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Chapter 1

Introduction

This thesis comprises three chapters on issues in political economy and voting. The first

chapter considers a multilevel multidimensional aggregation problem in voting. The second

chapter considers a model of party formation where citizens propose links to other candidates.

The final chapter considers a model of electoral competition between regional and national

parties.

We provide a brief description of each chapter below.

1.1 Multilevel Multidimensional Consistent Aggregators

In this chapter we study gerrymander-proof or consistent aggregation rules in different con-

texts. There are several papers that have studied the structure of consistent voting rules

satisfying various versions of consistency. Virtually all these papers have considered models

where voters express opinions about a single alternative which have to be aggregated into a

social opinion about that alternative. Our goal in this paper is to investigate the consistency

of voting rules in models where voter opions over several alternatives have to be aggregated.

We consider a model of aggregation where voter opinions have to be aggregated. Each

voter submits an evaluation for each alternative (or component) indicating the intensity with

which she likes the alternative. The set of permissible evaluations for any alternative is the

closed unit interval. An aggregator considers an arbitrary collection of voter evaluations and

transforms them into an aggregate opinion.

Voters can be divided into mutually exclusive subgroups. This could be based, for exam-

ple, on geographical regions/districts or political constituencies. The aggregator generates

an aggregate for each subgroup. It can also be used to aggregate subgroup opinions into an

opinion for the whole population. Consistency requires the same opinion for the population

to emerge (for every possible configuration of voter opinions) irrespective of the way the

population is spilt into subgroups. This chapter examines the implications of consistency on

aggregators.

We characterize component-wise α median rules. These rules are separable, i.e. the
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outcome for an alternative depends only on voter opinions for that alternative. Moreover,

the outcome for each alternative is the median of the minimum utility (across voters), the

maximum utility (across voters) and a fixed but arbitrary number αj for each alternative j.

Consistent voting rules have also been analyzed in Chambers (2008), Chambers (2009)

and Nermuth (1994). Perote-Peña (2005), Bervoets and Merlin (2012) and Plott (1973) also

analyze models that are similar in spirit to ours with related notions of consistency. Both

the Nermuth and Chambers papers consider a single alternative voting model.

Our result is a generalization of the result of Fung and Fu (1975) who prove an α-median

characterization result for the one alternative case. There are significant difficulties involved

in the extension to the multidimensional case due to its additional richness. However, these

are resolved using the same set of axioms as in Fung and Fu (1975) defined suitably for the

multidimensional model.

The separability result depends critically on the structure of the model, in particular on

the fact that the set of possible evaluations is a continuum. The result no longer holds if

the set of evaluations is finite. We investigate this issue in a special “finite” model. This is

a model where there are m alternatives and voter/social opinions pertain to the selection

of sets of these candidates. The set of possible evaluations for a candidate is either 0 or

1 indicating disapproval and approval respectively. We characterize a class of separable

rules called Bipartite Rules by consistency and stronger versions of some of the axioms

used for the earlier result. The Bipartite Rule partitions the set of alternatives into two sets

(independently of opinions). Alternatives in the first set are assigned value 1 unless all voters

disapprove, while alternatives in the second are never selected unless they are unanimously

approved.

1.2 Party Formation as a Network in a Citizen-Candidate

Model

In this chapter we consider a model of party formation with inter-candidate links. Candidates

are situated in a one-dimensional policy space and propose links to other candidates in order

to form parties. Party formation is modelled in the same way as the formation of networks.

The policy space is an interval in the real line. There is a continuum of voters whose

idea policy positions are distributed over the policy space. There is a finite set of candidates

who also have ideal policy positions. Candidates decide whether or not to participate in

elections and also propose links to other candidates in order to form parties. A candidate

may also choose to stand as an independent. A profile of proposals leads to the formation of

political parties. A party is a set of mutually interlinked candidates; moreover, a candidate

cannot belong to two parties. Each party adopts a policy position (we consider two separate

ways for this to happen) after which voters vote non-strategically for the party whose policy

platform is closest to their own.

Parties allow candidates to commit to a policy position different from their own. In

2



addition each party standing in an election has to pay a fixed cost which may be thought of

as the cost of campaigning. These costs are spread out if a candidate joins a party instead of

contesting as an independent. On the other hand, there are two types of benefits of joining

a party. The winning position is the position of the party which may be different from that

of the candidate. Also, there is a fixed benefit/rent from winning which has to be shared

among all party members.

A critical element of our model is the assumption regarding the policy position of a party.

We assume that this can only be the position of a member of the party. We consider two

different assumptions: populist and internally democratic parties. A populist party chooses

the ideal policy position of the member that is closest to the voters’ median position. An

internally democratic party, on the other hand, chooses the median policy position among

its party members.1

There are several papers that study party formation such as Riviere (1999), Jackson and

Moselle (2002), Levy (2004), Callander (2005) and Osborne and Tourky (2008). However,

the paper that bears the closest resemblence to ours is Osborne and Slivinsky (1996). This

paper examines the features of electoral competition in the citizen-candidate model without

party formation. Our paper can be thought of as model of party (network) formation in the

backround of the Osborne and Slivinsky (1996) model.

It is well-known that Nash equilibrium is an unsatisfactory equilibrium notion in network

formation (Jackson (2008)) models. For instance, the strategy where no candidate offer links

is always an equilibrium. We therefore, adopt the strong stability notion according to which

no subset of candidates can jointly deviate profitably from the proposed equilibrium.

We obtain different results for populist and internally democratic parties cases. In the

former, there can be at most two parties in equilibrium. In the single party equilibrium, the

single party is generically an independent who is the candidate situated closest to the voter

median. The two-party equilibrium occurs in the case where the benefits from winning are

greater than the cost of participating - a natural assumption. Party positions are equidistant

from the voter median. In addition parties are homogeneous, i.e. the smallest interval

containing the positions of all members of a party are disjoint for the two parties.

Electoral competition is less intense when parties are internally democratic. Conse-

quently, more than two parties can exist in equilibrium as in Osborne and Slivinsky (1996)

(with candidates interpreted as parties). We derive conditions for one-party and two-party

equilibrium and show the possibility of a three-party equilibrium. The two-party equilibrium

in this case also requires electoral benefits to exceed costs. In the three-party equilibrium,

benefits must exceed cost of participation.

1Jackson et al. (2007) consider a model of nomination processes within parties.
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1.3 A Model of Electoral Competition Between National

and Regional Parties

In this Chapter we model the electoral competition between national and regional parties.

National parties have the advantage of garnering votes from constituencies across the regions.

Regional parties, on the other hand, can contest only from one region. The characteristic

feature of regional parties is that voters do not consider regional parties of other regions as

viable options.

Voters have favorite policy positions on a one-dimensional policy space. The policies are

national issues-for instance, the rate of taxation, share of GDP to be spent on education or

health etc. We assume that parties have to choose the policy position of a voter from any

region.

Parties are constituency-motivated i.e they care only about winning the maximum possi-

ble number of constituencies. Moreover, parties maximize given the equilibrium strategy of

voters. Our objective is to study the equilibrium policies of the parties.

Once the parties have chosen policy positions, voting takes place. A voter in a region can

only vote either for the national party or the regional party pertaining to her region. A party

wins a constituency if at least a majority of voters vote for it. Outcomes are determined on

the basis of constituencies or seats won by the parties.

A key element of our analysis is the Political Outcome Function (P.O.F.). This function

maps the shares of constituencies into a probability distribution over party policy positions.

We use this general formulation in order to capture a wide variety of circumstances. For

example in India and the U.K, the party that wins the largest number of constituencies in a

plurality vote forms the government and implements its policy position. On the other hand,

a coalition government may form where parties share office and one of their policy positions

implemented with some probability.

We show that some of these P.O.F.s do not induce sincere behaviour from voters. Under

these circumstances, characterizing equilibrium strategic behaviour depends on the exact

specification of the P.O.F.s. We avoid these difficulties and directly assume sincere voting

behaviour. The consequence of this assumption is that party equilibrium is independent of

the P.O.F. provided that the probability of a party’s policy position being implemented is

increasing in the number of constituencies.

Fix the position of the national party. Since a regional party can only get votes from its

region it wants to locate “as close as possible” to the national party’s policy as the same side

of the region-wide median by the standard Hotelling argument. In view of this behaviour

of the regional parties, the national party wants to locate in the interval between the policy

positions of the region-wide medians.

The precise location of the national party depends on the structure of isolation sets.

These sets are constructed from the distribution of voter policy positions and have the

following property: by choosing the policy position of a voter in this set, the national party
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can “isolate” or “separate” constituencies from their respective region-wide medians. If the

voter distribution is heterogeneous, there are multiple isolation sets. In homogeneous voter

distributions, the smallest interval containing all policy positions of constituency medians for

one region is disjoint from the smallest interval containing all policy positions of constituency

medians of the other region. As a result, the isolation sets are empty. In the heterogeneous

case the national party locates in a maximal isolation set. In the homogeneous case, the

national party’s policy is the policy position of the region-wide median of the region with

the greater number of constituencies.

The main insight of the paper is the following. For a given P.O.F. and a fixed number of

constituencies, the national party’s performance improves as the degree of voter heterogeneity

increases. In the limit case, where the distribution is homogeneous, the national party can at

best do as well as the regional party of the region with the greater number of constituencies.

This result is broadly consistent with intuition and empirical evidence.
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Chapter 2

Multilevel Multidimensional

Consistent Aggregators
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2.1 Introduction

It is well known that political parties can manipulate or gerrymander voting results by di-

viding and redistributing voters among districts. This phenomenon has been observed at

regional and national levels in the U.S, Canada, India, the United Kingdom, Germany, Aus-

tralia and France.1 An important consideration in the design of voting rules is to ensure

that they are immune to such manipulation. The specific property of voting rules or aggre-

gators that guarantees this form of non-manipulability has been called consistency. There

are several papers that have studied the structure of consistent voting rules satisfying vari-

ous versions of consistency. Virtually all these papers have considered models where voters

express opinions about a single alternative which have to be aggregated into a social opinion

about that alternative. Our goal in this paper is to investigate the consistency of voting

rules in models where voter opions over several alternatives have to be aggregated.

Multidimensional voting models arise naturally in many contexts. Consider the case

where there is a finite set of public projects that is under consideration by the Government.

Not all projects are feasible because of resource constraints. The Government therefore needs

to aggregate the opinions of all voters over all projects by means of a voting rule. We note

that multidimensional voting models have been received a great deal of attention in social

choice and positive political theory - see Austen-Smith and Banks (2000), (2005) for an

extensive review of the literature.

We consider a model of aggregation where voter opinions have to be aggregated over

several alternatives. Each voter submits an evaluation for each alternative (or component)

indicating the intensity with which she likes the alternative.2 The set of permissible evalu-

ations for any alternative is the closed unit interval. An aggregator considers an arbitrary

collection of voter evaluations and transforms them into an aggregate opinion.

Voters can be divided into mutually exclusive subgroups. This could be based, for exam-

ple, on geographical regions/districts or political constituencies. The aggregator generates

an aggregate for each subgroup. It can also be used to aggregate subgroup opinions into an

opinion for the whole population. Consistency requires the same opinion for the population

to emerge (for every possible configuration of voter opinions) irrespective of the way the

population is split into subgroups. This Chapter examines the implications of consistency

on aggregators.

We characterize component-wise α median rules. These rules are separable, i.e. the

outcome for an alternative depends only on voter opinions for that alternative. Moreover,

the outcome for each alternative is the median of the minimum utility (across voters), the

maximum utility (across voters) and a fixed but arbitrary number αj for each alternative j.

Consistent voting rules have also been analyzed in Chambers (2008), Chambers (2009)

1Katz (1998) and Samuels and Snyder (2001) provide empirical evidence of gerrymandering in different

electoral systems and countries respectively.
2Macé (2013) provides another model of aggregation over evaluations.
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and Nermuth (1994).3 Both the Chambers’ papers consider a different notion of consistency

where the sub-group aggregate opinion is replicated the same number of times as the number

of voters in that subgroup. This notion is inspired by the electoral college voting system in

U.S Presidential elections. Our notion of consistency is similar to that in Nermuth (1994).

Both the Nermuth and Chambers papers consider a single alternative voting model.

Our result is a generalization of the result of Fung and Fu (1975) who prove an α-median

characterization result for the one alternative case. There are significant difficulties involved

in the extension to the multidimensional case due to its additional richness. However, these

are resolved using the same set of axioms as in Fung and Fu (1975) defined suitably for the

multidimensional model.

The separability result depends critically on the structure of the model, in particular on

the fact that the set of possible evaluations is a continuum. The result no longer holds if

the set of evaluations is finite. We investigate this issue in a special “finite” model. This is

a model where there are m alternatives and voter/social opinions pertain to the selection

of set of these candidates. The set of possible evaluations for a candidate is either 0 or 1

indicating disapproval and approval respectively. We characterize a class of separable rules

called Bipartite Rules by consistency and some stronger versions of some of the axioms

used for the earlier result. The Bipartite Rule partitions the set of alternatives into two sets

(independently of opinions). Alternatives in the first set are assigned value 1 unless all voters

disapprove, while alternatives in the second are never selected unless they are unanimously

approved.

The paper is organized as follows. We discuss the Evaluations model formally and the

notion of consistency in Section 2.2.1. A discussion of the other axioms is contained in Section

2.2.2. Section 2.2.3 presents the component-wise α-median result and its proof followed by a

discussion in Section 2.2.4. Section 2.3 considers the finite set selection model while Section

2.4 concludes.

2.2 The Evaluation Model

The set of components or alternatives is X with |X| = m. The set of voters is N =

{1, 2, ..., n}. Each voter submits an evaluation for each candidate. The set of evaluations

is normalized without loss of generality to be the set [0, 1]. A voter submits vi ∈ [0, 1]m

and we denote the set [0, 1]m by A. A vote profile v ∈ An is the set of voter evaluations

v = (v1, . . . , vn). A component vij ∈ [0, 1] can be interpreted as the evaluation by voter i for

alternative j.

A district or a group is a non-empty set N ⊂ N. A vote profile is a collection of vi for all

voters i ∈ N such that N ⊆ N. A vote profile vS is the restriction of v to the set of voters

S ⊆ N. An aggregator is a function f : ∪N∈NAn → A which aggregates vote profiles for

3Perote-Peña (2005), Bervoets and Merlin (2012) and Plott (1973) analyze models that are similar in

spirit to ours with related notions of consistency.
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any district or subset N. Some examples of aggregators are given below.

• A constant aggregator, f c : An → A for every profile v outputs a fixed set of evaluations

c in A,

f c(v) = c ∀v ∈ An ∀N ∈ N.

• A mean aggregator, fmean : An → A outputs the arithmetic mean of the evaluation

values for each alternative,

fmean
j (v) =

∑
i vij
N

∀j ∈ X v ∈ An ∀N ∈ N.

• The median denoted by med(.) of a set of K numbers is
K

2

th

lowest evaluation when

K is even, or the
K + 1

2

th

lowest evaluation if K is odd. A median aggregator selects

the median for each component, fmed : An → A,

fmed
j (v) = medi∈N(vij) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

• A min aggregator, fmin : An → A outputs the minimum evaluation from the set of

numbers submitted by the voters for each alternative.

fmin
j (v) = min

i∈N
(vij) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

A max aggregator can be similarly defined.

