable dimension are Increased 

Spread (IS) and Increased Bipolarity (IB). The former is a monotonicity condition. It says that 

polarization should not decrease if there is a spread in the distribution away from the median 

category.  In other words, greater distancing between the categories below and not below the 
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median category should not make the distribution less polarized. Since such changes in 

proportions of individuals in categories below and not below the median category widen the 

distribution, polarization does not decrease. Apouey (2007) adapted the following form of IS 

from Allison and Foster (2004). 

 Increased Spread (IS): If the ordinal distributions  and  have the same number of 

categories (n) and the same median category m;  for all and  for all 

, with at least one category  such that  or one category  such that 

, then . 

Increased Bipolarity is a bunching or a clustering principle. In order to state this postulate 

formally, we need to define a transfer. 

Definition 5.1: Given the ordinal distribution , we say that the distribution 

 is obtained from   through a transfer if  for two given categories and  

such that   there are shifts of population proportion  from  to  and from  to 

, where  ,  and for all , 

, , . In terms of distribution functions,  for all 

and . 

The notion of transfer considered here, which is taken from Apouey (2007), says that 

there is a shift of a population mass  from a category  to the next higher category  and 

a shift of a population mass of the same size   from a category ,which is higher than , 

to the preceding category . If all the categories affected by the transfer are below (not 

below) the median category, we say the post-transfer distribution is obtained from the pre-

transfer one by a transfer below (not below) the median category. Thus, for the transfer to be 

below the median category we must have . Likewise, the transfer is not below the 

median category only if . In the case of health polarization if we take „good‟ as the 

median category then  a transfer  from „very poor‟ to „poor‟  and from „fair‟ to „poor‟ categories 

can be taken as a transfer below the median category. Formally,  
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Definition 5.2: Given any two distributions  and  

with the same median category m, we say that  is derived from  by transfers below the 

median category if and only if the highest category involved in the transfer is . 

Similarly, we say that there are transfers not below the median category if and only if the lowest 

category involved in the transfer is . 

Since transfers on the same side of the median category brings the individuals closer to 

each other, homogeneity among the individuals within the categories increases.  This increase in 

within-group homogeneity does not decrease polarization. This is what is demanded by 

Apouey‟s (2007) Increased Bipolarity axiom, which is a modified version of the corresponding 

Wang-Tsui (2000) axiom. 

Increased Bipolarity (IB): If the ordinal distributions  and  have the same median category 

m andif  is transformed into  by at least one transfer below the median category or at least 

one transfer not below the median category,  then .  

Apouey (2007) also suggested some additional postulates for a PIO. Before presenting 

these desiderata, we propose the following axiom which says that a PIO is bounded between zero 

and one.    

Boundedness (BO): For all , , .  

The next axiom which we refer to as weak homogeneity is Apouey‟s (2007) „Minimum 

Polarization‟. 

Weak Homogeneity (WH):  if  is of the form , where the first 1 

appears in the  place for some . 

This axiom says that the PIO achieves its minimum value, zero, if there is complete homogeneity 

in the sense that all the individuals belong to a particular categorical group identified by the 

ordinal dimension.  The following axiom is a stronger version of WH.  
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Strong Homogeneity (SH):  if and only if  is of the form .  

However, it is worth mentioning here that the definition of the minimum polarization is not 

uncontroversial. Cowell and Flachaire (2014) points out some limitations on the corresponding 

definition of minimum level of inequality. 

The next axiom, which we call „perfect bipolarity‟, is „Maximum Polarization‟ axiom of Apouey 

(2007).  

Perfect Bipolarity (PB): . 

According to this axiom, when the number of categories (n)  is kept fixed, the PIO is maximized 

if there is an equal splitting of the entire population into two extreme categories, the lowest and 

the top. We can also consider the following stronger form of PB as an axiom. 

Strong Bipolarity (SB):  if and only if . 

Perfect Bipolarity is sufficient for the PIO to take on the value 1. However, Strong Bipolarity 

gives us a necessary and sufficient condition showing that only in the perfect bipolar case the 

PIO can assume the value 1. It may be mentioned here that the inequality measures (for ordinally 

measurable variables) suggested by Reardon (2009) satisfy axioms resembling SH and PB.  In 

other words, they take the maximum value when half the population belongs to the poorest 

income category and the remaining half to the richest income category. As regards the other 

extreme, the minimum is attained by these measures only when all the individuals belong to the 

same category. 

5.3 Some Implications of the Axioms 

               In this section we look at certain implications of some of our axioms proposed in the 

earlier section. The first result shows that it is impossible to find a non-degenerate convex PIO 

that satisfies WH. Convexity of PIO demands that for any , 
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, where   is arbitrary. This means that 

the polarization of the distribution obtained by a smoothing of two distributions will not increase 

the value of the index, where smoothing refers to any convex combination of the two 

distributions. Thus, given a distribution, convexity of a PIO also indicates that we can reduce the 

level of polarization by smoothing it with another distribution with lower level of polarization 

than the initial distribution.  

Proposition 5.1: There does not exist anynon-degenerate convex PIO satisfying WH.  

Proof: See Appendix.  

The following results, which are easy to establish, drop out as corollaries to Proposition 5.1. 

Corollary 5.1: No non-degenerate convex PIO satisfies SH. 

Corollary 5.2: No convex PIO satisfies SH and SB simultaneously. 

The next proposition indicates an implication of IS. 

Proposition 5.2: Consider a PIO  satisfying IS. Let there be a shift of mass , 

sufficiently small, from a higher category to a lower one. (a) (i) If both the categories are below 

the median category the shift  increases polarization. (ii) The higher is the higher category; the 

greater is the amount of increase.  (b) (i)  If both the categories are not below the median 

category, then the shift decreases polarization. (ii) The lower is the lower category, the greater is 

the amount of reduction.   

Proof: See Appendix.  