• An aggregator fα : An → A is component-wise α-median aggregator if ∃ α ∈ A such

that,

fαj (v) = med(min
i∈N

(vi), αj,max
i∈N

(vi)) ∀j ∈ X ∀v ∈ An ∀N ∈ N.

For each alternative j the aggregator fα picks median of the following three numbers-

the smallest and greatest among the set of evaluations submitted by all the voters and

the jth component of α.

Component-wise α-median aggregators are generalizations of the min and max aggre-

gators. The min and max rules are α-median rules with α = 0 and α = 1 respectively.

• Let � be a strict ordering on components. Pick an arbitrary v ∈ An. The lexicographic-

minimum or L-min voter for v,N is a voter whose evaluation for the �-max alternative

is lowest. If there is more than one such voter, break ties by picking a voter whose

evaluation for the next-highest alternative according to � is lowest and so on. The L-

min rule at v,N picks the evaluation vector of the L-min voter, i.e fL−min(v) = vL-min.

The L-max rule can be defined analogously.

10



It is worth drawing attention to the feature of the rules above. The constant, median,

mean, min and max aggregators are component-separable rules i.e they aggregate the out-

come for each component or alternative separately. The left-aligned and L-min aggregators

are not component-separable.

2.2.1 Consistency of Aggregators

Definition 1 (Consistency) An aggregator f satisfies consistency if for all N ∈ N, for

all partitions {N1, N2, ..., NK} of N and all v ∈ A,

f(v) = f (f(vN1), f(vN1), ..., f(vNK
)) .

A vote profile v can be aggregated directly by f . It can also be aggregated indirectly

as follows. The profile v can be split into the opinions of subgroups (vN1 , . . . , vNK
). Since

f is defined for arbitrary collections of opinions, f can be applied to each sub-collection

vN1 , . . . , vNK
. This yields a K sized opinion profile on which f can be applied again. If f is

consistent, the direct and indirect procedures generate the same outcome.

Consistency prevents manipulation by re-assigning voters to subgroups. It is a strong

requirement as many of the aggregators described earlier do not satisfy it.

1. (Median) The median aggregator violates consistency. Let N = {1, 2, 3} and m = 2.

Considering the partition I = {{1, 2}, {3}} of N we have,

fmed

(
fmed

(
0.4

0.3

0.1

0.8

)
,

0.7

0.4

)
= fmed

(
0.1

0.3

0.7

0.4

)
=

(
0.1

0.3

)
6=

(
0.4

0.4

)
= fmed

(
0.4

0.3

0.1

0.8

0.7

0.4

)
.

Note that our definition of the median aggregator picks the “lower median evaluation”

in societies with an even number of voters. The violation of consistency by the median

rule does not depend on this assumption.

2. (Mean) The mean aggregator also violates consistency.

11



Consider the same example and partition as before. We have,

fmean

(
fmean

(
0.4

0.3

0.1

0.8

)
,

0.7

0.4

)
= fmean

(
0.25

0.55

0.7

0.4

)
=

(
0.475

0.475

)
6=

(
0.4

0.5

)
= fmean

(
0.4

0.3

0.1

0.8

0.7

0.4

)
.

On the other hand, the constant rule, the min rule, the L-min rule and their max coun-

terparts and the component-wise α-median rules satisfy consistency. The consistency of

the constant aggregator is trivial. The consistency of the component-wise α-median rule is

demonstrated in the proof of the theorem. We show the consistency of the min and L-min

rule below.

1. (Min) Pick an arbitrary profile v and alternative j. Suppose that the miminum evalu-

ation for j in v is vj. Let vj = vij. Consider an arbitrary partition I = {N1, . . . , NK} of

N and suppose i ∈ Nk. Then fmin
j (vNk

) = vj and fmin
j (vNk

) ≤ fmin
j (vNk′

) for all Nk′ ∈ I.

Therefore, fmin
j (fmin(vN1), . . . , f

min(vNK
)) = minNk′∈I{f

min
j (vNk′

)} = vj = fmin
j (v).

Similarly max rules also satisfy consistency. So do aggregators that pick the minimum

for some alternatives and the maximum for others.

2. (L-min) Let j be the alternative that is � maximal. Let v be an arbitrary profile. The

argument for the min rule for alternative j suffices to show that the L-min aggregator

is consistent.

2.2.2 Further Axioms

In addition to consistency, we impose certain axioms.

Definition 2 (Anonymity) An aggregator f is anonymous if for all N ∈ N for all v, v′ ∈
An and for all bijections Πi : N → N ,[

vi = v′Π(i) for all i ∈ N
]
⇒
[
f(v) = f(v′)

]
.

An aggregator satisfies anonymity if it is invariant with respect to changes in the iden-

tities of voters. All the aggregators mentioned above are anonymous. Its easy to construct

aggregators that are non-anonymous, for instance, by constructing a“dictator” for every sub-

set of N. Consider the case when N = {1, 2, 3}. Let 1 be the dictator for {1, 2} and {1, 2, 3},
2 be dictator for {2, 3} and 3 be the dictator for {1, 3}. The outcome at any collection of

voter opinions is the evaluation vector of the dictator for that subset of voters.

12



Definition 3 (Unanimity) An aggregator f is unanimous if for all N ∈ N for all v ∈ An
and any j ∈ X,

[
vi = v̄ for all i ∈ N

]
⇒
[
f(v) = v̄

]
.

An aggregator that satisfies unanimity respects consensus. Our notion of unanimity is,

therefore, very weak. Note that the unanimity condition does not apply if all voters are

unanimous over a subset of the alternatives. All the aggregators mentioned earlier except

the constant aggregator are unanimous.

(Continuity) An aggregator specifies a collection of maps that aggregates arbitrary sets

of m-dimensional voter opinions into an aggregate opinion i.e it is a collection of maps

f : Rml → Rm where l = 1, . . . , n. The aggregator satisfies continuity if each of these maps

is continuous in the usual sense.

All aggregators discussed earlier except the L-min aggregator satisfy continuity. The

violation by L-min is shown below.

Let the set of voters be N = {1, 2} and m = 2. Let vt, t = 2, 3 . . . be a sequence

of profiles such that vt1 =

(
0.7

0.4

)
and vt2 =

(
0.7− 1

t

0.1

)
, t = 2, 3 . . .. Clearly, vt →(

0.7 0.7

0.4 0.1

)
= v̄ and fL-min(vt) =

(
0.7− 1

t

0.4

)
for all t. Therefore, fL-min(vt)→

(
0.7

0.4

)
.

However, fL-min(v̄) =

(
0.7

0.1

)
.

The next axiom uses the order structure on the set A.

Definition 4 (Monotonicity) An aggregator f is monotonic if for all N ∈ N, for all

v, v′ ∈ An, [
vij ≥ v′ij for all i, j

]
⇒
[
fj(v) ≥ fj(v

′) for all j
]
.

Fix an arbitrary collection of voters. Suppose all voters in this collection weakly increase

their evaluations of all alternatives. Then the aggregate opinion outputted by a monotonic

aggregator must weakly increase for all alternatives. This is clearly a weak condition and ag-

gregators described earlier, satisfy the axiom. It is of course, easy to construct an aggregator

that does not satisfy the axiom.

2.2.3 The Main Result

The main result shows that the component-wise α-median aggregators are characterized by

the axioms of consistency, unanimity, anonymity, monotonicity and continuity.

13



Theorem 1 An aggregator satisfies consistency, unanimity, anonymity, monotonicity and

continuity if and only if it is a component-wise α-median aggregator.

Proof : It is easy to verify that component-wise α-median aggregators satisy anonymity,

unanimity, continuity and monotonicity. We show that is satisfies consistency.

Consistency: Let fα be a component-wise α-median aggregator. In view of the separa-

bility of component-wise aggregators it clearly suffices to show that it satisfies consistency

for any arbitrary alternative.

Pick a profile v ∈ A and alternative j. Then fαj (v) ∈ {mini∈N(vij), αj,maxi∈N(vij)}.
If fαj (v) = mini∈N(vij) i.e αj < mini∈N , consistency follows from the same argument used

to show that the min aggergator is consistent. Likewise, the arguments used to show that

the max aggregator is consistent can be used to show that fα is consistent when fα(v) =

maxi∈N(vij) i.e αj > maxi∈N(vij).

If αj ∈ [mini∈N(vi),maxi∈N(vi)], then fαj (v) = αj. Let I = {Ni, . . . , NK} be any partition

of N . There exists a set Nk ∈ I such that for some i ∈ Nk, vij ≤ αj. By definition, fαj (vNk
) ≤

αj. Therefore, αj ≥ minNl∈I
(
fαj (vNk

)
)
. Similarly, there exists Nk′ ∈ I such that for some

i′ ∈ Nk′ , vi′j ≥ αj. By definition, fαj (vNk′
) ≥ αj. Therefore, αj ≤ maxNl∈I

(
fαj (vNl

)
)
.

By the above arguments we have, αj ∈ [minNl∈I
(
fαj (vNl

)
)
,maxNl∈I

(
fαj (vNl

)
)
]. By defini-

tion, fαj (fα(vN1), . . . , f
α(vNK

)) = αj. Therefore, component-wise α-median aggregators are

consistent.

Let f be an aggregator which satisfies consistency, unanimity, anonymity, monotonicity

and continuity. Observe that f is actually a collection of rules {fk}, k = 1, . . . , |N| where

fk is an aggregator for any k-size collection of voter opinions. The next lemma shows that

f can be constructed by a repeated application of the function f 2.

Lemma 1 Let N = {i1, . . . , in} ⊆ N and let vik ∈ A for k = 1, . . . n. Then fn(vi1 , ..., vin) =

f 2(. . . f 2(f 2(vi1 , vi2), vi3) . . . vin).

This lemma follows directly by the application of consistency. For instance, ifN = {1, 2, 3, 4},
then

f 4(v1, v2, v3, v4) = f 2(f 3(v1, v2, v3), v4) = f 2(f 2(f 2(v1, v2), v3), v4).

By Lemma 1 we can restrict attention to f 2.

Applying Lemma 1 we can restrict attention to the two voter aggregator f 2. From now

onwards, we simply write f in place of f 2 for simplicity of notation. In some cases, we will

revert back to f 2 where necessary. We introduce the notion of two evaluations being ordered.

Let v, v′ ∈ An, N ∈ N. If either vj ≥ v′j or vj ≤ v′j for all j ∈ X then v is ordered with v′.

We define a Box as follows. Let vi, vk be a pair of voter opinions. Then

Box(vi, vk) =

{
vt ∈ A2

∣∣∣∣ vij ∈ [min
i∈N

(vij),max
i∈N

(vkj)
]
∀j ∈ X

}
.

Lemma 2 Let vi, vk ∈ A. Then f(vi, vk) ∈ Box(vi, vk).

14



Proof : We consider two cases.

• Case 1: vi and vk are ordered. Assume w.l.o.g. vi ≥ vk. The case where vk ≥ vi can

be dealt with by using a symmetric argument. Applying monotonicity,

f(vi, vk) ≥ f(vk, vk) = vk.

The last inequality holds due to unanimity. Similarly,

f(vi, vk) ≤ f(vi, vi) = vi.

Therefore f(vi, vk) ∈ Box(vi, vk).

• Case 2: Case 1 does not hold. Let v be such that,

vj = min(vij, vkj) ∀j ∈ X.

Similarly, let v is such that,

vj = max(vij, vkj) ∀j ∈ X.

Note that Box(vi, vk) = Box(v, v). By monotonicity,

f(vi, vk) ≥ f(v, v) = v.

Similarly,

f(vi, vk) ≤ f(v, v) = v.

Therefore, f(vi, vk) ∈ Box(vi, vk).

�

The next lemma is illustrated in Figure 2.1.

Lemma 3 Let vi, vk ∈ A be ordered (assume w.l.o.g. vi ≤ vk) and f(vi, vk) = vt. Then for

all vr, vu ∈ A such that vr ∈ Box(vi, vt) and vu ∈ Box(vt, vk),

f(vr, vu) = vt, f(vr, vt) = vt, f(vt, vu) = vt .

Proof : By Lemma 1 and unanimity,

f(vi, vt) = f 2(vi, f
2(vi, vk)) = f 3(vi, vi, vk)

= f 2(f 2(vi, vi), vk) = f(vi, vk) = vt.

By an analogous argument f(vt, vk) = vt. By monotonicity,

f(vr, vu) ≤ f(vt, vu) ≤ f(vt, vk) = vt.
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Figure 2.1: Illustration for Lemma 3

Similarly,

f(vr, vu) ≥ f(vi, vu) ≥ f(vi, vt) = vt.

Therefore f(vr, vu) = vt. Again by monotonicity,

f(vr, vt) ≤ f(vt, vk) = vt.

Also,

f(vr, vt) ≥ f(vi, vt) = vt.

Therefore f(vr, vt) = vt. By a similar argument it follows that f(vt, vu) = vt. �

Lemma 4 Let vi, vk, v
′
i, v
′
k be such that (i) vi is ordered with vk, v

′
i is ordered with v′k (ii)

f 2(vi, vk) = vt ∈ intBox(vi, vk)
4 and (iii) f(v′i, v

′
k) = v′t ∈ intBox(v′i, v

′
k). Then v′i < vt and

vk > v′t both cannot hold.

Proof : We prove this by contradiction. So suppose v′i < vt and vk > v′t hold. Then

by applying Lemma 3 on Box(vi, vk) we have f(vt, v
′
t) = vt and by applying Lemma 3 on

Box(v′i, v
′
k) we have f(vt, v

′
t) = v′t. This is a contradiction. Therefore both v′i < vt and

vk > v′t cannot be true. �

Let vt ∈ A. The box MBox(vt) = Box(v̄i, v̄k) is a maximal box for vt if there does not

exist v′i < vi and v′k > vk such that f(v′i, v
′
k) = vt. Suppose vt is in the range of f . Then

MBox(vt) exists by the virtue of continuity of f . Note that a maximal set may not be

unique. By similar arguments as in Lemma 3 we can prove the following Lemma.

Lemma 5 Let MBox(vt) be a maximal box for vt. Let vr, vu ∈ A such that vr ∈ Box(vi, vt)

and vu ∈ Box(vt, vk). Then,

4intBox(.) denotes the interior of Box(.).
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(i) f(vr, vu) = vt, f(vr, vt) = vt, f(vt, vu) = vt.

(ii) Let {vqt }∞q=1 be a sequence such that limn→∞ v
q
t = vt. Then,

lim
n→∞

MBox(vqt ) = MBox(vt).

Proof : The first part of the proof is proved analogously as in the previous Lemma 3. The

second part is an implication of the continuity of f 2. �

Lemma 6 Let vi, vk and v′i, v
′
k, v
′
t be such that (i) vi is ordered with vk, v

′
i is ordered with

v′k and vt is ordered with v′t (ii)f(vi, vk) = vt ∈ intBox(vi, vk) and (iii) f(v′i, v
′
k) = v′t ∈

intBox(v′i, v
′
k). Then ∃ v′′i , v′′k and v′′t such that (a) v′′i , v

′′
k , v
′′
t ∈ Box(vt, v

′
t) (b) f(v′′i , v

′′
k) = v′′t

and v′′t ∈ intBox(v′′i , v
′′
k) (c) v′′t /∈ {vt, v′t}.