The higher amount of increase (reduction) in polarization following from a shift of 

population mass from a higher category bears similarity with the diminishing transfers principle 

of Kolm (1976) and the positional transfers principle for inequality and poverty indices 

considered by  Mehran (1976) and Kakwani (1980) respectively.  The former requires reduction 

in inequality resulting from a progressive transfer between two persons with a given income 

difference by a higher amount, if the incomes are lower than when they are higher. On the other 

hand, the latter demands that a progressive transfer will reduce inequality by a larger quantity the 
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lower the income of the donor is, given that the number of individuals between the donor and the 

recipient is fixed. In the present case a shift of a population mass from a higher to a lower 

category increases /reduces polarization by a larger amount as the rank difference between the 

categories, given the rank of the higher category, increases. This finding bears a striking 

similarity with the relevant observation in Fusco and Silber (2014). Considering a population 

partitioned into ordered categories and unordered population subgroups, these authors suggested 

a principle of „swap‟ of individuals between ordered categories. The principle demands that  

“Swaps of individuals who are farther apart (as far as their income class is concerned) should 

have a greater impact on polarization than swaps of individuals who are closer (as far as their 

income class is concerned)”. Proposition 5.2 is in perfect agreement with the above result. 

The next proposition looks at an implication of IS and IB. 

Proposition 5.3: Consider a PIO  satisfying IS and IB. Let there be a transfer of mass

, sufficiently small, below the median category. Then the resulting increase in polarization 

is less than the increase in polarization due to a shift of the same amount of mass from the 

highest category to the corresponding lowest category involved in the transfer.  

Proof: See Appendix.  

The postulates IB and IS of a PIO are definitely not substitutes of each other.  The reason 

is that they are concerned with two different notions of alterations in the original distribution and 

the PIO looks at the changes in the level of polarization resulting from these distributional 

alterations. But as shown in Proposition 5.3, we can make an unambiguous comparison between 

the impacts of IS and IB in a specific situation and clearly the theorem indicates that in this 

particular case IS has a higher impact on polarization than IB. 

Remark 5.1:  In the case of transfer not below the median category, the shift of the population 

mass takes place from the lowest category to the highest category involved in the transfer and the 

impact of IS turns out to be higher than that of IB. 
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5.4 Generalized Gini Polarization Indices for an Ordinally Significant 

Dimension 

In this section we propose a generalized Gini index of polarization for an ordinally 

measurable dimension and investigate its properties, including a characterization.  Apouey 

(2007) argued that polarization can be measured in terms of the „distance between the observed 

situation‟   and „the distribution of maximum polarization‟ 

 (op. cit., p.882). The idea is to look at the distance from the symmetric 

bipolar distribution, which has the maximum polarization equal to unity. In view of this we can 

define a polarization index directly on F.  

We measure polarization in terms of the deviations of the components of the actual 

distribution from those of the perfectly homogeneous distribution   (where 

the first 1 comes in the  slot), which has the minimum polarization (equal to 0). [Note 

that Apouey (2007) assigned the minimum level of polarization to all distributions in which the 

entire population is clubbed into a single category. However, for our characterization exercise, 

we begin with the distribution where the corresponding category is the median category. This 

does not contradict Apouey‟s  axiom on minimum polarization as we don‟t insist that this is the 

only category with the minimum value.] In contrast, the polarization measure suggested by 

Apouey (2007) uses deviation of the observed situation from the situation of maximum 

polarization. However, it is evident that the central ideas underlying the two notions are 

essentially the same. 

 In view of the above consideration, structure of the polarization index can be of the 

form: 

    ,               (5.1)  
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where  is the weight assigned to category  and is actually dependent on the median 

category  of the distribution.  

For a non-decreasingly ordered vector of incomes , the generalized Gini 

index of inequality can be expressed as , where  is the mean income 

and the sequence of positive weights  is decreasing and satisfies  (see Weymark, 

1981). We can rewrite as , which is a linear normalized 

weighted sum of deviations of the actual distribution of incomes from the perfectly equal 

distribution where everyone enjoys the mean income. If , then  coincides 

with the Gini index.  

The generalized Gini structure is similar to (5.1) because the latter is the linear sum of 

weighted deviations between components of and . In other words, (5.1) uses a 

generalized Gini type aggregation and hence we can refer to it as a generalized Gini index of 

PIO.  

The family of generalized Gini polarization indices can be characterized as follows. 

Consider a shift of mass (sufficiently small) from category i to category . By IS we 

can expect a decrease in polarization if  while an increase results in case . In 

the subsequent axiom, we assume a simple specification for this change in polarization. 

Proportional Increment/ Decrement (PI): Any shift of mass (sufficiently small) from a 

category  to the next higher category  results in a change of polarization proportional to

 (and vice versa). Formally,         

,  (5.2)  
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where the constant  depends on as well as the median category .  

Under the assumption that the median category is given, this axiom specifies that the 

level of change in polarization resulting from a shift of a population mass of size  from a 

category  to the next higher category  depends on the amount of the shift and a constant 

dependent on the affected categories. Clearly if , then under IS, 

, whereas the opposite happens if . So, 

given IS, (5.2) can be rewritten as 

 

where  if  and  for . 

Since under the shift all categories other than i and  remain unaffected, PI assumes 

that these changes are independent of unaffected categories. While there can be many more 

general formulations of these changes, the linear specification offered by PI is simple and easy to 

understand. The assumption made for the polarization change under PI is similar in nature to the 

inequality change, as demonstrated by several inequality indices, under a rank preserving transfer 

of income from a person to a richer one.  For instance, for the squared coefficient of variation 

this change is directly proportional to the product of the size of the transfer and the income 

difference of the persons concerned.  

Theorem 5.1:   A PIO P satisfies WH, IS and PI if and only if P is given by (5.1), where 

 for all . 

Proof: See Appendix. 

Corollary 5.3: A generalized Gini PIO satisfying IS, PI and WH necessarily satisfies SH. 

Proof: See Appendix.  

We thus have 

Theorem 5.2: For a PIO  the following statements are equivalent: 
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(i) P satisfies IS, WH and PI. 

(ii) P satisfies IS, SH and PI. 

(iii)  P is the generalized Gini-index given by (5.1).  

In Theorem 5.1 IB was not imposed as an axiom. The following theorem identifies the 

properties of  for the generalized Gini PIO family, characterized in Theorem 5.1, to satisfy 

IB.  

Theorem 5.3: The generalized Gini PIO in (5.1) satisfies IB if and only if 

 for all  and  for all 

. 

Proof: See Appendix. 

Theorem 5.3 establishes that the generalized Gini PIO agrees with the Increased 

Bipolarity axiom if and only if the weight sequence  is increasing up to the category  

 and decreasing thereafter.  It may be worthwhile to compare Theorems 5.1 and 5.3 

with Proposition 3 of Wang and Tsui (2000) who suggested the use of  as 

an income polarization index, where the income distribution  is non-

decreasingly ordered,  is the median income associated with  and  is a sequence of 

real numbers. Clearly, this is a generalized Gini type index (see Weymark, 1981 and Bossert, 

1990). Wang and Tsui (2000) have demonstrated that  satisfies the Increased Spread 

criterion, that is, increasingness of  under a reduction (an increment) in any 

 if and only if  for all . The condition 

stipulated in our Theorem 5.1 is clearly different from this. We need unambiguous positivity of 

the sequence . Note also that while the incomes in  are non-decreasingly ordered, in the 

index (5.1) the terms  are non-decreasingly ordered up to the category , while with 

effect from the category , the terms s are non-increasingly ordered. Wang and 

Tsui (2000) also showed that  satisfies the Increased Bipolarity condition, that is,  
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increases under a transfer of income from a person to someone with a lower income, where the 

recipient and the donor of the transfer must be on the same side of the median category, if and 

only if the weights are decreasingly ordered. Clearly, this finding is different from what we 

showed in Theorem 5.3. 

The conditions on the weight sequence  stipulated in Theorems 5.1-5.3 do not make 

the generalized Gini PIO bounded. Wang and Tsui (2000) did not investigate boundedness 

property of their index. The following theorem identifies the necessary and sufficient condition 

for making the PIO bounded.  

Theorem 5.4: Given IS, the generalized Gini PIO in (5.1) satisfies BO if and only if 

. Further, equality holds if the PIO satisfies PB. 

Proof: See Appendix. 

The weights assigned in the index (5.1) are dependent on the category-ranks. However, 

they are independent of the population size. But for , they depend explicitly on the population 

size. Since the distribution-function is population replication invariant, given the number of 

categories, the generalized Gini family considered in (5.1) remains invariant under replication of 

population. Hence, this index can be employed for making cross-population comparison of 

ordinal polarization when the numbers of categories across the populations are the same and 

ranked in the same way. However, exact replication of the population does not leave the value of   

 unchanged and hence, in general, this index is unsuitable for inter-population comparison of 

polarization. This is another major difference between the two families. 

 An example of the sequence  that satisfies the conditions identified in 

Theorems 5.1-5.3 is  

       (5.3) 
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This weighting scheme is in fact the Gini weighting scheme when incomes are ordered 

respectively non-increasingly and non-decreasingly. 

            We now relate our index with Apouey‟s index, which is defined as  

 ,       (5.4) 

where  is a parameter that reflects the importance given to the median category. It is 

however not clear how a unique value of  can be chosen. This index satisfies the axioms IS, 

SB, IB, BO and WH. However, Apouey (2007) did not look for any polarization quasi-ordering 

that becomes consistent with this index. In the next section, we look at a quasi-ordering that 

shows consistency with our index.  

5.5 A Polarization Quasi-Ordering 

In this section we would like to develop a quasi-ordering that becomes helpful in ranking 

two alternative distributions of an ordinally significant dimension using indices from the 

generalized Gini family satisfying the basic properties such as IS, IB and BO. More precisely, we 

wish to identify some necessary and sufficient conditions which are equivalent to the following: 

Definition 5.3: For two distributions F and G having the same median category (m),  we say that 

 if  for all generalized Gini PIO of the form (5.1) satisfying IS, IB and 

BO. 

The following theorem can now be stated. 

Theorem 5.5:  Fix . For two distributions F and G having the same median category m, 

the following conditions are equivalent:  

(i) .  

 (ii) , ,….., ;        (5.5) 

   







1

1 2

1

1

2
1

n

c

c
F

n
FP





0

GF
GG

PIO
    P F P G

Nn 

GF
GG

PIO


1 1m m
F G

 


1 2 1 2m m m m
F F G G

   
  

1 1

1 1

m m

i i

i i

F G

 

 

 



129 

 

, ,….., .          (5.6) 

Proof: See Appendix.  

Condition (ii) of Theorem 5.5 involves  inequalities using sums of cumulative 

population proportions at different categories under the two distributions and they are very easy 

to check. The ordering identified in Theorem 5.5 is a quasi-ordering – it is transitive, but not 

complete. If one or more of the inequalities in (ii), on the either side of the median category, is 

violated, then the two distributions cannot be ordered. Given the ordered categories, the set of 

generalized Gini indices, where each member of the set corresponds to a particular weight 

sequence and the weights satisfy the conditions identified in Theorems 5.1-5.3, is uncountable. 

Our quasi-ordering is consistent with all members of the set. Thus, our quasi-ordering covers a 

large class of indices. Because of independence of the weights on the population size, with a 

given number of categories, we can rank two distributions over differing population sizes using 

this quasi-relation.  

 

5.6 Concluding Remarks 

          We began by assuming that a polarization index for a dimension of human well-being 

with ordinal significance can be defined as a weighted sum of absolute deviations of the 

components of the observed distribution from those of the distribution that generates minimum 

polarization. We refer to this as the generalized Gini family of polarization indices for an 

ordinally measurable dimension.  It is proven that the weights can take on any possible values 

consistent with the axioms Increased Spread, Increased Bipolarity and Boundedness. We also 

develop an axiomatic characterization of the family. A quasi-ordering for ranking two alternative 

distributions of the ordinal dimension for generalized family of indices is investigated. The 

partial ordering can be easily implemented by checking some elementary inequalities.  
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5.7 Appendix 

Proof of Proposition 5.1:  If possible, let  be one such PIO. Then, by WH,

, where , the first1 being in the slot, . Now, for 

any  we have, Since   is convex, by Jensen‟s inequality 

(Marshall and Olkin, 1979 p. 454), we have,  Hence, 

 This proves that P is necessarily degenerate. 

Proof of Proposition 5.2: (a) (i) Consider . Let  be 

obtained from  by a shift of mass , sufficiently small, from category  to category , 

where , m being the median category. So,  for all and , 

. Then  for all  and  for all other values of l. So,  has 

a greater spread than . Consequently, by IS,  is more polarized than . 

To prove the next part, consider a shift of the same mass , sufficiently small, from 

category  to category , where . Let  be the new 

distribution. Then  for all and , . Then  for 

all  and  for all other values of l. So,  has a greater spread than . As a 

result, by IS,  is more polarized than . Hence, the result follows. Proof of part (b) of the 

proposition is similar to that of part (a).  