Proof : W.l.o.g. let vi ≤ vk, v
′
i ≤ v′k and vt ≤ v′t. By Lemma 4 we have

Box(vi, vk) ∩Box(vt, v
′
t) 6= ∅ and Box(vi, vk)

C ∩Box(vt, v
′
t) 6= ∅.5

or Box(v′i, v
′
k) ∩Box(vt, v

′
t) 6= ∅ and Box(v′i, v

′
k)
C ∩Box(vt, v

′
t) 6= ∅.

Therefore assume w.l.o.g.

Box(v′i, v
′
k) ∩Box(vt, v

′
t) 6= ∅ and Box(v′i, v

′
k)
C ∩Box(vt, v

′
t) 6= ∅. (#)

Pick vr ∈ Box(vi, vt) and vu ∈ Box(v′t, v
′
k). By applying Lemma 3 to Box(vi, vk) and

Box(v′i, v
′
k) we have f(vr, vu) ≥ f(vi, vt) = vt and f(vr, vu) ≤ f(v′t, v

′
k) = v′t respectively. If

f(vr, vu) /∈ {vt, v′t} then the Lemma holds with v′′i = vr, v
′′
k = vu and v′′t = f(vr, vu). So

suppose f(vr, vu) ∈ {vt, v′t}. We consider two cases.

Case 1: f(vr, v
′
u) = vt. Consider an increasing sequence {vqr} such that limn→∞ v

q
r = v′t.

In view of (#) there exists a q such that vqr is on the boundary of Box(v′i, v
′
k) and is in

Box(vt, v
′
t). By continuity limn→∞ f(vrt , v

′
t) = v′t. By choosing a point q′ sufficiently close to

vrt we can satisfy the conditions of the Lemma.

Case 2: f(vr, vu) = v′t. Suppose vk ≥ v′t. By applying Lemma 3 to Box(vi, vk) and

Box(v′i, v
′
k) we have f(vr, vu) = vt and f(vr, vr) = v′t. This is a contradiction. Hence vk ≤ v′t.

Now by repeating the arguments in Case 1 the Lemma holds with v′′i = vr, v
′′
k = vu and

v′′t = f(vr, vu). �

The next Lemma states that there exists at most one element in the range of f which is

in the interior of its relevant box.

Lemma 7 There do not exist vi, vk, v
′
i, v
′
k such that (i) vi is ordered with vk and v′i is ordered

with v′k (ii) f(vi, vk) ∈ intBox(vi, vk) (iii) f(v′i, v
′
k) ∈ intBox(v′i, v

′
k) and (iv) f(vi, vk) 6=

f(v′i, v
′
k).

5AC is the complement of set A.

17



Proof : We prove the Lemma by contradiction i.e there exist vi, vk, v
′
i, v
′
k as specified in the

statement of Lemma 7. Let f(vi, vk) = vt and f(v′i, v
′
k) = v′t.

1. Case 1: Suppose vt, v
′
t are ordered. Assume w.l.o.g. vt ≤ v′t. By Lemma 5 there exists

v′′i , v
′′
k such that f(v′′i , v

′′
k) = v′′t and v′′t ∈ intBox(v′′i , v

′′
k). In fact, by applying the Lemma

repeatedly we can contruct a sequence {vqt }∞q=1 such that f(vqi , v
q
k) = vqt ∈ intBox(vqi , v

q
k)

for all q and lim vqt = v′t.

Let {ṽtq}∞q=1, be a subsequence of {vqt } such that ṽt
q ∈ MBox(vt) for all q. Note

that Box(vi′ , v
′
t) ∩ Box(ṽi

q, ṽt
q) 6= ∅. We claim that ṽk

q ≥ v′t cannot hold. Suppose

contrariwise that ṽk
q ≥ v′t. Pick vr ∈ Box(v′i, v

′
t)∩Box(ṽi

q, ṽt
q) and vu ∈ Box(v′t, v

′
k)∩

Box(ṽt
q, ṽk

q). Applying Lemma 3 to the boxes Box(ṽi
q, ṽt

q) and Box(v′i, v
′
k) we have

f(vr, vu) = ṽt
q and f(vr, vu) = v′t respectively. This is a contradiction. Therefore

ṽk
q ≥ v′t cannot hold and we have

lim
n→∞

ṽt
q = v′t ⇒ lim

n→∞
ṽk
q = v′t.

Since ṽt
q → v′t we know by Lemma 4 that limn→∞MBox(ṽt

q) = MBox(v′t). Hence

limn→∞MBox(ṽt
q) = MBox(v′t) = Box(v̄i

q, v′t) where v̄i
q = limn→∞ ṽi

q, i.e v′t /∈
intMBox(v′t) = Box(v̄i

q, v′t). However v′t ∈ intBox(v′i, v
′
k) implies v′t ∈ intMBox(v′t) by

assumption. Thus we have a contradiction.

2. Case 2: vt and v′t are not ordered. Pick vr ∈ Box(0, vt) ∩ Box(0, vt).
6 By Case 1

f(vr, vt) /∈ intBox(vr, vt) and f(vr, v
′
t) /∈ intBox(vr, v

′
t).

0 1

1

v′i

v′k

vt

v′t
�

�

�

�

vr

vk

vu

vi

Figure 2.2: Illustration for Case 2

We claim that f(vr, vt) = vt. Suppose this is false. By virtue of the fact that f(vr, vt) /∈
intBox(vr, vt), f

2(vr, vt) must lie on the boundary of Box(vr, vt) but not equal to vt. By

6Recall that 0 = (0, 0, ..., 0) ∈ A and 1 = (1, 1, ..., 1) ∈ A.
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constructing a sequence {vqr}∞q=1 → vt and using arguments from Lemma 5 we obtain a

contradiction. Therefore f(vr, vt) = vt. By an identical argument f(vr, v
′
t) = v′t.

Pick vu ∈ Box(vt,1)∩Box(v′t,1). Using the same arguments as in the previous paragraph,

we have f(vu, vt) = vt and f(vu, v
′
t) = v′t. Applying Lemma 3 and monotonicity,

f(vr, vu) ≥ f(vr, vt) = vt.

f(vr, vu) ≤ f(vt, vu) = vt.

Therefore f(vr, vu) = vt. However, the same argument with v′t substituted for vt yields

f(vr, vu) = v′t. We have a contradiction. �

Lemma 8 Let vi, vk be ordered and f(vi, vk) = vt. Then[
vr, vu ∈ Box(vi, vt), vr ≤ vu

]
⇒
[
f(vr, vu) = vu

]
.[

vr, vu ∈ Box(vt, vk), vr ≤ vu
]
⇒
[
f(vr, vu) = vr

]
.

Proof : Suppose vr, vu ∈ Box(vi, vt), vr ≤ vu and f(vr, vu) 6= vu. Suppose f(vr, vu) = v′t. By

Lemma 7, v′t /∈ intBox(vr, vu). By applying Lemma 3 on Box(vr, vu) we have f(v′t, vs) = v′t
for all vs ∈ Box(vr, v

′
t). Similarly, by applying Lemma 3 on Box(vi, vt) we have f(vr, vt) = vt.

This implies that there exists v′k ≥ vu such that f(vr, v
′
k) > v′t and f(vr, v

′
k) ∈ Box(vr, v

′
t).

By applying Lemma 3 on Box(vr, v
′
t) we have f(f(vr, v

′
k), v

′
t) = v′t. However, by Lemma 3

on Box(f(vt, v
′
k), v

′
k) we have f(v′t, f(vr, v

′
k)) = f(vr, v

′
k). This is a contradiction. Therefore,

f(vr, vu) = vu.

The case where vr ≤ vu with vr, vu ∈ Box(vt, vk) can be proved by an argument similar

to the one above. �

Lemma 9 Pick any vi, vk ∈ A. Then f(vi, vk) = f(v, v) where v and v are as defined before.

Proof : There is nothing to prove in the case where vi and vk are ordered. Therefore assume

that vi, vk are not ordered. Let f(v, v) = vt. For each j ∈ X we have vjt , v
′j
t such that

(i) vjtj = vtj, v
j
tj′ = min(vij′ , vkj′) ∀j′ ∈ X.

(ii) v′jtj = vtj, v
′j
tj′ = max(vij′ , vkj′) ∀j′ ∈ X.

Note that vjt ∈ Box(v, vt) and v′jt ∈ Box(vt, v) for all j. By applying Lemma 8 to Box(v, vt)

and Box(vt, v) and using monotonicity we have

f(vi, vk) ≥ f(vjt , v
′
t) = vjt .

f(vi, vk) ≤ f(v′jt , v
′
t) = v′jt .

This implies f(vi, vk) = f(v, v) = vt. �

As an implication of Lemma 9 we can restrict attention to any ordered pair vi, vk. Our

final Lemma proves the theorem.
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Lemma 10 There exists α ∈ A such that for all vi, vk ∈ A

fj(vi, vk) = med(min
i∈N
{vij},max

i∈N
{vij}, αj) ∀j ∈ X.

Proof : Let f(0,1) = v∗t . We show that f is an α-median rule with α = v∗t . Let vi, vk ∈ An.

By Lemma 9 we only need to consider the case where they are ordered. W.l.o.g. assume

vi ≤ vk.

1. Case 1: Suppose vi, vk are both ordered with respect to v∗t . We show that f is an

α-median rule with α = v∗t . By Lemma 3, f(vi, vk) = v∗t for all vi ∈ Box(0, v∗t ) and

vk ∈ Box(v∗t ,1). By Lemma 8, f(vk,1) = vk for all vk ∈ Box(v∗t ,1) and f(0, vi) = vi
for all vi ∈ Box(0, v∗t ). By Lemma 8 and 9,

f(vi, vk) = f(v, v) = v ∀ vi, vk ∈ Box(0, v∗t ).

f 2(vi, vk) = f 2(v, v) = v ∀ vi, vk ∈ Box(v∗t ,1).

Therefore v∗t is the α-median for all vi and vk ordered such that either vi, vk ∈ Box(0, v∗t )

or vi, vk ∈ Box(v∗t ,1). If vi, vk ∈ Box(0, v∗t ) are not ordered then by Lemma 8 and 9,

f 2(vi, vk) = v. Similarly if vi, vk ∈ Box(v∗t ,1) are not ordered then by applying Lemma

8 and 9, f 2(vi, vk) = v. Therefore, in both the cases f picks the component-wise

α-median for j ∈ X with α = v∗t .

2. Case 2: Suppose vi is ordered with v∗t but vk is not ordered with v∗t . Pick vγt ∈
Box(vi, vk) ∩ Box(0, v∗t ) such that vγtj = med(vij, vkj, αj) for all j ∈ X. By Lemma 3

and 8 and monotonicity, f(0, v∗t ) = vγt ≤ f(vi, vk) and f(v∗t ,1) = v∗t ≤ f(vi, vk). This

implies f(vi, vk) = vγt . The same arguments hold for the case when vi is not ordered

with v∗t but vk is ordered with v∗t .

3. Case 3: Neither vi nor vk is ordered with respect to v∗t . Pick vi, vk, vi, vk such that

vij = min(vij, v
∗
tj), vkj = min(vkj, v

∗
tj), vij = max(vij, v

∗
tj) and vkj = max(vkj, v

∗
tj). By

applying Lemma 8 to Box(0, v∗t ) and Box(v∗t ,1) and using monotonicity ,

f(vi, vk) = vk ≤ f(vi, vk).

f(vi, vk) = vi ≥ f(vi, vk).

This implies f(vi, vk) = med(vij, vkj, αj).

�

Let f(0,1) = v∗t such that v∗t ∈ A. We have proved that f 2 is a component-wise α-

median aggregator with α = v∗t . Note that fk is also a component-wise aggregator i.e the

aggregation over an alternative is independent of the opinions over other alternatives. We

show that fk is a component-wise α-median rule for k = 1, 2, ..., n.
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Let v ∈ Ak, k ∈ N be a profile. We show that

fj(v) = med( min
i=1,...,k

vij, max
i=1,...,k

vij, αj)

for all j ∈ X. There are several cases to consider. Pick j ∈ X. Suppose vij ≤ αj for all

i ∈ N . Since f 2 is a component-wise α-median aggregator f 2(vij, vi′j) = max(vij, vi′j) for all

i, i′. Therefore,

fk(v1j, ..., vkj) = f 2(...f 2(f 2(v1j, v2j), ..., vkj)

= max(...max(max(v1j, v2j)..., vkj)

= max(v1j, ..., vkj)

= fk(v1j, ..., vkj)

= med(min
i

(vij),max
i

(vij), αj).

Suppose vij ≥ αj for all i ∈ N . An argument analogous to the previous one gives

fk(v1j, ..., vkj) = min(v1j, ..., vkj) = med(mini(vij),maxi(vij), αj).

Finally consider the case where αj ∈ (mini(vij),maxi(vij)). Let

f 2(v1j, v2j) = z1.

f 2(f 2(v1j, v2j), v3j) = z2.

...

f 2(...(f 2(v1j, v2j), ...vkj)) = zk−1.

In view of the nature of f 2 there must exist q such that zq = αj and zq
′

= αj for all q′ ≥ q.

Therefore fk(v1j, ..., vkj) = med(mini(vij),maxi(vij), αj). This completes the proof. �

2.2.4 Discussion

Theorem 1 generalizes the Fung and Fu (1975) result from the one dimensional to the mul-

tidimensional case. The structure of the proof broadly follows that of Fung and Fu (1975).

However, the generalization of specific arguments is not straightforward since several “new”

cases can arise regarding the location of the evaluation vectors chosen for aggregation.

2.2.5 Independence of axioms

We show that the axioms used in Theorem 1 are independent. We consider each axiom in

turn and show that there exists an aggregator that satisfies the other axioms.

Consistency: The median aggregator satisfies all the axioms except consistency.
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Unanimity: Constant aggregators satisfy all the axioms except unanimity.

Anonymity: We define an aggregator that specifies a dictator for every subset of the

voters and outputs the vector of evaluations of the dictator for all profile. We proceed as

follows. Let i(N) = mini∈N #i. Then fD is a sequential dictator aggregator if fD = vi(N)

for all N ∈ N for all v ∈ An.

The aggregator is consistent as we show below. Consider a profile v ∈ An. Then by

definition of the aggregator, fD(v1, . . . , vn) = v1. Consider any partition I = {N1, . . . , NK}.
By applying the rule to the sub-groups we have,

fD(fD(vN1), . . . , f
D(vNK

)) = f(vi(N1), . . . , vi(NK)) = vi(N) = fD(v) = v1.

The sequential dictatorship clearly violates anonymity.

Continuity: We have shown earlier that the L-min aggregator satisfies all the axioms

other than continuity.

Monotonicity: We define an aggregator for the case when the number of alternatives

is two. The construction can be easily generalized to an arbitrary number of alternatives.