Proof of Proposition 5.3: Let . A transfer of mass  below the 

median category generates 

from .  By IB, 
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. Also, let . Then we 

have to show that        

FPFPFPFP
iiii
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 ˆ,1ˆ,1  , that is,    iiii

FPFP
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


 . Clearly, 

 is obtained from  by two shifts, each of mass : first from category   to category 

 and  then from category  to category . So, by part (a) (i) of Proposition 5.2, 

 This proves the proposition.  

Proof of Theorem 5.1: Suppose P satisfies WH, IS and PI.  

For any distribution  with median category   we have, 

for all   and  for all . 

Since both the distributions  (where comes at the  

position) and have category  as their median category, by IS we 

have, 

             (5.7) 

with equality only if  

Then PI implies that 

  ,     (5.8) 

where  is a constant (see the discussion in the paragraph preceding to 

Theorem 5.1).  

Hence, by WH it follows that  
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Next we observe that both the distributions  and 

 have category  as their median category so that by another 

application of  IS we have, 

,      (5.10) 

with equality only if  

Therefore, by PI, 
 

,       (5.11)       
 

for some constant . 

Combining (5.11) with (5.9) we get 

    (5.12) 

By induction it follows that   

     (5.13) 

for some . 

 Now under a shift of mass  from the  category of the distribution 

to the next category we arrive at the distribution for which the cumulative 

proportion at the category is . Then the resulting distribution is 

, which has the same median category as the previous one. By IS, we 

have an increment of polarization and consequently, PI implies that 
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           (5.14) 
 

for some Hence, by (5.13) and (5.14) we have,   

 

      (5.15) 

(see again the discussion in the paragraph preceding to Theorem 5.1). 

Repeating the process, that is, by effecting a shift of mass  from the  

category to the category we get   

        (5.16) 

for some  

Continuing the process analogously times we deduce,  

     (5.17) 

for some  Substituting  by in the above 

equation we finally get, 
 

 

where for This proves necessity part of the theorem. Converse is easy 

to check. 
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Proof of Corollary 5.3: The proof is immediate, given Theorem 5.1. For,   

if and only if  for all and for all This is the case if and 

only if the underlying distribution is . 

Proof of Theorem 5.3: Suppose P satisfies IB. Consider shifts of a sufficiently small mass 

 from the  category to the and from the  to the , where 

 and look at  with  for all  and 

,  . Then it is easy to see that 

. 

 By IB it is demanded that , which implies that . This is 

true for all .  

To check validity of the inequality when , we have to consider a transfer 

of a sufficiently small mass  from the  category to the and from 

the  (below the median individual, an individual in the median category) to the

. The new distribution has  for all  and

, . The rest of the proof is quite similar to the non-

extremal case. Hence,  for all . Similarly, considering 

transfer on the other side of the median category we conclude that .  

To check the converse, consider shifts of a sufficiently small mass  from the  

category to the and from the  to the , where and .  

For  we have,  for all and , . It then 

clearly follows that  
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, since . Thus, IB holds for 

a transfer below the median category. A similar calculation shows the same for a transfer above 

the median category. This completes the proof. 

Proof of Theorem 5.4: By Theorem 5.1, satisfaction of IS forces:  for all . 

So, by definition,  for all F. Suppose

 for all F. Then considering the 

distribution F for which  for all  (where  is sufficiently small) and 

 for all  we have, . 

Now, letting  it follows that  

       (5.18) 

Conversely, if (5.18) holds, then we claim that  for all F. To prove this, note that 

, for  and  for  so that  for all 

Consequently, , by 

(5.18). The remaining part of the theorem is easy to check.  
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Proof of Theorem 5.5: : Suppose (i) holds. Then for all sequences  such that

for all i, and  for all  and  for all  we require: 

, that is, 

for all satisfying the above set of conditions. Take , for  small 

enough so that . This gives 

. Since and , it follows that 

 so that . 

Now, letting  we get: . 

To establish the next condition, simply take , , 

. Apply the same logic and get the result. Thus, gradually we get all the 

conditions for movement below the median category. Proof of the other set of conditions is 

analogous. 

  Assume (ii). Then for any generalized Gini PIO of the form (5.1) we have, 

 

. 

Now using the given set of conditions on ‟s and (5.5)-(5.6), we get, 

 which in turn implies . Since the 

generalized Gini PIO P is arbitrary, . 
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Chapter 6 
 

CONTEST SUCCESS FUNCTIONS: SOME NEW PROPOSALS21  

 

6.1 Introduction 

 

Closely related to the notion of polarization is the theory of contests. The connection can 

be traced back to Esteban and Ray (1999), wherein putting forth a behavioral model of conflict, 

conflict has been presented as a contest game. In this concluding chapter, we try to make a 

rigorous study on the structural properties of Contest Success Function (CSF), which specifies a 

contestant‟s probability of winning the contest and obtaining a prize.  

As we mentioned in Chapter 1, Skaperdas (1996) characterized this probability for any 

contestant as the ratio between the level of effective investment made by the contestant and the 

sum of effective investments across all the contestants. Using this basic structure, Skaperdas 

(1996) also developed axiomatic characterizations of the Tullock (1980)-Hirschleifer (1989) 

functional forms of CSFs. 

The basic structure of Skaperdas (1996) points out how to derive general CSFs that 

satisfy five basic axioms, namely, Efficiency, Monotonicity, Anonymity, Consistency and 

Independence of Outsiders‟ Efforts (see Section 6.2). However, without invoking any further 

condition characterizations of the general consistent class of contest success functions will not 

yield any specific form of contest success function.Skaperdas (1996) invokes two alternative 

axioms of invariance. The first axiom, the scale invariance postulate, demands that an equi-

proportionate change in the efforts of all the agents will keep the winning probabilities 

unchanged. In contrast, the second axiom, which is known as the translation invariance postulate, 

requires invariance of winning probabilities under equal absolute changes in the efforts of all the 

agents. The underlying effective investment functions turn out to be of power function and logit 

function type respectively. 

                                                           
21

 A major portion of this chapter is available at Chakravarty and Maharaj (2014).  
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A natural generalization of scale and translation invariance axioms is an intermediate 

condition,which stipulates that a convex mixture of an equi-proportionate change and an equal 

absolute change in the efforts should keep winning probabilities unchanged. (See Section 6.2 for 

more discussion.)  One objective of this chapter is to characterize the entire class of CSFs that 

satisfies this generalized invariance concept. It is explicitly shown that the Tullock and 

Hirschleifer functional forms characterized by Skaperdas (1996) become particular cases of the 

CSF that fulfils intermediate equivalence. 