Define f 2 as follows. Pick v̄ ∈ A with v̄2 > 0. The aggregator will be separable. For the

first component, f 2 picks the smaller of the first component of the two voter evaluations, i.e

f1(vi, vk) = min(vi1, vk1) for all vi, vk ∈ A. For the second component, there are three cases:

(i) max(vi2, vk2) ≤ v̄2. Then f2(vi, vk) = max(vi2, vk2) .

(ii) min(vi2, vk2) ≥ v̄2. Then f2(vi, vk) = min(vi2, vk2).

(iii) min(vi2, vk2) < v̄2 and max(vi2, vk2) > v̄2. Then

f1(vi, vk) = max
(

min(vi2, vk2), v̄2 − |v̄2 −max(vi2, vk2)|
)
.

The aggregator fk, k ∈ {1, . . . , n} can be obtained from f 2 in the following way. For any

v ∈ Ak,
f(v1, . . . , vk) = max

(
min
i
vi2, v̄2 − |v̄2 −max

i
vi2|
)
.

We show that the rule is not monotonic. In Figure 2.3 vr ∈ A satisfies vrj < v̄j, j ∈ {1, 2}.
For the profile v = (vr, v̄) we have f(vr, v̄) = v̄. Pick vu such that vuj > v̄j, j ∈ {1, 2} and

f(vr, vu) = vt where vt2 < v̄2. Therefore, the rule violates monotonicity.

The aggregator is consistent for any profile v ∈ An. Suppose ī such that vī2 = maxi∈N vi2.

Consider a partition I = {N1, . . . , NK}. Suppose ī ∈ Nk for some k ∈ {1, . . . , K}. Note that

mini∈Nk
vi2 ≥ mini∈Nk

vi2. Therefore,

max
(

min
i∈Nk

vi2, v̄2 − |v̄2 −max
i∈Nk

vi2|
)
≥ max

(
min
i∈Nk′

vi2, v̄2 − |v̄2 − max
i∈Nk′

vi2|
)

for all Nk′ ∈ I. Therefore,

f(f(vN1 , . . . , f(vNK
)) = max

(
min
i∈N

vi2, v̄2 − |v̄2 − vī2|
)

= f(v).
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Figure 2.3: Violation of monotonicity

Figure 2.4 shows the continuity of the aggregator. Continuity is an issue only for sequences

of the following kind: {(vq1, v
q
2)}, q = 1, 2 . . . such that (i) vq1 = vrj ≤ v̂j for all q and for

j ∈ {1, 2} and (ii) {vq2} → v̂. In this case, f(vq1, v
q
2) → vt and f(vr, v̂) = vt so that f is

continuous.
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Figure 2.4: Continuity of the aggregator

2.3 The Finite Case: Aggregating Sets of Alternatives

In the previous model, voters submited a utility number for each alternative with utilities

normalized to lie in the set [0, 1]. In this section we depart radically from this model and

consider a model where voters have binary choices over each alternative. They can either

declare 0 for an alternative indicating disapproval or 1 indicating approval. The aggregation
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rule takes tuples of voter opinions as inputs and outputs an aggregate binary opinion for

each candidate. This is therefore a model of the aggregation of sets. Our goal is to study

the role of consistency in this framework. 7

Our first observation is that Theorem 1 no longer holds in this setting. For example,

the L-min rule satisfies all the axioms of Theorem 1 since continuity holds vacuously. In

particular, separability across components in the aggregation rule is no longer guaranteed.

We shall impose further axioms that are natural in this context to show that the aggregation

rule must be constant over a large class of profiles. We show that an aggregator satisfies

consistency, component unanimity and component anonymity if and only if it is a Bipartite

Rule. These aggregators pick the same set of alternatives for “almost” all vote profiles. These

aggregators pick a fixed set of alternatives unless voters unanimously approve that alternative

and always reject an alternative unless voters unanimously reject its selection. We proceed

to details.

The set of candidates or alternatives is X with |X| = m. The set of voters is N =

{1, 2, ..., n}. A voter submits vi ∈ {0, 1}m an we denote the set {0, 1}m by A. A component

vij = 0 indicates that voter does not approve of j while a value of 1 indicates approval.

A district or a group is a non-empty set N ⊂ N. A vote profile is a collection of vi for

all voters i ∈ N such that N ⊆ N. A vote profile vS is the restriction of v to a vote profile

for voters in S ⊆ N. An aggregator is a function f : ∪N∈NAn → A which aggregates voter

profiles for any district or subset N.

Several aggregators introduced in Section 2 are not well-defined in this model. These

include the median and the mean aggregators. Component-wise α-medians rules are also

not well-defined unless αj is either 0 or 1. The min., left-aligned, constant and L-min.

aggregators are well-defined in this setting.

We now turn to axioms. The main axiom as before will be consistency which is de-

fined exactly as before. Monotonicity is no longer required and continuity holds vacuously.

However, some new axioms are introduced.

Definition 5 (Component unanimity) An aggregator f satisfies component unanimity

if for all j ∈ X, N ∈ N and v ∈ An,[
vij = v̄j ∀i ∈ N

]
⇒
[
fj(v) = v̄j.

]
The axiom requires the aggregator to select alternatives that have been approved unani-

mously and reject alternatives that have been rejected unanimously. Aggregators that satisfy

component unanimity are the min, max and L-min. Constant rules violate this condition.

Definition 6 (Component anonymity) An aggregator f satisfies component anonymity

if for all N ∈ N for all bijections σij : N ×K → N and all j ∈ X v, v′ ∈ A ,[
vij = v′σ(ij)j for all i ∈ N

]
⇒
[
fj(v) = fj(v

′)
]
.

7There is a fairly extensive literature on the aggregation of sets of alternatives - see for instance, Barberà

et al. (1991), Plott (1973), Goodin and List (2006), Kasher and Rubinstein (1997).
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Component anonymity requires the component outcome to be invariant to premutations

of opinions an alternative j. The min, max and constant aggregators satisfy this condition.

The following piece of notation will be used for the next definition. Let W (v) = {j| vij =

1 for all i ∈ N} and L(v) = {j| vij = 0 for all i ∈ N}.

Definition 7 (Bipartite Rule) An aggregator fBR is a Bipartite Rule if there exists a

partition {F, FC} of X such that

(i)
[
j ∈ F

]
⇒
[
fBF
j (v) = 1 for all v such that j /∈ L(v)

]
.

(ii)
[
j ∈ F c

]
⇒
[
fBR
j (v) = 0 for all v such that j /∈ W (v)

]
.

Bipartite Rule divides the set of alternatives X into favoured (F ) and non-favoured sets

(FC). Alternatives in the favoured set are always selected by the aggregator unless all voters

reject it. An alternative in the non-favoured set does not get selected unless all voters

approve.

Bipartite Rules satisfy component unanimity and component anonymity. These aggre-

gators are consistent and separable. To see that they are consistent suppose v ∈ An and

I = {N1, . . . , Nk} is a partition of N . Let j ∈ X be any alternative. There exists a

set Nk ∈ I such that if there is no unanimous decision over j in the profile for n voters

then there is no unanimity over j in vNk
. This implies fBR

j (vNk
) = fBR

j (v). Therefore,

f(f(vN1), . . . , f(vNK
)) = f(v).

Bipartite Rules are constant over a “large” number of vote profiles. If the number of

voters is large, the set of profiles where voters are unanimous over a component is “small”.

Consequently, a Bipartite Rule will be “nearly” constant.

Remark. Note that Bipartite Rules are a type of component-wise α-median rule with

αj = 1 or 0 for each alternative.

Example 1 The set of voters N = {1, 2, 3} and set of alternatives X = {a, b, c, d}. Let fQ

be a Bipartite Rule with the set of favoured alternative F = {a, c} and the set of non-favoured

alternatives be F c = {b, d}. Then,

fBR


1 0 1

1 1 1

0 0 0

1 1 0

 =


1

1

0

0

 .

Our next result is a characterization of Bipartite Rules.
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2.3.1 The Result

Theorem 2 An aggregator satisfies consistency, component unanimity and component

anonymity if and only if it is a Bipartite Rule.

Proof : Suppose an aggregator satisfies consistency, component unanimity and component

anonymity. Define the order (�) on An as follows.

vi � vk if f(vi, vk) = vi for all vi, vk ∈ A.

We show that the order (�) is a partial order i.e it satisfies the following three properties.

(i) Reflexivity: Pick any vi ∈ A. By component unanimity, f(vi, vi) = vi. Therefore,

vi � vi for all vi ∈ A.

(ii) Anti-symmetry: Suppose vi, vk ∈ A such that vi � vk and vk � vi. Then by definition,

f(vi, vk) = vi and f(vk, vi) = vk. By component anonymity, f(vi, vk) = f(vk, vi) =

vi = vk.

(iii) Transitivity: Suppose vi, vk, vt ∈ A such that vi � vk and vk � vt. By definition,

f(vi, vk) = vi and f(vk, vt) = vk. Therefore, by consistency and component unanimity,

f(vi, vt) = f 2(f(vi, vk), f(vk, vt)) = f 4(vi, vk, vk, vt).

= f 3(vi, f(vk, vk), vt) = f 3(vi, vk, vt) = f 2(vi, f(vk, vt)) = f(vi, vk) = vt.

Therefore, the ordering (�) is a partial order. We claim the following. Suppose vi � vk for

some vi, vk ∈ An. Then f(vi, vt) � f(vk, vt) for all vt ∈ A2.

By consistency and component unanimity we have,

f 2(f(vi, vk), f(vk, vt) = f 4(vi, vk, vk, vt) = f 3(vi, vk, vt).

= f 2(f(vi, vk), vt) = f(vi, vt).

Therefore, the aggregator is increasing in the order (�). We claim that f(vi, vk) � vi and

f(vi, vk) � vk. By consistency, component anonymity and component unanimity,

f 2(f(vi, vk), vi) = f 3(vi, vk, vi) = f 2(f(vi, vi), vk) = f(vi, vk).

Therefore, by the definition of (�) we have f(vi, vk) � vi. Similarly, we can show that

f(vi, vk) � vk. Therefore, the aggregator outputs a vector of evaluations which is a lower

bound according to (�). We finally show that the aggregator must select the unique greatest

lower bound vector of opinions for any pair of voter opinions.
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Suppose f(vi, vk) = vt. We have shown that vt must be a upper bound of vi and vk. We

claim that vt is the unique greatest lower bound. We prove this by contradiction. Suppose

v′t is another lower bound. By definition,

f(vi, v
′
t) = v′t and f(vk, v

′
t) = v′t.

Therefore, by consistency,

f(vi, v
′
t) = f 2(vi, f(vk, v

′
t)) = f 3(vi, vk, v

′
t).

= f 2(f(vi, vk), v
′
t) = f(vt, v

′
t).

Since f(vi, v
′
t) = v′t we have f(vt, v

′
t) = v′t. Therefore, v′t � vt = f(vi, vk). Therefore, f(vi, vk)

is the unique greatest lower bound of vi and vk.

We show that the aggregator is invariant to permutations of opinions over an alternative.8

We claim the following. Let π : N ×X → N be a bijection. Suppose v, v′ ∈ A2 such that

v′ij = vπ(ij)j for some j ∈ X and v′ij′ = vij′ for all j′ ∈ X, j′ 6= j. Then f(v) = f(v′).

We prove the above claim by contradiction. Consider a profile v ∈ A2 and an alternative

j ∈ X. The claim is trivially true if j ∈ L(v) ∪ W (v). Suppose j /∈ L(v) ∪ W (v). Let

v = (vi, vk) and v′ = (v′i, v
′
k) such that vij = v′kj, vkj = vij, v

′
ij′ = vij′ and v′kj′ = vkj′ for all

j′ 6= j, fj(v) = fj(v
′) and fj′(v) 6= fj′(v

′). Therefore, the bijection π is such that π(i, j) = k

and π(k, j) = i and π(i′, j′) = i′ for all i′ ∈ N and j′ ∈ X, j′ 6= j.

We claim that f(v) must be ordered with f(v′). Suppose contrariwise, that f(v) is not

ordered with f(v′). Then f(f(v), f(v′)) = v′′ where v′′ /∈ {f(v), f(v′)}. W.l.o.g assume

that v′′j′ = fj′(v). By definition of (�), we have fj′(vi, v
′
i) = fj′(v

′). This is a violation of

component unanimity. Therefore, f(v) is ordered with f(v′).

W.l.o.g suppose f(v) � f(v′). By the definition of (�), we have fj′(vi, f(v′)) = fj′(v).

This is a contradiction to component anonymity since by our construction fj′(v) = fj′(v
′) =

1 − fj′(v). Similar arguments can be made when f(v′) � f(v). The final claim proves

separability.

We claim the following. For all v, v′ ∈ A2,
[
vj = v′j

]
⇒
[
fj(v) = fj(v

′)
]

for all j ∈ X.

Let v̄ = (v1, v2) ∈ A2 be a profile such that v̄1j + v̄2j = 1. To prove the claim it is

sufficient to show that for all v ∈ A2,
[
v1j + v2j = 1

]
⇒
[
fj(v) = fj(v̄)

]
for all j ∈ X. So

pick any j ∈ X and v ∈ A2 such that v1j +v2j = 1. By definition f 4(v̄, v̄) = f 2(f 2(v̄), f 2(v̄)).

By the property of v̄ there exists a profile v̂ = (v̂1, v̂2) ∈ A2 such that f 4(v̄, v̄) = f 4(v, v̂).

We construct v̂ as follows: (1) v̂ij = vij (ii) v̂ij′ = vij′ for all j′ /∈ L(v) ∪W (v), j′ 6= j (iii)

v̂ij′ = 1 − vij′ for all j′ ∈ L(v) ∪W (v), j′ 6= j for i ∈ {1, 2}. Therefore, (v, v̂) is contructed

by permutations of component values in the profile (v̄, v̄).

By our previous claim and consistency, we have f 4(v̄, v̄) = f 4(v, v̂) = f 4(f(v), f(v), v̂).

Now, we construct a profile ṽ = (ṽ1, ṽ2) ∈ A2 such that f 4(v, v̂) = f 4(ṽ, v). We construct ṽ

8Recall that component anonymity only states that the aggregator is invariant only over the alternative

for which the opinions are permuted.
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as follows: (1) ṽij = fj(v) (ii) ṽij′ = vij′ for all j′ /∈ L(v)∪W (v), j′ 6= j (iii) ṽij′ = 1− vij′ for

all j′ ∈ L(v)∪W (v), j′ 6= j for i ∈ {1, 2}. Therefore, (ṽ, v) is contructed by permutations of

component values in the profile (f(v), f(v), v̂).

By our previous claim, we have f(v, v̂) = f(ṽ, v). Also, note that fj(ṽ) = fj(v). By

consistency, component anonymity and component unanimity, we have f 4
j (v̄, v̄) = f 4

j (v, v̂) =

f 3
j (f(v), v̂) = f 4(f(v), f(v), v̂) = f 4

j (ṽ, v) = f 3
j (fj(v), v) = f 2

j (v).

Therefore, our claim is true and f 2 is a Bipartite Rule where an alternative j ∈ X is in

the favoured set F ⊂ X if fj(0, 1) = 1 and it is in the non-favoured set FC if fj(0, 1) = 0.

We show that if f 2 is a Bipartite Rule then fk is a Bipartite Rule, k ∈ {1, . . . , N}. To

see this, take any profile v ∈ AK . Then we have f(v) = f 2(. . . f 2(f 2(v1, v2), v3), . . . , vK).

Since f 2 is separable, we can focus our attention to any arbitrary alternative j. Suppose

j ∈ L(v). Then by component unanimity fj(v) = 0. Similarly fj(v) = 1 if W (v). Suppose

j /∈ L(v) ∪W (v). Let

f 2(v1j, v2j) = z1.

f 2(f 2(v1j, v2j), v3j) = z2.

...

f 2(...(f 2(v1j, v2j), ...vkj)) = zk−1.

In view of the nature of f 2 there must exist q such that zq ∈ {0, 1} such that zq
′
= zq for all

q′ ≥ q. Therefore, fK is a Bipartite Rule with j ∈ X in the favoured set F if fj(0, 1) = 1 or

j in the non-favoured set FC if fj(0, 1) = 0. This completes the proof. �

Theorem 2 implies that the result of the previous model holds in this setting but with a

stronger set of axioms. These aggregators are also similar to Unanimity Rules described in

Bervoets and Merlin (2012).

2.3.2 Indepedence of axioms

We show the independence of the axioms below.

Component unanimity: Constant Rules satisfy all axioms except component unanim-

ity.

Component anonymity: L-min aggregators satisfy all axioms except component

anonymity.

Consistency: The following aggregator satisfies all the axioms except consistency. An

aggregator fP is a Parity aggregator if for any profile v ∈ An, N ∈ N: (i) fPj (v) = mini∈N(vij)

if N is odd and (ii) fPj (v) = maxi∈N(vij) if N is even. This aggregator satisfies the other com-

ponent unanimity and component anonymity but is not consistent. We show that it violates

consistency. Note that the aggregator is separable so it is sufficient to show its violation of

consistency for some arbitrary alternative j. Suppose vj = (0, 1, 1) is the vector of opinions
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of voters 1, 2 and 3 for an alternative j. By definition we have fPj (vj) = min(0, 1, 1) = 0.

Consider the partition I = {{1, 2}, {3}}. By applying the aggregator to the subgroups we

have fPj (fPj (0, 1), 1) = fP (1, 1) = 1. Therefore, fPj (vj) 6= fPj (fPj (v{1,2}), f
P
j (v3)).

None of the axioms can be weaked to give separability of the aggregator. To see this

note that the L-min aggregator satisfies consistency, component unaninimity and anonymity

but not component anonymity. Moreover, the L-min aggregator is not separable. Therefore,

component anonymity plays a vital role in characterizing separable aggregators.

2.4 Conclusion

This Chapter examines the structure of consistent, multidimensional, multilevel aggregators

in two distinct models. We characterize a class of separable rules called component-wise

α-median rules and generalize the one-dimensional results of Fung and Fu (1975). These

can also be seen as component-wise α-median aggregators. If the set of evaluations is finite,

separability is no longer guaranteed. In addition to consistency, stronger notions of unanimity

and anonymity are required to characterize a class of separable rules called Bipartite Rules.
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Chapter 3

Party Formation as a Network in a

Citizen-candidate Model
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3.1 Introduction

Party formation is an integral part of the functioning of modern democracies. Our objective

in this chapter is to study this phenomenon in a model where candidates are situated in a

one-dimensional policy space and propose links to other candidates in order to form parties.

Party formation is modelled in the same way as the formation of networks which have have

recently received a great deal of attention recently (Jackson (2008), Goyal (2012)). We believe

that this formulation offers several fresh insights on a classical issue in political theory.

We consider a voting model where the policy space is an interval in the real line. There is a

continuum of voters whose ideal policy positions (henceforth policy positions) are distributed

over the policy space. There is a finite set of candidates who also have policy positions.

Candidates decide whether or not to participate in elections and also propose links to other

candidates in order to form parties. In case a candidate chooses not to stand, she becomes

a voter. Since there is a continuum of voters, this decision does not affect the distribution

of policy positions. A candidate may also choose to stand as an independent. A profile of

proposals leads to the formation of political parties. A party is a set of mutually interlinked

candidates; moreover a candidate cannot belong to two parties. Each party adopts a policy

position (we consider two separate ways for this to happen) after which voters vote non-

strategically for the party whose policy platform is closest to their own.

There are two reasons why parties emerge in this model. The first is that it allows

candidates to commit to a policy position (the party’s) which is not their own. In addition

each party standing in an election has to pay a fixed cost which may be thought of as the

cost of campaigning. These costs are spread out if a candidate joins a party instead of

contesting as an independent. On the other hand, there are two types of costs of joining a

party. The winning position is the position of the party which may be different from that

of the candidate. Also, there is a fixed benefit/rent from winning which has to be shared

among all party members.

A critical element of our model is the assumption regarding the policy position of a party.

We assume that this can only be the position of a member of the party. We consider two

different assumptions: populist and internally democratic parties. A populist party chooses

the policy position of the member that is closest to the voters’ median position. An internally

democratic party, on the other hand, chooses the median policy position among its party

members.1

There are several papers that study party formation such as Riviere (1999), Jackson and

Moselle (2002), Levy (2004), Callander (2005) and Osborne and Tourky (2008).2 However,

the paper that bears the closest resemblance to ours is Osborne and Slivinsky (1996). This

paper examines the features of electoral competition in the citizen-candidate model without

1Jackson et al. (2007) consider a model of nomination processes within parties.
2Dhillon (2005) provides an extensive survey on party and coalition formation. Bhattacharya (2014)

considers a model of group formation similar to ours.
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party formation. Our model can be thought of as a model of party (network) formation in

the background of the Osborne and Slivinsky (1996) model.

3.1.1 Results

It is well-known that Nash equilibrium is an unsatisfactory equilibrium notion in network

formation models (Jackson (2008)). For instance, the strategy where no candidate offer links

is always an equilibrium. We therefore, adopt the strong stability notion also described in

Jackson (2008). According to which no subset of candidates can jointly deviate profitably

from the proposed equilibrium.

We obtain different results for populist and internally democratic parties cases. In the

former, there can be at most two parties in equilibrium. This stands in contrast to Osborne

and Slivinsky (1996) where multiple candidate equilibria (greater than two) exist. In the

single party equilibrium, the single party is generically an independent who is the candidate

situated closest to the voter median. Several conditions are required for the existence of

two-party equilibrium. In equilibrium party positions are equidistant from the voter median.

Moreover parties are homogeneous, i.e. the smallest interval containing the positions of all

members of a party are disjoint for the two parties.

Electoral competition is less intense when parties are internally democratic. Conse-

quently, more than two parties can exist in equilibrium as in Osborne and Slivinsky (1996)

(with candidates interpreted as parties). We derive necessary and sufficient conditions for

one-party equilibrium. We derive necessary conditions for two-party equilibrium. We show

by means of examples that two-party and three-party equilibrium can exist.

This chapter is organized as follows. Section 3.2 sets out the model and the equilibrium

concept. Sections 3.3 and 3.4 contain the analysis for the populist parties and internally

democratic parties, respectively. Section 3.5 contains a discussion on some aspects of the

results while the final section concludes.

3.2 The Model

The policy space X is a subset of the real line R. A unit mass of voters have policy positions

that are distributed over X. The cumulative distribution of voter policy positions F (x) is

continuous and assumed to have a unique median xM .
3

The set of candidates is N = {1, 2, . . . , n}. Each candidate i has a policy position xi ∈ X.

The vector (x1, . . . , xn) will remain fixed through the analysis. We assume for simplicity that

no two candidates have the same policy position, i.e. xi 6= xj for all i, j ∈ N . Voters and

candidates have Euclidean preferences on X i.e. voter/candidate i derives utility vi(x) =

−|x− xi| from the policy position x.

3The median xM of F (x) satisfies the following: F (xM ) = 1− F (xM ) = 1
2 .
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The game enfolds as follows. Each candidate i either decides to withdraw from political

competition, indicated by by choosing “0” or offering a set of “links” to the other candidates

(including herself) in order to form a political party.4

A strategy si for i, is either {0} or a non-empty subset of N that includes i. The

requirement that the candidate must offer a link to herself if she chooses to participate

indicates that a candidate is willing to contest the election as an independent if a larger

party is not formed. We believe this assumption is natural. It also simplifies the analysis

considerably.

Let Si denote the set of strategies for candidate i and S = S1 × . . . × Sn denote the

product strategy space. Let s ∈ S. A link between two candidates i and j is formed if j ∈
si and i ∈ sj, i.e. if both candidates agree to be linked. Let L(s) denote the collection of all

links formed in s, i.e. (i, j) ∈ L(s) if i ∈ sj and j ∈ si.
We say that there is a path from i to j in L(s) if there exists a sequence {i1, ..., im} such

that (i) i1 = i (ii) im = j and (iii) (ik, ik+1) ∈ L(s) for all k = 1, . . . ,m− 1. In other words,

a path exists between i and j in L(s) if there exists a sequence of candidates beginning in i

and ending in j such that consecutive candidates have a link.

It is convenient to think of the graph induced by s. We denote this graph by G(s).

The nodes in this graph are the candidates and the set of edges is the set of links L(s). A

component of G(s) is a set of nodes C such that

(i)
[
i, j ∈ C

]
⇒
[
there is a path from i to j

]
.

(ii)
[
i ∈ C and j /∈ C

]
⇒
[

there is no path from i to j
]
.

Clearly, all nodes in G(s) can be partitioned uniquely into components. A clique is a set

of nodes C in G(s) satisfying the property [i, j ∈ C] ⇒ [(i, j) ∈ L(s)]. In other words, a

clique is a complete subgraph of G(s).

A party Pk is a subset of candidates. A party structure P = {P1, . . . , PK} is a collection

of parties.

A strategy profile s induces a party structure P(s) in the following manner:

(a) Every component in G(s) is a party if it is a clique.

(b) If a component in G(s) is not a clique, then all candidates in the component participate

as independents.

It is possible that no political party forms at s. We illustrate party formation with an

example.

4Note that if a candidate chooses not to stand in election and becomes a voter, the voter distribution

remains unchanged.
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Example 2 Let N = {1, 2, . . . , 10}. Consider the strategy profile s where si = {1, 2, 3}
for all i ∈ {1, 2, 3}, s4 = {4, 5, 6, 7}, s5 = {4, 5, 6, 7, 8}, s6 = {4, 5, 6, 7, 8}, s7 =

{4, 5, 6, 7}, s8 = {5, 8}, s9 = {9, 10} and s10 = {10}. The set of links is L(s) =

{(1, 2), (1, 3), (2, 3), (4, 5), (4, 6), (4, 7), (5, 6), (5, 7), (5, 8), (6, 7)}.
There are four components: {1, 2, 3}, {4, 5, 6, 7, 8}, {9} and {10}. However, only

three of them are cliques: {1, 2, 3}, {9} and {10}. Accordingly, the set parties of is

{{1, 2, 3}, {4}, {5}, {6}, {7}, {8}, {8}, {10}}. This is shown in the figure below.

1

2 3

9

10

4 5

6 7

8

Figure 3.1: Party formation

Let Pk(s) be a political party. The party policy position is denoted by x(Pk(s)) ∈ X of party

Pk(s) and is is the policy position of a member of the party. Similar assumptions have been

made in Jackson et al. (2007) and Levy (2002). We consider two types of parties:

(i) Populist parties: The party policy position Pk(s) is the policy position of the member

of Pk(s) who is closest to the median of the voter distribution xM . If there is more

than one policy position at the same distance from xM , the policy position closest to

the median of the constituent policy positions in the party is chosen. In the case where

two policy positions are closest to xM and each one is a median position in the party,

each policy position is chosen with equal probability. One can think of the party policy

position party as the position of a “populist” leader.

(ii) Internally democratic parties: The party policy position Pk(s) is the median policy

position of the members in the party. If the number of members in the party is odd, the

party policy position is the unique median policy position in the party. If the number

of members in the party is even, the party policy position is the policy position of the

member who is closest to xM . In case both median policy positions are equidistant from

xM , each policy position is chosen with equal probability. The party policy position

of an internally democratic party emerges as an outcome of intra-party voting. Since

preferences are Euclidean, the median policy position will defeat any other member

position in a pairwise vote (the median-voter theorem). Party policy positions of this

nature have been considered in Jackson et al. (2007) and Teorell (1999).
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Voters (including candidates who have chosen not to participate) vote for parties on the

basis of their party policy position. They are non-strategic and vote for the policy platform

closest to their own policy position. The party that wins the most votes is elected and its

policy position implemented. More than one political party may receive the most votes in

which case each of the winners has its party policy position chosen with equal probability.

These features of the political competition model are borrowed directly from Osborne and

Slivinsky (1996).

We assume that each party has to pay a fixed cost c > 0 for participating in elections.

This may be thought of as the minimum cost necessary for campaigning and bringing the

party policy position to the attention of voters. We assume that these costs are shared

equally amongst the members of a party.

The winning party receives benefits or rents over and above the utility of having its party

policy position implemented. These can be interpreted as “spoils of victory” borrowing the

term from Osborne and Slivinsky (1996). This positive rent r > 0 is shared equally amongst

all members of the winning political party.

Suppose political parties {Pk}Wk=1 with policy positions {x(Pk)}Wk=1 obtain highest vote

shares in the elections. By our assumption, each of the party policy positions is implemented

with probability 1
W

. Consider candidate i’s with policy position xi. Her expected payoff from

the outcome of the elections is 1
W

(
− |xi − x(P1)| − . . . − |xi − x(PW )|

)
= −|xi − x̂| where

x̂ = 1
W

(
x(P1)+ . . .+x(PW )

)
. This follows from the assumption of Euclidean preferences. We

shall refer to x̂ as the certainty-equivalent outcome of the lottery where each of the positions

{x(Pk)}Wk=1 is implemented with probability 1
W

.

We can now describe the payoffs to candidate i at strategy profile s. As before, let P(s)

be the set of political parties formed at s and let W(s) = {Pk(s)}Wk=1 be the set of winning

political parties at s. Candidate i’s payoff πi(s) is given by

πi(s) =


r

W |Pk(s)| − |xi − x̂| −
c

|Pk(s)| if i ∈ Pk(s) and Pk(s) ∈ W(s)

−|xi − x̂| − c
|Pk(s)| if i ∈ Pk′(s) and Pk′(s) /∈ W(s)

−|xi − x̂| if si = 0 and P(s) 6= ∅
−∞ if no candidate participates i.e. P(s) = ∅.

Following Osborne and Slivinsky (1996) we assume that all candidates obtain a payoff

of −∞ if no party forms i.e. the political process breaks down. Observe also that the

distribution F of voters’ policy positions is unaffected by a candidate’s participation decision.

This is a consequence of the fact that there finite number of candidates and a continuum

of voters. Therefore, the participation decisions by candidates do not affect calculations

regarding winning parties and winning party policy positions.

The main features of the game are summarized below:

(i) The distribution of voters’ policy position is fixed and common knowledge.

(ii) Candidates decide whether or not to participate in electoral competition.
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(iii) Participating candidates specify candidates they choose to form links with. This leads

to party formation and party policy platforms. All parties pay a fixed cost which is

distributed equally amongst party members.