We then analyze the likelihood of occurrence of Nash equilibrium for the CSF derived 

using this generalized invariance concept. It is known that the Tullock CSF has Nash equilibrium 

in pure strategies and the Hirschleifer CSF has no Nash equilibrium in pure strategies. We 

demonstrate that the CSF satisfying the generalized invariance axiom has a unique Nash 

equilibrium in pure strategies and this equilibrium can as well be a corner solution in a pure 

intermediate situation, which coincides neither with the relative nor with the absolute invariance 

case. It may be noted that the existence of a Nash equilibrium as a corner solution is not possible 

for the Tullock CSF.  

Given two contests CI and CII, investors may be interested in ranking them in terms of 

their probabilities of winning. This is a general ordinal postulate. However, in order to pin down 

some specific functional forms of CSFs, one needs to impose some value judgement postulate.  

In fact, in the last few years attempts have been made to provide foundations of commonly used 

CSFs.
22

 One such postulate that ensures ordinal property of CSFs is the scale consistency axiom, 

which says that if all the agents are participating in two contests and for some agents the 

probabilities of winning one contest are less than or equal to that of winning the other, then an 

equi-proportionate change in the efforts of the agents in both contests will not alter the agents‟ 

ordering of chances of winning the contests. To understand this, suppose the investments are 

measured in money units, say euro. Then suppose some individuals‟ chances of winning CI are 

more than that of CII. Now, if investments are converted into dollars from euro, the inequality 

between chances of winning CI and CII should not alter. Scale consistency demands this 

                                                           
22

See the survey papers referred to in footnote 1.Some authors have also attempted to develop econometric 

estimation of several CSFs.  (See Jia and Skaperdas, 2012 and Jia, Skaperdas and Vaidya, 2013 for detailed 

discussions.) 
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condition. Note that since the sum of probabilities of winning a contest across the agents is one if 

for some agents the probabilities of winning one contest over another are lower, then there will 

be at least one agent for whom the reverse inequality for probabilities of winning the contests 

will hold.  CSFs satisfying scale invariance are definitely scale consistent.  

Likewise, we can have a translation consistency axiom, which specifies that inequality 

between winning probabilities for two contestants should remain invariant under equal absolute 

changes in all the efforts. Translation consistency implies translation invariance. However, as we 

will demonstrate, if the number of contestants is only 2, there can be CSFs that satisfy scale 

(translation) consistency but not scale (translation) invariance.  

A second objective of the chapter is to axiomatize the classes of CSFs that are scale and 

translation consistent respectively. It is fairly interesting to observe that if the number of 

contestants is greater than 2, the Tullock and the Hirschleifer CSFs turn out to be the only CSFs 

that verify scale and translation consistency axioms respectively. Thus, both the Tullock and the 

Hirschleifer CSFs can be supported by ordinal axioms. This is another attractive feature of our 

chapterer. 

Finally, we define an intermediate consistency condition, which may be viewed as the 

ordinal counterpart of intermediate invariance. Alternatively, it can be seen as a convex mixture 

of translation consistency and scale consistency. We demonstrate that if the number of 

contestants is greater than 2, the only class of intermediate consistent CSFs is necessarily 

intermediate invariant.  

 

6.2 The Formal Framework 
 

Let be a set of agents participating in a contest and let stand for effort 

or investment of agent  in the contest. We denote the vector of investments 

by , where  is the fold Cartesian product of .The success of any 

contestant is probabilistic. For any , each contestant ‟s probability of winning the 

contest is denoted by . Evidently, The non-negative function p is called 

the Contest Success Function (CSF).  

The following axioms for a CSF have been suggested by Skaperdas (1996). 
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(A1) (Efficiency)  and for all , if then  

(A2 (Monotonicity)  is strictly increasing in  and strictly decreasing in for all . 

(A3) (Anonymity) For any permutation , . 

(A4) (Consistency) For all with at least two elements, the probability of success of agent 

in a contest among the members of is ; provided that there is at 

least one  such that .  

(A5) (Independence of Outsiders‟ Efforts)  is independent of the efforts of the players not 

included in the subset or  can be written as , where . 

(A ) for all and for all , provided that 

there is with ,where is strictly increasing in its argument.  

(A1) states that the sum of winning probabilities across the participants in a contest is 1 

and if some participant‟s outlay is positive he has a positive chance of winning the contest. (A2) 

says that a participant‟s probability of success is increasing in his own effort but decreasing in 

the efforts of the other participants. According to (A3), the probability of success remains 

invariant under any reordering of the participants. This anonymity condition demands that any 

characteristic other than individual outlays is irrelevant to the determination of success 

probabilities.  The consistency condition (A4) says that for any subgroup of participants, the 

probabilities of success of the members of the subgroup are the conditional probabilities obtained 

by restricting the original probability distribution to the subgroup. For (A4) to be well-defined, it 

is implicitly assumed, under (A1), that , where  is the coordinated vector of ones. 

Otherwise the denominator on the right hand side of may vanish. (A5) means that for any 

subgroup of participants, the success probabilities are independent of the outlays of the 

participants who are not members of the subgroup. Finally, (A ) provides a particular 

specification of the winning probabilities using a positive valued strictly increasing function of 
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efforts. We can refer to as the effective investment made by contestant . Strict 

increasingness of  reflects the view that an increase in the actual investment strictly increases 

effective investment. Skaperdas (1996) demonstrated that (A1)-(A5) hold simultaneously if and 

only if the CSF is of the form specified in (A ). Since our characterizations employ the basic 

axioms (A1)-(A5), we will deal with the general form given by (A ). 

Note that the expression of  given by (A ) is undefined at all those points where 

.          (6.1) 

By strict increasingnessof it follows that whenever . Thus, (6.1) 

is an impossibility if there is such that . Moreover, given the structure of the 

function , will be defined and continuous everywhere on . So, if 

, then the domain of the CSF defined in Skaperdas (1996) excludes the origin.  

To get rid of the problem of definition at the origin, Corchon (2007) suggests the use of 

the following functional form of the CSF:   

       (6.2) 

The function is assumed to obey the following properties:  

 i) is twice continuously differentiable in . 

 ii) is concave. 

 iii) is strictly increasing. 

 iv) and . 

 v) is bounded for all . 

  The functional form (6.2) along with properties (i) – (v) will be required in the sequel in 

our quest for the existence of a Nash equilibrium in a particular situation.     
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As stated in the introduction, some additional axiom(s) have to be invoked in order to 

identify specific functional forms of CSFs. Skaperdas (1996) imposed the following axioms: 

(A6) (Scale invariance) for all     and for all   . 

(A7) (Translation invariance) , where  is the coordinated vector of ones 

and  is a scalar such that        for all    . 

The scale invariance axiom (A6) is a homogeneity condition, which says that 

proportional changes in the efforts of all the contestants do not change the winning probabilities. 

In contrast, (A7) is a translation invariance axiom, which demands that winning probabilities 

remain unchanged when all the efforts are augmented or diminished by the same absolute 

quantity. 

It has been shown in Skaperdas (1996) that a CSF defined (and continuous) on 

satisfies (A1) – (A6) if and only if it is of the power function type, that is, of 

the form , where  is a constant. This is the Tullock(1980) form of CSF. It 

has a Nash equilibrium in pure strategies for . The particular case was considered 

by Esteban and Ray (2011) in a behavioural model of conflict that provides a link between 

conflict, inequality and polarization (see also Chakravarty, 2015). On the other hand, as 

Skaperdas (1996) established, the logit function, that is,  is the only continuous 

CSF that satisfies (A1) – (A5) and (A7), where   is a constant. This Hirschleifer (1989) 

CSF has no Nash equilibrium in pure strategies. (A systematic comparison of the properties of 

these two functional forms is available in Hirschleifer (1989).) It is easy to verify that the only 

CSF that satisfies (A6) and (A7) is the constant function . But constancy of a CSF is 

ruled out by the assumption that  is strictly increasing in and is strictly decreasing in 

for all .  
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However, adoption of either (A6) or (A7) reflects a particular notion of value judgment. 

Investors may not be unanimous in their choice between these two invariance notions. If we 

replace  by an inequality index and  by the income distribution in an person society, 

then these two invariance concepts are referred to as rightist and leftist notions of inequality 

invariance (Kolm, 1976). In fact, experimental questionnaire studies provide ample evidence for 

a middle position between these two views (Amiel and Cowell, 1992).  

In the current context, the following represents a diversity of views concerning invariance 

of CSFs:  

(A8)          ,                                            

where , , is a parameter which reflects a contestant‟s view on winning probability 

equivalence,  c is a scalar such that     
nn

ycy  ,011   and , the n-coordinated vector 

of ones, is expressed in the unit of measurement of efforts, so that 

becomes well defined. The scale and translation invariance criteria given by (A6) and (A7) 

emerge as polar cases of the intermediate notion (A8) when  takes on the values 1 and 0 

respectively. As the value of  increases (decreases) to one (zero) the contestant becomes more 

concerned about scale (translation) invariance
23

. 

The following theorem isolates the CSF that satisfies (A8). We first identify the CSF for 

the parametric range . The two extreme cases will be discussed later. We make the 

following assumption at the outset. 

Assumption (A): In (A ), we assume that and  is continuously differentiable on 

with .          

Theorem 6.1: Assume that the CSF meets A. Then it satisfies axioms (A ) and (A8) if and only 

if it is of the following form 

                                                           
23

In the context of income inequality measurement this axiom is the Bossert-Pfingsten (1990) intermediate 

inequality equivalence axiom. See also Chakravarty  (2015) for a recent discussion. 
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     ,        (6.3)       

where  is a constant  and . 

Proof: See Appendix. 

As ,  in (6.3) approaches , the Hirshleifer CSF associated with (A7) 

(given that  ). (Here for evaluating the limit we use the fact that  .) On other 

hand, for ,   given by (6.3) coincides with the Tullock (1980) CSF corresponding to 

(A6)  (given that ). Thus,  in (6.3) may be regarded as a generalization of scale and 

translation  invariant  CSFs. 

It will now be worthwhile to investigate whether this CSF supports a Nash equilibrium in 

efforts.  Let be the value of the prize obtained by the i
th

 contestant and 

be the cost attributed by  to his action . Following Corchon (2007), we make the 

following assumptions: 

a) All agents have the same cost function C, that is, for all i.  

b) The common functional form of  is the following:  

where  

c)     000  Cfa  and there exists such that for all we have,

. 

It may be noted that there are no well-founded criteria to guide the choice of a cost 

function here
24

. The quantity in (b) may be regarded as fixed cost. We, therefore, develop the 

analysis using the above common cost function.   

                                                           
24

This discussion does not apply to characterizations of CSFs where groups are contestants, since there is no relation 

between individual effort and group performance (see Münster, 2009). 
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Following Proposition 3.1 of Corchon (2007), we maintain that there is a Nash equilibrium if 

and only if the equation  

        (6.4) 

has a solution.  

In our case, by (6.19) (in appendix) we have, 

     .        (6.5)  

Differentiating (6.19) twice with respect to we get, 

         (6.6) 

and 

 .       (6.7) 

 

From (6.6) it is immediate that  for all . Also, for  we observe 

that for all  so that f  is concave. Finally, it is clear that 

.         (6.8) 

Denoting LHS of (6.4) by  we see that    

.        (6.9) 

In view of (6.7) and the assumption that for sufficiently large , 

 becomes –ve as .So, there exists a solution to (6.4), which in turn implies that 

there is a Nash equilibrium, if . Differentiation of the left hand side of (6.4) shows that  

is strictly decreasing so that the solution to (6.4), that is, the Nash equilibrium is unique. We 

summarize these findings as follows: 

Proposition 6.1: Under the assumptions (a) – (c) stated above, the contest game with CSF given 

by equation (6.3) has a unique Nash equilibrium. 

Note that in (6.3) for  we have, .  Proposition 6.1 shows that in such a 

situation, there is a possibility of existence of a corner solution. Clearly, this is not the case with 
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the power function , since in this case we have, for . It is worth 

mentioning here that all the properties of the function specified in Corchon (2007) are satisfied 

whenever . By Proposition 3.1 of Corchon (2007) , this clearly establishes that a unique 

Nash equilibrium exists.  However, for the logit function we have, 

for all . Thus, is never concave and hence from the proof of 

Proposition 3.1 of Corchon (2007) it follows that there is no Nash equilibrium.  

In view of the above discussion we can now state the following: 

Remark 6.1: In a pure intermediate situation, that is, when , Nash equilibrium may 

emerge as a corner solution. 