(iv) Voters vote sincerely for parties based on the party policy platforms.

(v) The party that wins the election implements its policy platform.

(vi) Winning political parties enjoy added rents that are equally distributed amongst its

members.

We provide an illustrative example below.

Example 3 The policy space is [0, 1] and the median of the voter distribution is xM . The

set of candidates is N = {1, 2, . . . , 8}. Policy positions {xi}8
i=1 are at equal distances from

each other as shown in Figure 3.2.

xM

x1 x2 x3 x4 x5 x6 x7 x8

Figure 3.2: Distribution of voter policy positions

Let s1 = {2, 3, 4}, s2 = {1, 3, 4}, s3 = {1, 2, 4}, s4 = {1, 2, 3}, si = {i} for i ∈ {5, 6}
and si = {0} for i ∈ {7, 8}. Then L(s1, . . . , s8) = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.
Therefore, P(s) = {{1, 2, 3, 4}, {5}, {6}} i.e. there is a political party comprising 1, 2, 3 and

4 and independent candidates 5 and 6. Candidates 7 and 8 become voters. Let P1(s), P2(s)

and P3(s) denote the partes {1, 2, 3, 4}, {5} and {6} respectively.

Consider the case where parties are populist. The policy positions of the various parties

are x(P1(s)) = x4, x(P2(s)) = x5 and x(P3(s)) = x6. For convenience suppose xM lies half-

way between x4 and x5. Then party P1(s) obtains at least half the votes and P2(s) and

P3(s) obtain strictly less than half the votes. Therefore, party P1(s) wins the election and

implements its policy position x4. This is illustrated in Figure 3.3.

The payoffs of the candidates are,

πi(s) =


r−c

3
− |xi − x4| for all i ∈ P1(s)

−|xi − x4| − c for i ∈ {5, 6}
−|xi − x4| for i ∈ {7, 8}

Consider the case where parties are internally democratic. The policy positions of the

various parties are x(P1(s)) = x3, x(P2(s)) = x5 and x(P3(s)) = x6. The outcome of the
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x(P1)

{x1, . . . , x4} x5 x6

xM

Figure 3.3: Party positions

election depends on the distribution of voters’ policy positions. Any of the parties can win

depending on F . For instance, let be the probability density function f (derived from F ) be

of the form shown in Figure 3.4. The shaded regions I, II and II indicate the votes obtained

by parties P1, P2 and P3 respectively. Since Region II has the greatest area, P2 obtains most

votes. Therefore, the policy position x4 is implemented and the payoffs of candidates are

same as before.

x(P1) x5 x6xM

I II

III

Figure 3.4: Candidate 5 wins

3.2.1 The equilibrium notion

It is well-known that the notion of Nash equilibrium applied to network formation is very

weak and leads to unsatisfactory predictions. For example, no candidate offering any links

is always a Nash equilibrium. Following Jackson (2008) we use the notion of strong stability.

According to this notion, no subset of agents can jointly deviate and improve upon the

proposed equilibrium.

Let T ⊂ N . A set of links L(s′) is T -reachable from L(s) if,

(i)
[
(i, j) ∈ L(s′) and (i, j) /∈ L(s)

]
⇒

[
{i, j} ⊆ T

]
.

(ii)
[
(i, j) ∈ L(s) and (i, j) /∈ L(s′)

]
⇒

[
{i, j} ∩ T 6= ∅

]
.
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A set of links is T -reachable by a subset T of candidates if (a) a new link is formed and

both the candidates who form the link are in T (b) a link is broken and at least one of the

candidates who breaks a link is in T . This is illustrated in the example below.

Example 4 Let N = {1, 2, . . . , 5} and let s be a strategy such that

L(s) = {(1, 2), (2, 3), (3, 4), (4, 5)}. The set of links L(s′) = {(1, 2), (1, 3), (1, 4), (4, 5)} is not

T -reachable from L(s) if T = {1, 2, 3} since a new link (1, 4) is formed for which the approval

of 4 is required. Similarly, L(s′) is not T -reachable from L(s) by T = {1, 2, 4} since the link

(2, 3) requires the approval of 3. The set of links L(s′) is T -reachable by the set of candidates

T = {1, 2, 3, 4}.

Definition 8 (Strong Stability) The strategy profile s∗ is strongly stable if for any T ⊂
N and any L(s′) that is T -reachable from L(s∗),

[
πi(s

′) > πi(s
∗) for some i ∈ T

]
⇒
[
∃ j ∈ T s.t πj(s

′) < πj(s
∗)
]
.

Suppose s∗ is strongly stable. Consider a deviation by a set of candidates T . If this

deviation makes some member of T strictly better-off, there must exist another candidate in

T who is made strictly worse-off.

3.3 Equilibrium Analysis: Populist Parties

In this section we examine equilibria when parties are populist. Our main result is that at

most two parties can form in equilibrium.

We characterize one-party equilibrium. Two-party equilibria are hard to characterize.

We provide some necessary conditions that must hold in such equilibria. We also provide

numerical examples of such equilibria.

3.3.1 Number of parties

Proposition 1 (Number of parties in equilibrium) Suppose s∗ is an equilibrium.

Then |P(s∗)| ≤ 2.

Proof : We prove by contradiction. Let s∗ be an equilibrium and suppose |P(s∗)| > 2. We

proceed in steps. According to the next Lemma the “extreme” parties must be winning.

Lemma 11 Let P1(s∗), PK(s∗) ∈ P(s∗) be such that x(P1(s∗)) ≤ x(Pk(s
∗)) for all k ∈ P(s∗)

and x(PK(s∗)) ≥ x(Pk(s
∗)) for all k ∈ P(s∗). Then P1(s∗), PK(s∗) ∈ W(s∗) i.e. both parties

must win the election with positive probability.
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Proof : Suppose the Lemma is false. Let x(P1(s∗)) ≤ x(Pk(s
∗)) for all k ∈ P(s∗). Suppose

P1(s∗) /∈ W(s∗). We consider two cases separately:

Case 1: |P1(s∗)| > 1. Since parties are populist, there exists a candidate say i who is a

member of P1(s∗) and xi 6= x(P1(s∗)). The payoff of the candidate is c
|P1(s∗)| − |xi − x̂(s)|.

Consider a deviation by candidate i to non-participation i.e. s′i = {0}. Notice that by

definition the new party is P1(s′i, s
∗
−i) = P1(s∗)\{i} and x(P1(s′i, s

∗
−i)) = x(P1(s∗)). Therefore,

x̂(s′i, s
∗
−i) = x̂(s∗) and P1\{i}. We have πi(s

′
i, s
∗
−i) = |xi − x̂(s∗)| > −|xi − x̂(s∗)| − c

|P1(s∗)| =

πi(s
∗). Hence, the deviation is beneficial.

Case 2: |P1(s∗)| = 1 i.e. i is an independent candidate. Once again, consider a deviation

s′i = {0}. Therefore, x̂(s′i, s
∗
−i) ≤ x̂(s∗). Hence, πi(s

′
i, s
∗
−i) = −|xi − x̂(s′i, s

∗
−i)| > −|xi −

x̂(s∗)| − c
|P1(s∗)| = πi(s

∗). Therefore, i deviates. �

Since |P(s∗)| ≥ 3 and candidate positions are all distinct there must exist two parties

say P1(s∗) and P2(s∗) such that either x(P1(s∗)), x(P2(s∗)) ≤ x̂(s∗) or x(P1(s∗)), x(P2(s∗)) ≥
x̂(s∗). Assume w.l.o.g. that the former is true and also assume w.l.o.g. that x(P1(s∗)) <

x(P2(s∗)) < x(Pk(s
∗)) for all k /∈ {1, 2}. By Lemma 11 P1(s∗) ∈ W(s∗).

Let i1 ∈ P1(s∗) and i2 ∈ P2(s∗) be such that xi1 = x(P1(s∗)) and xi2 = x(P2(s∗)). Let

|W(s∗)| = W ∗ be the number of winning parties in s∗. We consider several cases:

Case 1: r ≥ c. There are four sub-cases to consider:

Case 1(a): |P1(s∗)| ≤ |P2(s∗)| and P2(s∗) ∈ W(s∗).

Case 1(b): |P1(s∗)| ≤ |P2(s∗)| and P2(s∗) /∈ W(s∗).

Case 1(c): |P1(s∗)| > |P2(s∗)| and P2(s∗) ∈ W(s∗).

Case 1(d): |P1(s∗)| > |P2(s∗)| and P2(s∗) /∈ W(s∗).

We consider each case separately.

Case 1(a) : Let i3 ∈ P2(s∗) be a candidate such that her policy position xi3 is closest to

x(P1(s∗)) and xi3 > x(P1(s∗)). Let T = {i ∈ P1(s∗) s.t xi ≤ x(P1(s∗))} ∪ {i3}. Consider

the following deviation s′: s′i = T for all i ∈ T . The set of links L(s′) is T -reachable from

L(s∗). Moreover, the set of candidates T form a clique and component i.e. candidates in

T form a new party. Let this party be denoted by P3(s′). By construction, the remaining

candidates in P1(s∗) and P2(s∗) continue to be parties which we denote by P1(s′) and P2(s′)

respectively.

Suppose i3 6= i2. Then, by the definition of populist parties we have, x(P1(s∗)) <

x(P3(s′)) ≤ x(P2(s∗)) = x(P2(s′)). Some votes for P2(s∗) switch to P3(s′) and all the votes

of P1(s∗) also shift to P3(s′). Since P1(s∗) ∈ W(s∗) we have P3(s′) = W(s∗). Therefore,

x̂(s′) = x(P3(s′)) = xi3 .

Suppose i3 = i2. Then, by the definition of populist party policy position we have,

either (i) x(P2(s′)) < x(P1(s∗)) < x(P3(s′)) = x(P2(s∗)) or (ii) x(P1(s∗)) < x(P3(s′)) =

x(P2(s∗)) < x̂(s∗) < x(P2(s′)). Since P2(s∗) ∈ W(s∗), we have P3(s′) ∈ W(s′). Therefore,

x̂(s′) = x(P3(s′)) = xi3 .
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Note that xi ≤ xi3 < x̂(s∗) for all i ∈ P3(s′). Hence, each candidate i ∈ P3(s′) strictly

prefers x̂(s′) to x̂(s∗). We show that πi(s
′) > πi(s

∗) for all i ∈ P3(s′) = T . Let ∆Gi(s
′, s∗)

denote the change in rents and costs for candidate i when the strategy changes from s∗ to s′.5

Let |P1(s∗)| = n1, |P2(s∗)| = n2 and |P3(s′)| = n3. Then, for all i ∈ P3(s′)\{i3}, ∆Gi(s
′, s∗)

is given by

∆Gi(s
′, s∗) =

r

n3

− c

n3

− r

Wn1

+
c

n1

=
Wn1r −Wn1c− n3r +Wn3c

Wn1n3

The numerator is non-negative since

Wn1(r − c)− n3(r −Wc) ≥ 0.

Therefore, ∆Gi(s
′, s∗) ≥ 0 for all i ∈ P3(s′)\{i3}. Since each member of P3(s′) prefers x̂(s′)

to x̂(s∗), we have πi(s
′) > πi(s

∗) for all i ∈ P3(s′)\{i3}. We show that πi3(s
′) > πi3(s

∗). We

have

∆Gi3(s
′, s∗) =

r

n3

− c

n3

− r

Wn2

+
c

n2

=
Wn2r −Wn2c− rn3 +Wn3c

Wn1n3

The numerator is non-negative since

Wn2(r − c)− n3(r − c) ≥ 0.

Therefore, ∆Gi3(s
′, s∗) ≥ 0. Since i3 strictly prefers x̂(s′) to x̂(s∗), we have πi3(s

′) > πi3(s
∗).

Hence, the deviation to s′ is beneficial for T .

Case 1(b): Suppose P2(s∗) is losing with certainty. We claim that |P2(s∗)| = 1. To see this,

consider any candidate i 6= i2 and the following deviation by i: s′i = {0}. The remaining mem-

bers of P2(s∗) is a party i.e. P1(s′i, s
∗
−i) = P1(s∗)\{i}. By definition x(P1(s∗)) = x(P1(s′i, s

∗
−i)).

Therefore, x̂(s′) = x̂(s∗). We have, πi(s
′
i, s
∗
−i) = −|xi−x̂(s′)| > −|xi−x̂(s′)|− c

|P2(s∗)| = πi(s
∗).

Therefore, i deviates. Hence, |P2(s∗)| = 1. Since |P1(s∗)| ≤ |P2(s∗)|, we have |P1(s∗)| = 1.

Let the candidates i1 and i2 be as defined before i.e. x(P1(s∗)) = xi1 and x(P2(s∗)) = xi2 .

Let T = {i1} ∪ {i2}. Consider the deviation s′ by T : s′i = T for all i ∈ T . The set

of links L(s′) is T -reachable from L(s∗). Moreover, the candidates in T form a clique and

a component. Therefore, the candidates in T form a party. Let this party be denoted by

P3(s′). By the definition of populist parties, we have x(P1(s∗)) < x(P3(s′)) = x(P2(s∗)) <

x̂(s∗) < x(P1(s′)). The votes for party P1(s∗) and P2(s∗) switch to P3(s′). Therefore,

x̂(s′) = x(P3(s′)) = xi2 .

5We shall use this notation extensively in the rest of the Chapter.
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Both candidates in P3(s′) strictly prefer x̂(s′) to x̂(s∗). We show that πi(s
′) > πi(s

∗) for

all i ∈ P3(s′). Let |P1(s∗)| = n1, |P2(s∗)| = n2 and |P3(s′)| = n3. Then ∆Gi(s
′, s∗) for all

i1 ∈ P3(s′) is given by

∆Gi1(s
′, s∗) =

r

n3

− c

n3

− r

Wn1

+
c

n1

=
Wn1(r − c)− n3r +Wn3c

Wn1n3

The numerator is non-negative since,

Wn1(r − c)− n3(r −Wc) ≥ 0.

Therefore, ∆Gi1(s
′, s∗) ≥ 0. Hence, πi1(s

′) > πi1(s
∗).

We show that πi2(s
′) > πi2(s

∗). We have

∆Gi2(s
′, s∗) =

r

n3

− c

n3

+ c

The numerator is non-negative i.e.

r + (n3 − 1)c ≥ 0.

Therefore ∆Gi2(s
′, s∗) ≥ 0 and hence πi2(s

′) > πi2(s
∗). Therefore, T deviates.

Case 1(c): Let i1 and i2 be as defined earlier. Let T = {i ∈ P2(s∗) s.t xi ≤ x(P2(s∗))} ∪ {i1}
and consider the deviation s′: s′i = T for all i ∈ T . Clearly, T forms a party. Let this

new party be denoted by P3(s′). The remaining members in P1(s∗) and P2(s∗) continue

to be parties, which we denote by P1(s′) and P2(s′). By definition, either (i) x(P1(s′)) <

x(P3(s′)) = x(P2(s∗)) or (ii) x(P3(s′)) = x(P2(s∗)) < x̂(s∗) < x(P1(s′)). Some votes for party

P1(s∗) and all the votes for party P2(s∗) switch to P3(s′). Therefore, P3(s′) = W(s′) and

hence x̂(s′) = x(P3(s′)). Each candidate in P3(s′) strictly prefers x̂(s′) to x̂(s∗). We show

that πi(s
′) > πi(s

∗) for all i ∈ P3(s′).