Note that the scale invariance condition (A6) can very well be relaxed to the following 

more general ordinal property. 

(A9) Scale Consistency: For if for some ,  holds, then

 for all    .  

Evidently, scale invariance implies scale consistency but the converse is not true. For 

example, consider the CSF for Then for 

any . However, 
 
implies , which gives, 

, that is, for any . Thus, if we restrict ourselves to the 

dimension , then is scale consistent, but not scale invariant.  

Note that satisfaction of  for all     implies fulfilment of

. Note also that if  holds, then there is at least one contestant

such that  holds. The reason for this is that . (A9) is an 

ordinal property in the sense that the inequality remains invariant under any ordinal 
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transformation of s. Furthermore, s given by , , are 

probabilities
25

.  

The next theorem demonstrates that the CSF of the power function type is the only one 

that fulfils (A9). For this characterization, we omit the origin from the domain of the CSF.  

 

Theorem 6.2: Assume that the number of contestants is greater than 2 and the function is 

continuously differentiable in(   ). Then the CSF satisfies axioms (A1) – (A5) and (A9) if and 

only if it is of the Tullock (1980) form given by 

     ,       (6.10)                                

where  is a constant,  
 

Proof: See Appendix. 

Remark 6.2: However, it is easy to check that in dimension , both the forms of 

(specified in (6.10)) satisfy (A9). Thus, in this case we get a CSF distinct from the Tullock form. 

 

Combining Theorem 2 of Skaperdas (1996) and Theorem 6.2 of this chapter we arrive at 

the following result:  

Theorem 6.3: Assume that the number of contestants is greater than 2. Then the following 

statements are equivalent:  

(i) The CSF satisfies axioms (A1) – (A6).  

(ii) The CSF satisfies axioms (A1) – (A5) and (A9). 

(iii) The CSF is of the Tullock form given by (6.10). 

 

We next consider the following ordinal counterpart to (A7):   

 

                                                           
25

(A9) becomes Zheng‟s (2007) unit consistency axiom if we replace  by an inequality index, y and x by income 

distributions in two n-person societies and the weak inequality  by the strict inequality > in (see also Chakravarty 

2015).  
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(A10) Translation Consistency: For , if for some ,  holds, then 

  .    /   .    / , where  is the n-coordinated vector of ones and  is a scalar 

such that        for all    . 

Evidently, (A7) is sufficient but not necessary for (A10).  Like (A9), (A10) is also an ordinal 

property. 

Remark 6.3: Fix  and define  

. Then for all we 

have, . Also, implies: for all and  for all . 

From this it follows that and . This observation, 

however, implies neither axiom (A9) nor (A10). For, never implies that .  

 

In the following theorem we characterize the entire class of CSFs that are translation consistent.   

Theorem 6.4: Assume that the number of contestants is greater than 2 and the function meets 

assumption (A)  Then the CSF satisfies axioms (A ) and (A10) if and only if it is of the 

Hirschleifer (1989) form given by: 

     ,     (6.11) 

where  is a positive constant. 

  

Proof: See Appendix. 

Remark 6.4: However, it is easy to check that for , both the forms of  (mentioned 

in (6.48)) satisfy (A10). Thus, in this case we get a CSF distinct from the Hirschleifer form. 

 

Theorem 3 of Skaperdas (1996) and Theorem 6.4 of this chapter can now be combined to 

yield the following result:  

Theorem 6.5: Assume that the number of contestants is greater than 2. Then the following 

statements are equivalent:  
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(i) The CSF satisfies axioms (A1) – (A5) and (A7).  

(ii) The CSF satisfies axioms (A1) – (A5) and (A10). 

(iii) The CSF is of the Hirshleifer form given by (6.11). 

 

Instead of considering scale consistency (A9) or translation consistency (A10), we can 

also consider the following intermediate form of consistency, which is clearly an ordinal 

counterpart of (A8). 

(A11) Intermediate Consistency: For , if for some holds, then  

 

 

where is a parameter and  is a scalar such that 

.   

      

 

We now characterize all CSFs satisfying intermediate consistency.   

Theorem 6.6:  Assume that the number of contestants is greater than 2 and let the function

meet assumption (A). Then the CSF satisfies axioms (A ) and (A11) if and only if it is of the 

intermediate form given by (6.3). 

Proof: See Appendix. 

 

We are now in a position to state the following: 

Theorem 6.7: Assume that the number of contestants is greater than 2 and the function f meets 

assumption (A),  is twice continuously differentiable with positive second order derivatives on 

,   ). Then the following statements are equivalent:  

(i) The CSF satisfies axioms (A1) – (A5) and (A8).  

(ii) The CSF satisfies axioms (A1) – (A5) and (A11). 

(iii) The CSF is of the functional form given by (6.3).  

 

Remark 6.5: However, it is easy to check that in dimension , all the forms of 

resulting from (6.66), (6.70) and (6.72) satisfy (A9). Thus, in this case there are CSFs other than 

the one given by (6.3). 
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6.3 Conclusion 

Axiomatic characterizations of contest success functions enable us to understand them in 

an intuitively reasonable way in the sense that necessary and sufficient conditions are identified 

to isolate them uniquely. Skaperdas (1996) characterized the Tullock and Hirschleifer forms of 

contest success functions. In this chapter we have substantially extended the characterizations of 

Skarpedas (1996) by considering a general axiom (on intermediate invariance) and three more 

axioms viz. scale, translation and intermediate consistencies, which are ordinal in nature, a 

characteristic that has not been explored earlier in the literature. It has been shown that if the 

number of contestants in the game is at least 3, the Tullock and Hirschleifer functional forms are 

the only functional forms satisfying respectively scale and translation consistencies. The 

consistency axioms, which are simple and elegant, may be considered as the most fundamental 

contributions of the chapter. We also look at the possibility of existence of Nash equilibria, 

including the ones that may turn out as corner solutions, in different situations. 

 

     6.4 Appendix 

Proof of Theorem 6.1: Consider and note that . 

Then by (A8) we get, 

 ,     (6.12) 

  

where for simplicity it is assumed that . From (6.12) it follows that   

is independent of the effort level . Differentiating  with respect to we 

get,  

,      (6.13) 

which implies that  

         c 1 f z f ' c 1 z c 1      =         f ' z f c 1 z c 1    ,          (6.14)   
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where stands for the derivative of . 

Equation (6.14) holds for all finite . Letting  on each side of (6.14) and applying 

continuity of    we get 

             10101 cffcffc       (6.15) 

from which it follows that  

                                       

  ,                                                           (6.16)

 

where (since  and , by assumption (A)).  Integrating both 

sides of (6.16) we get,  

                                                  * (   )+  
 
  (    )   ,                                      (6.17) 

which yields: 

        
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f c 1 c 1 e
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This holds for all     and for all    (   ). Thus, 
 

,      (6.19)  
 

where  are constants. By continuity of , the solution extends to the case 

where . Substituting this form of  into  we get the desired form of the 

CSF. This establishes the necessity part of the theorem. The sufficiency  is easy to verify.  

 

Proof of Theorem 6.2: By Theorem 1 of Skaperdas (1996), axioms (A1) – (A5) are satisfied if 

and only if the CSF is given by (A ). Observe that for any we have, 
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. Consider . Then  is same as 

, that is, if and only if . Thus, by (A9) we have, 

 if and only if for all .   (6.20)               

 

Now, we claim that  for some non-decreasing function .To demonstrate 

this, consider, as before, two distinct effort vectors . Then we have, 

if and only if .  

This implies that is a function of . Non-decreasingness of this function is a 

consequence of (6.20). 

 

Define 

      (6.21) 

and 

.      (6.22) 

 

Since     and are functionally related, the Jacobian of and  with respect to  and  must 

vanish.  More precisely,  

.                                           (6.23) 

This implies that  

 

.               (6.24) 
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Equation (6.24) can be rearranged as 

    

   .                    (6.25) 

 

Now, (6.25) holds for all . Putting in (6.25) and letting

 we get, 

             

           h z h 1 h z h  .        (6.26) 

 

Given that  is positive valued on  and increasing, h is positive.  It is continuous as well. 

Since (6.26) holds for all positive and , it is a fundamental Cauchy equation, of which the 

only continuous solution is given by  

             

      1
h z K z


            (6.27) 

 

for some      and  is a real number (Aczel, 1966, p. 41, Theorem 3). 

 

Case I:  

Then (6.27) yields:  

 

 .        (6.28) 

 

Integrating both sides of (6.28) we get,  
             

     ,                           (6.29)  

 

where   and  are real numbers. Equation (6.29) is equivalent to

                

      
z

f z A B


  ,       (6.30)

  

where  and  is a non-zero real number.
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 ,     (6.31) 

 

which, on integration, gives 

 

.                      (6.32) 

    .       

That is, 

 

 
B

f z A z ,        (6.33) 

 

where and  is a real number. Since  is strictly increasing, we further require the 

restriction        

(6.27) and (6.33) solves  zf  for 0z .  By continuity of  f,  the solution extends to 

0z . 

Plugging the forms of  given by (6.30) and (6.33) into , we get the 

following forms of :  

           (6.34)   

Out of these two, only the latter satisfies (A9) if . To see a counterexample for , 

consider the CSF given by the first functional form in (6.34). Take and . Let 

and . Note that and 

so that . But   and 

implying that . Thus the CSF fails to satisfy 
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Putting  in the second functional form in (6.34), we get the Tullock form of CSF 

given by (6.10). This completes the necessity part of the proof of the theorem. The sufficiency 

can be easily verified by checking that the CSF given by (6.10) fulfils (A1)-(A5) and (A9).  

 

Proof of Theorem 6.4: Take, as in the proof Theorem 6.2, . Then 

 is same as . 

By (A10), 

if and only if for all .         (6.35)                 

    

As in the proof of Theorem 6.2, one can easily see that there exists a continuous and non-
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From (6.40) it follows that   00
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where 0
c

eQ .  

(6.44) and (6.47) solves  zf  for 0z .  By continuity of f the solution extends to 

.0z  

For strict increasingness of we need the restriction . Substituting the forms of  

given by (6.44) and (6.47) in , the resulting forms of  become: 

           (6.48)  

However, it can be easily checked that the former violates (A10) if . To see a 

counterexample for dimension , consider the CSF given by the first functional form in 

(6.48). Take ,  and . Let and

. Note that   and so that 

. But   and 

implying that . Thus the CSF fails to satisfy (A10). 

 

Putting in the second functional form specified in (6.48) we arrive at the CSF given 
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for all . 

 

Therefore, for all   ,0,
21

yy  we have, 

    

(6.50) 

for some continuous and non-decreasing function .   

 

Define             

     

(6.51)  

 

and 

.       (6.52) 

Since  and r are functionally related, the Jacobian of and with respect to  and  must 

vanish.  That is,  

 

          (6.53)  

 

Simplifying and rearranging we get,  

 

.  (6.54) 

 

 

For   ,0z , put    

.        (6.55) 

 

Then  h is positive-valued (since by assumption,  is positive and strictly increasing) and is 

continuousy differentiable (by  the assumed twice continuous diffeentiability of ).   
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From (6.54) it follows that   

 

.     (6.56) 

 

This holds for all   ,0,
21

yy . Putting  and  we get,  

 

 .      (6.57) 

Put    

,       (6.58) 

which gives 

.         (6.59) 

Moreover,   is differentiable since h  is. 

Then (6.57) yields:  
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which implies that  
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Proceeding to limits of both sides as  we have,  

.      (6.62)  

Differentiating both sides of (6.58) we get,  

.       (6.63)  

Substituting from (6.63) into (6.62) we get,  
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Case I: . 

Then  and from (6.64) it follows that for all . Consequently,  

for some positive constant . This, in turn implies that  

           (6.65) 

for all . Integrating both sides of (6.65) we get,  

     ,      (6.66) 

where is a constant.   

 

Case II: . 

Then proceeding as in the proof of Theorem 6.1 we can show that  

     (6.67)  

for some constant .   

Using (6.55) we have, 

 .     (6.68) 

If , then integrating out both sides of (6.68) we get,  
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for some constant .  

Thus,  
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where . 

On the other hand, if , then (6.68), on integration w.r.t. z yields: 

,     (6.71) 

which implies that  

     (6.72) 

for some constant . 

Now if , then it is easy to see that out of the forms of CSF given by (6.66), (6.70) 

and (6.72), only the one resulting from (6.72) is in conformity with (A11). Substituting by 

we catch hold of the CSF given by (6.3). This completes the proof of the necessity part of the 

Theorem. The sufficiency can be checked easily.  
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