Let |P1(s∗)| = n1, |P2(s∗)| = n2 and |P3(s′)| = n3. Then ∆Gi(s
′, s∗) for all candidates

∈ P3(s′)\{i1} is given by,

∆Gi(s
′, s∗) =

r

n3

− c

n3

− r

Wn2

+
c

n2

=
Wn2r −Wn2c− n3r +Wn3c

Wn1n3

.

The numerator is non-negative since

Wn2(r − c)− n3(r −Wc) ≥ 0.

Therefore, ∆Gi(s
′, s∗) ≥ 0 and πi(s

′) > πi(s
∗) for all i ∈ P3(s′)\{i1}.
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We show that πi2(s
′) > πi2(s

∗). We have

∆Gi1(s
′) =

r

n3

− c

n3

− r

Wn1

+
c

n1

=
Wn1r −Wn1c− n3r +Wn3c

Wn1n3

.

The numerator is non-negative since Wn1(r−c)−n3(r−Wc) ≥ 0. Therefore ∆Gi1(s
′, s∗) ≥ 0

and πi1(s
′) > πi1(s

∗). Hence T deviates to s′.

Case 1(d): We can use the arguments in Case 1(b) to show that |P2(s∗)| = 1. Let this

candidate be i2 i.e. x(P2(s∗)) = xi2 . Let i1 be as defined earlier. Consider T = {i ∈
P1(s∗) s.t xi ≤ x(P1(s∗))}∪{i2} and the deviation s′: s′i = T for all i ∈ T . The candidates in

T form a new party which we denote by P3(s′). The remaining members in party P1(s∗) form

a party which we denote by P1(s′). By definition, we have x(P1(s∗)) < x(P3(s′)) = x(P2(s∗)).

The votes for party P1(s∗) and P2(s∗) switch to P3(s′). Therefore {P3(s′)} = P(s′) and

x̂(s′) = x(P3(s′)).

Each candidate in P3(s′) strictly prefers x̂(s′) to x̂(s∗). Let |P1(s∗)| = n1, |P2(s∗)| = n2

and |P3(s′)| = n3. Then ∆Gi(s
′, s∗) for all i ∈ P3(s′)\{i2} is given by

∆Gi(s
′, s∗) =

r

n3

− c

n3

− r

Wn1

+
c

n1

=
Wrn1 −Wcn1 − rn3 +Wcn3

Wn1n3

.

The numerator is non-negative since

Wn1(r − c)− n3(r −Wc) ≥ 0.

Therefore ∆Gi(s
′, s∗) ≥ 0 for all i ∈ P3(s′)\{i2} and hence πi(s

′) > πi(s
∗) for all i ∈

P3(s′)\{i2}.
We show that πi2(s

′) > πi2(s
∗). We have

∆Gi2(s
′, s∗) =

r

n3

− c

n3

+ c =
r + (n3 − 1)c

n3

≥ 0.

Therefore, ∆Gi(s
′, s∗) ≥ 0 and πi2(s

′) > πi2(s
∗). Hence, T deviates.

Case 2: Suppose r < c. We claim that |Pk(s∗)| = 1 for k ∈ {1, 2}. Let ik ∈ Pk(s∗) be such

that xik = x(Pk(s
∗)). There exists a candidate i 6= ik who can deviate to non-participation

i.e. s′i = {0}. As a result, the remaining members in Pk(s
∗) forms a party i.e. P1(s′i, s

∗
−i) =

Pk(s
∗)\{i}. By definition x(Pk(s

′
i, s
∗
−i)) = x(P1(s∗)). Therefore x̂(s′) = x̂(s∗). The change

in payoffs for candidate i is given by πi(s
′) = −|xi− x̂(s∗)| > −|xi− x̂(s∗)|− c

|Pk(s∗)| = πi(s
∗).

Therefore, i deviates. Hence |Pk(s∗)| = 1 for k ∈ {1, 2}.
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Let i1 and i2 be as defined earlier. By the earlier arguments we have P1(s∗) = {i1} and

P2(s∗) = {i2}. Consider the set of candidates T = {i1, i2} and the deviation s′: s′i = T

for i ∈ T . The candidates T form a party. Let this party be denoted by P3(s′). By

definition, we have x(P3(s′)) = xi2 . Votes for P1(s∗)) and P2(s∗) switch to P3(s′). Therefore,

x̂(s′) = x(P3(s′)). Both candidates in P3(s′) strictly prefer x̂(s′) to x̂(s∗). We show that

πi(s
′) > πi(s

∗) for i ∈ P3(s′). We have

∆Gi(s
′, s∗) =

r

2
− c

2
− r

W
+ c =

W (r − c)− 2(r −Wc)

2W
≥ 0.

Therefore, πi(s
′) > πi(s

∗) for i ∈ P3(s′). Hence T deviates. �

According to Proposition 1 all equilibria have at most two parties.

3.3.2 One-party equilibrium

In this subsection, we characterize equilibria where only one party participates.

Proposition 2 (One-party equilibrium) Let s∗ be an equilibrium with P(s∗) =

{Pk(s∗)}. Then there are three cases:

(i) r > c. If there is a unique candidate closest to xM then Pk(s
∗) consists only of this

candidate. If there are two candidates that are closest to xM then there are two further

possibilities :

(a) Party Pk(s
∗) consists of the two candidates closest to xM .

(b) If the condition |x(Pk(s
∗))− xM | ≤ c− r

2
holds, then either of the two candidates

participating independently is an equilibrium.

(ii) r < c. If there is a unique candidate closest to xM then Pk(s
∗) consists only of this

candidate. If there are two candidates that are closest to xM . Then there are three

further possibilities :

(a) Party Pk(s
∗) consists of the two candidates closest to xM .

(b) If the condition |x(Pk(s
∗))− xM | ≤ c− r

2
holds, then either of the two candidates

participating independently is an equilibrium.

(c) If the condition
∣∣xi − xM

∣∣ ≤ c−r
2n

holds, then Pk(s
∗) consists of any candidate

i ∈ N.

(iii) r = c. Pk(s
∗) consists of the candidate closest to xM together with any subset of the

remaining candidates.

Proof : Let s∗ be an equilibrium with P(s∗) = {Pk(s∗)}.
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(i) We first show that there exists a strategy profile which supports a one-party equilibrium

of the type described. Let i be the (unique) candidate who is closest to xM . Consider

the strategy s∗: s∗i = {i} and s∗i′ = {0} for all i′ 6= i. We claim that s∗ is an equilibrium.

Firstly, note that no subset of candidates T such that i /∈ T can deviate jointly to enter

and win. If T deviates to s′, then the outcome after the deviation is x̂(s′) = x̂(s∗) = xi.

Therefore, their payoff difference is πj(s
′)−πj(s∗) = −|xj−xi|− c

|T |+|xj−xi| = −
c
|T | < 0.

Therefore, T will not deviate if i /∈ T .

Suppose T ⊂ N such that i ∈ T deviates to s′ to form a new party. We have x̂(s′) =

x̂(s∗) = xi. Then i’s payoff is πi(s
′) = −|xi−x̂(s′)|+ r−c

|T | < −|xi−x̂(s∗)|+r−c = πi(s
∗).

Hence, i does not deviate and s∗ is an equilibrium.

(a) Let i be a candidate closest to xM . We show that i ∈ Pk(s
∗). Suppose not.

Then candidate i can deviate to s′i = {i} and win the election. Since x̂(s′) = xi
her payoff difference is πi(s

′) − πi(s∗) = −|xi − xi| + r − c + |xi − x(Pk(s
∗))| =

r − c + |xi − x(Pk(s
∗))| > 0. Therefore, i deviates, leading to a contradiction.

Hence i ∈ Pk(s∗).
Suppose j ∈ Pk(s

∗) and j is not a candidate who is closest to xM . Consider

the deviation s′i = Pk(s
∗)\{j} for all i ∈ Pk(s

∗)\{j}. Since the party Pk(s
∗)

contains the candidate closest to xM , the outcome after the deviation is the same

i.e. x̂(s′) = x̂(s∗). Therefore, the payoff difference for all i ∈ Pk(s
∗)\{j} is

πi(s
′)−πi(s∗) = −|xi−x̂(s′)|+ r−c

|Pk(s∗)|−1
+|xi−x̂(s∗)|− r−c

|Pk(s∗)| = r−c
|Pk(s∗)|−1

− r−c
|Pk(s∗)| >

0. Therefore, all the deviating candidates are better-off. The same arguments can

be made for the case when there are two candidates who are closest to xM .

(b) Suppose there are two candidates i1 and i2 who are closest to xM and Pk(s
∗) =

{i1}. Consider the deviation s′i2 = {i2}. The outcome after the deviation is

x̂(s′) =
xi1+xi2

2
= xM . The payoff difference for i2 is πi2(s

′) − πi1(s∗) = −|xi2 −
xM | + r

2
− c + |xi2 − xi1| = r−2c

2
+ |xi2 − xM |. Therefore, candidate i2 does not

deviate if |xi2 − xM | ≤ c − r
2
. Since |xi2 − xM | = |x(Pk(s

∗)) − xM |, we have

|x(Pk(s
∗))− xM | ≤ c− r

2
.

(ii) We prove part (a). Part (b) can be proved similarly. Suppose there is a unique

candidate closest to xM and the claim is false. We show that |Pk(s∗)| = 1. Let

ik ∈ Pk(s
∗) be such that xik = x(Pk(s

∗)). Then there exists a candidate i′ 6= ik,

i′ ∈ Pk(s∗). Consider the deviation s: si = {0}. By definition, x̂(s′) = x̂(s∗). Moreover,

candidate i’s payoff is πi(s
′) = −|xi− x̂(s′)| > r−c

|Pk(s∗)| −|xi− x̂(s∗)| = πi(s
∗). Therefore,

candidate i deviates. This is a contradiction. Hence, |Pk(s∗)| = 1. If there are two

candidates in the party who are equally close to xM we can use similar arguments to

show that |Pk(s∗)| = 2. Therefore, |Pk(s∗)| ≤ 2.

(c) We show that any candidate i such that 2|xi − xM | < c−r
n

participating indepen-

dently is an equilibrium. Consider the strategy s∗: s∗i = {i} and s∗i′ = {0} for all
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i′ 6= i. We claim that s∗ is an equilibrium. Any subset of candidates T that cannot

win will not enter. Suppose T can deviate to s′ and win as a party. Let this party be

denoted by P1(s′). Let j ∈ T such that xj = x(P1(s′)). We have, πj(s
′) = r−c

|T | . The

payoff of candidate j in s∗ is πj(s
∗) = −|xj − xi|. The candidate j can obtain at most

−2|xi − xM | by deviating to s′. If |xj − xM | > 2|xi − xM |, then P1(s′) will lose the

election. Therefore |xj−xM | < 2|xi−xM |. Hence j does not deviate if c−r|T | > 2|xi−xM |.
Hence, any set of candidates T will not deviate.

(iii) Let T = Pk(s
∗). We claim that the candidate closest to xM belongs to T . Suppose

i is the candidate closest to xM and i /∈ Pk(s
∗). Then candidate i can deviate to

s′i = {i}. The outcome of the election is x̂(s′) = xi. The payoff difference for i is

πi(s
′)− πi(s∗) = r − c+ |xi − x(Pk(s

∗))| > 0. Therefore, i deviates. Hence i ∈ Pk(s∗).

Suppose s∗ is a strategy where T forms a party i.e. T = Pk(s
∗) and T consists of

the candidate(s) closest to xM . We show that this is an equilibrium. Suppose a set

of candidates T ′ deviates to s′ and form a party. If their party wins then x̂(s′) =

x̂(s∗). The payoff difference for a candidate i ∈ T ′, i /∈ T is πi(s
′) − πi(s∗) = −|xi −

x̂(s′)| − r−c
|T ′| + |xi − x̂(s∗)| = 0. Similarly, if i ∈ T ′ ∩ T , then the payoff difference is

πi(s
′)− πi(s∗) = −|xi − x̂(s′)| − r−c

|T ′| + |xi − x̂(s∗)| − r−c
|Pk(s∗)| = 0.

�

According to Proposition 2 “most” one party equilibria consists of candidate closest to

the voter median. In the special case when benefits equal costs, there are multiple equilibria.

The party consists of the candidate closest to the voter median together with an arbitrary

subset of the other candidates.

3.3.3 Two-party equilibrium

The structure of equilibrium is considerably more complex than the one-party equilibrium

case. We are unable to provide a complete description of such equilibria. However, we are

able to show by means of an example that such equilibria exist. We are also able to identify

some important features of such equilibria.

Our model does not preclude the formation of parties that are heterogeneous in the

following sense. There are four candidates located at 0.1, 0.2, 0.3 and 0.4. The candidates

located at 0.1 and 0.3 form one party and the candidates located at 0.2 and 0.4 form another.

One of the nice features of our model is that this phenomenon cannot occur in equilibrium.

We say that party Pk ∈ P is homogeneous if the smallest interval that contains the policy

positions of all the members of Pk does not contain an policy position of a member of another

party Pk′(s) ∈ P , Pk′ 6= Pk. A heterogeneous party is a party that is not homogeneous. The

example below provides further clarification.
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Example 5 N = {1, 2, 3, 4, 5, 6}. Let x1 < x2 < x3 < x4 < x5 < x6. If P1 = {1, 3, 5}
and P2 = {2, 4, 6}, neither party is homogeneous. The smallest interval that contains all the

policy positions of members in P1 is [x1, x5] . However, x2, x4 ∈ [x1, x5] and 3, 5 ∈ P2.

On the other hand, if P1 = {1, 2, 3} and P2 = {4, 5, 6}, then both parties are homegeneous.

The next Proposition highlights some key features of all two-party equilbria.

Proposition 3 (Two-party equilibrium) Let s∗ be an equilibrium with P(s∗) =

{P1(s∗), P2(s∗)} and x(P1(s∗)) < x(P2(s∗)). Then

(i) max{|P1(s∗)|, |P2(s∗)|} > 1.

(ii) r ≥ 2c.

(iii) There exists ε > 0 such that x(P1(s∗)) = xM − ε and x(P2(s∗)) + ε.

(iv) Both the parties are homogeneous.

Proof : Let s∗ is an equilibrium as specified in the statement of Proposition 3.

(i) Suppose contrariwise that |P1(s∗)| = |P2(s∗)| = 1. Let i1 and i2 be as defined earlier.

Consider the deviation s′: si = {i1, i2} for i ∈ {i1, i2}. Let the new party be denoted

by P1(s′). Then x̂(s′) = x̂(s∗). Observe that for i = i1, i2, πi(s
′) − πi(s

∗) = −|xi −
x̂(s′)| + r−c

2
+ |xi − x̂(s′)| − r

2
+ c = r−c

2
− r

2
+ c = c

2
. Therefore {i1, i2} deviate which

leads to a contradiction. Hence, either |P1(s∗)| > 1 or |P2(s∗)| > 1.

(ii) Suppose |P1(s∗)| > 1. Consider a candidate i ∈ P1(s∗), i 6= i1. Candidate i can

deviate to s′i = {0}. By definition, the remaining members of P1(s∗) continue to be

a party. Therefore, x̂(s′) = x̂(s∗). Therefore πi(s
∗) = r

2|P1(s∗)| −
c

|P1(s∗)| − |xi − x̂(s∗)|
and πi(s

′) = −|xi − x̂(s′)| = −|xi − x̂(s∗)|. Candidate i does not deviate to s′ if

πi(s
∗)− πi(s′) = r

2|P1(s∗)| −
c

|P1(s∗)| ≥ 0. Therefore, r ≥ 2c.

(iii) Applying Lemma 11, Pk(s
∗) ∈ W(s∗) for k ∈ {1, 2}. This immediately implies that

there exists ε > 0 such that x(P1(s∗)) = xM − ε and x(P2(s∗)) = xM + ε.

(iv) If P1(s∗) is homogeneous then so is P2(s∗). Suppose contrariwise that neither party is

homogeneous. Therefore there exists a candidate i ∈ P1(s∗) such that xi ≥ x(P2(s∗)).

Consider the set of players T = P1(s∗)\{i}. Let the strategy profile s′ be such that

s′j = T for all j ∈ T . Let this new party be P ′1(s). Let the remaining parties be

P ′2(s) = P2(s∗) and P ′3(s) = {i}. We show that every candidate in T is better-off after

the deviation.

The party positions satisfy x(P ′1(s)) < x(P ′2(s)) < x(P3(s∗)). Therefore, the new

outcome is x̂(s′) = x(P1(s′)). All the candidates in P1(s′) strictly prefer x̂(s′) to x̂(s∗).

We have

∆Gi(s
′, s∗) =

r − c
|P1(s∗)| − 1

− r

2|P1(s∗)|
+

c

|P1(s∗)|
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=
2|P1(s∗)|(r − c)− (|P1(s∗)| − 1)(r − 2c)

2|P1(s∗)|(|P1(s∗)| − 1)
.

From (ii) r ≥ c. This implies that

2|P1(s∗)|(r − c)− (|P1(s∗)| − 1)(r − 2c) ≥ 0

i.e. the numerator is non-negative. Hence ∆Gi(s
′, s∗) ≥ 0. Since the policy out-

come strictly improves, πi(s
′) > πi(s

∗). Thus s∗ is not an equilibrium contrary to our

assumption.

�

The conditions above are only necessary and not sufficient for the existence of equilibrium.

Suppose for example there exists a candidate i located at xM . Consider the deviation by i

to s′i = {i}. If i wins then x̂(s′) = xi. The payoff difference for i is given by πi(s
′)− πi(s∗) =

−|xi − x̂(s′)| + r − c + |xi − x̂(s∗)|. We have already shown that r ≥ 2c. Therefore, if i

wins then πi(s
′) − πi(s∗) > 0. In order to sustain s∗ as an equilibrium i should not be able

to win. This would require F
(

2xM−ε
2

)
≥ F

(
2xM+ε

2

)
− F

(
2xM−ε

2

)
and 1 − F

(
2xM+ε

2

)
≥

F
(

2xM+ε
2

)
− F

(
2xM−ε

2

)
. In other words, the party policy positions of the winning parties

cannot be “too far” away from the median.

Of course, there may not be a candidate located at the median. But one has to ensure that

any candidate in the interval (x(P1(s∗)), x(P2(s∗))) cannot form an independent party and

win. Whether or not this candidate wins depends on the specification of F . The conditions

that ensures this are F
(
xi+xM−ε

2

)
≥ F

(
xi+xM+ε

2

)
− F

(
xi+xM−ε

2

)
and 1 − F

(
xi+xM+ε

2

)
≥

F
(
xi+xM+ε

2

)
− F

(
xi+xM−ε

2

)
.

Several other potential deviations must also be taken care of. For instance, one has to

ensure that the leader in one of the winning parties does not deviate to form a party with

a subset of candidates. To ensure that none of these deviations are beneficial is tedious.

Instead of enumerating these conditions separately, we provide an example to show that

such an equilibrium can exist.

Example 6 Let F be the uniform distribution on the policy space X = [0, 1]. The set of

candidates is N = {1, . . . , 5} with x1 = 0.43, x2 = 0.45, x3 = 0.55, x4 = 0.56 and x5 = 0.56.

Suppose r = 0.06 and c = 0.01. Consider a set of strategies s∗ such that P1(s∗) = {1, 2} and

P2(s∗) = {3, 4, 5}.
We claim that s∗ is an equilibrium. In order to confirm this, we consider deviations of

all possible types and show that they are not profitable.

(i) Candidate i ∈ Pk(s∗) , k ∈ {1, 2} deviates to s′i = {i}. She loses the election with certainty.

Moreover, the outcome x̂(s′) will be worse than x̂(s∗). Therefore ∆Gi(s
′, s∗) = 0− r−c

|Pk(s∗)| ≤ 0.

Therefore, i will not deviate.
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(ii) Candidates 2 and 3 can deviate to s′ such that: s′i = {2, 3} for i ∈ {2, 3}. Then the

party P1(s′) = {2, 3} is formed. Party P1(s′) does not win since: (i) 2F (x2+x4
2

) = 1.01 <

1 + F (x2+x2
2

) = 1.44 and (ii) 2F (x3+x1
2

) = 0.98 < 1 − F (x3+x4
2

) = 1.555. Therefore, the

conditions imply that party P1(s′) /∈ W(s′).

(iii) s′i = {2, 3, 4, 5} for all i ∈ {2, 3, 4, 5}. The new party is P2(s′) = {2, 3, 4, 5}. By definition

x̂(s′) = x(P2(s′)) = x3. We have π2(s′)− π2(s∗) = −|0.2− 0.3|+ 0.06−0.01
4

− (−|0.2− 0.25|+
0.06

4
− 0.01

2
) = −0.1 + 0.0125 + 0.05− 0.15 + 0.05 = −0.1825. Therefore, 2 does not deviate.

(iv) s′i = {1, 2, 3} for all i ∈ {1, 2, 3}. The new party is P1(s′) = {1, 2, 3}. By definition

x̂(s′) = x(P1(s′)) = x2. We have π3(s′) − π3(s∗) = −|0.0.45 − 0.55| + 0.06−0.01
3

− (−|0.55 −
0.5| + 0.06

6
− 0.01

3
) = −0.1 + 0.0167 + 0.05 − 0.01 + 0.033 = −0.0103. Therefore, 3 does not

deviate.

(v) s′i = {1, 2, 3, 4, 5} for all i ∈ {1, 2, 3, 4, 5}. The new party P1(s′) = {1, 2, 3, 4, 5}. By

definition x̂(s′) = x(P1(s′)) = 0.3. We have π2(s′) − π2(s∗) = −|0.45 − 0.55| + 0.06−0.01
5

−
(−|0.45− 0.5|+ 0.06

4
− 0.01

2
) = −0.1 + 0.01 + 0.05− 0.015 + 0.005 = −0.05. Therefore, 2 does

not deviate. Conditions (i)-(v) establish that s∗ is an equilibrium.

This example can be generalized to provide appropriate sufficient conditions for the exis-

tence of two-party equilibria. However, these conditions are cumbersome and we choose not

to present them.

3.4 Equilibrium Analysis: Internally Democratic Parties

When parties are populist, a three-party equilibrium is not possible since two candidates

from adjacent extreme parties can jointly deviate to form a winning party. The candidate

closest to the voter median could ensure that her policy is chosen after the deviation, thus

making every deviating candidate better-off. This deviation is not beneficial when parties

are internally democratic since the new party, formed by the deviating candidates, does not

win.

3.4.1 Number of Parties

We show the existence of a three-party equilibrum by the following example.

Example 7 Let F be the uniform distribution over [0, 1]. The set of candidates is N =

{1, 2, 3, 4, 5, 6, 7} with policy positions x1 = 0.12, x2 = 0.166, x3 = 0.45, x4 = 0.5, x5 =

0.55, x6 = 0.834 and x7 = 0.88. Let s∗ be a strategy profile such that s∗i = {1, 2} for all

i ∈ {1, 2}, s∗i = {3, 4, 5} for all i ∈ {3, 4, 5} and s∗i = {6, 7} for all i ∈ {6, 7}. Therefore,

there are three parties P1(s∗) = {1, 2}, P2(s∗) = {3, 4, 5} and P3(s∗) = {6, 7}. LEt r = 0.04

and c = 0.01.
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The party positions are x(P1(s∗)) = 0.16, x(P2(s∗)) = 0.5 and x(P3(s∗)) = 0.81.

Therefore, each party gets equal votes since F (0.166+0.5
2

) = F (0.834+0.5
2

) − F (0.5+0.166
2

) =

1− F (0.834+0.5
2

) = 0.33. Hence, x̂(s∗) = 1
3
(0.166 + 0.5 + 0.834) = 0.5. We show that s∗ is an

equilibrium.

There are three types of deviations:

(i) s′i = {0}: Candidate 1 deviates to non-participation. The policy positions of the remaining

parties remain the same and so does the outcome. Therefore, candidate 1 loses since π1(s∗)−
π1(s′) = r

6
− c

2
> 0 and the deviation is not beneficial. Similar arguments can be made to

show that candidate 3, 5, 7 will not deviate to non-participation.

Candidate 2 deviates to s′2 = {0}. The outcome is x̂(s′) = x5 = x̂(s∗) since party P2(s∗)

wins. As before, candidate 2 loses since π2(s∗) − π2(s′) = r
6
− c

2
> 0. Similarly, it can be

shown that candidate 4 or 6 will not deviate to non-participation.

(ii) s′i = {i}. Candidate 1 deviates to s′1 = {1}. Both parties P2(s∗) and P3(s∗) get the most

votes. Therefore, the outcome is x̂(s′) = x4+x6
2

> x̂(s∗). Candidate 1 prefers x̂(s∗) to x̂(s′).

Moreover, she loses r
6
− c

2
> 0. Hence, she is worse-off. Similar arguments can be made to

show that no other candidate deviates to non-participation.

(iii) Deviation to join another party. Consider the set T = {2, 3, 4, 5}. Let s′ be strategy

profile such that s′i = T for all i ∈ T . Let the party formed by T be denoted by P2(s′). By

definition, x(P2(s′)) = x5. Let the remaining parties be Pi(s
′) = {1} and P3(s′) = {6, 7}. By

definition, x(P1(s′)) = x1 and x(P3(s′)) = x6. The outcome is x̂(s′) = x4 = x̂(s∗). Therefore,

π2(s∗)− π2(s′) = −|x2 − x4| − r−c
4

+ |x2 − x̂(s′)| − r
6

+ c
2

= r−c
4
− r−3c

12
= r−3c

12
= 0.008 > 0.

Similar arguments can be made to show that candidate 6 does not deviate to join party

P2(s∗). A deviation by candidate 1 to join party P2(s∗) will also not be beneficial. The

outcome of such a deviation will remain unchanged. Therefore π1(s∗) − π1(s′) = −|x1 −
x̂(s′)|+ r

12
− c

4
+ |x1 − x̂(s∗)| − r

12
+ c

4
= r−3c

6
− r−3c

12
> 0. Similarly, candidate 7 will not join

P2(s∗). Similarly, no candidate in P1(s∗) will form a party with candidates in P3(s∗).

Consider the set of candidates T = {3, 4, 5, 6, 7}. Let the strategy profile s′ be such that

s′i = T for all i ∈ T . After the deviation x(P1(s′)) = x2 and x(P2(s′)) = x5. Therefore,

x̂(s′) = x5. Hence π3(s′) − π3(s∗) = −|x3 − x5| + r−c
5

+ |x3 − x̂(s∗)| − r
6

+ c
3

= −0.043.

Therefore, candidate 3 does not deviate.

A final deviation is the case where T = {4, 5, 6, 7} forms a party and wins. We show

that candidate 4 is worse-off after the deviation. Let the deviation s′i = T for all i ∈ T . The

outcome is x̂(s′) = x5 and π4(s′) − π4(s∗) = −|x4 − x̂(s′)| + r−c
4

+ |x4 − x̂(s∗)| − r
6

+ c
3

=

−0.05 + 0.0042 = −0.46. Therefore, candidate 4 does not deviate. Similarly, we can show

that the set of candidates T = {1, 2, 3} or T = {1, 2, 3, 4} cannot deviate beneficially. It

follows that parties {1, 2}, {3, 4, 5} and {6, 7} form in equilibrium.
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3.4.2 One-party Equilibrium

In this section we will characterize equilibria where only one party participates.

We introduce some notation. Let ik ∈ Pk(s) be such that xik = x(Pk(s)). Candidates

ik−1, ik+1 ∈ Pk(s∗) be such that (i) xik−1
< xik < xik+1

(ii) there does not exists i ∈ Pk(s),
i 6= ik such that xi ∈ (xik−1

, xik+1
). Therefore, ik−1 and ik+1 are members of the party whose

policy positions are adjacent to xik , on the left and right of x(Pk(s
∗)) respectively.

Proposition 4 (One-party equilibrium) Let s∗ be an equilibrium with P (s∗) =

{Pk(s∗)}. We consider three cases separately.

(i) r > c. If there exists a unique candidate closest to xM then Pk(s
∗) consists only of

this candidate. If there are two candidates that are closest to xM then there are two

further possibilities :

(a) Party Pk(s
∗) consists of the two candidates closest to xM .

(b) If the condition |x(Pk(s
∗))− xM | ≤ c− r

2
holds, then either of the two candidates

participating independently is an equilibrium.

(ii) r < c. If there is a unique candidate closest to xM then Pk(s
∗) consists of this candidate

and any two other candidates, i.e. |Pk(s∗)| ≤ 3. If there are two candidates closest to

xM then there are two further possibilities :

(a) Pk(s
∗) consists of both candidates closest to xM .

(b) If the condition |x(Pk(s
∗)) − xM | ≤ c − r

2
holds, then Pk(s

∗) consists of one of

these candidates.

In either case Pk(s
∗) can have three other candidates i.e. |Pk(s∗)| ≤ 4. The con-

ditions (i) c ≤ |Pk(s∗)|max{|x(Pk(s
∗)) − xik+1|, |x(Pk(s

∗)) − xik+1|} + r and (ii)

c > n|x(Pk(s
∗))− xM |+ r are necessary for both (a) and (b).

(iii) r = c. Pk(s
∗) consists of the candidate closest to xM together with any subset of the

remaining candidates. The conditions stated in (ii) are necessary.
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Proof :

(i) Suppose there is a unique candidate i closest to xM . We show that i ∈ Pk(s∗). Suppose

not. Then candidate i can deviate to s′i = {i} and win the election. Since x̂(s′) = xi
her payoff difference is πi(s

′)− πi(s∗) = −|xi − xi|+ r− c+ |xi − x(Pk(s
∗))| = r− c+

|xi−x(Pk(s
∗))| > 0. Therefore, i deviates leading to a contradiction. Hence i ∈ Pk(s∗).

Suppose there is a candidate j ∈ Pk(s
∗) such that j 6= i. Consider the deviation

s′i = {i}. The outcome after the deviation is x̂(s′) = xi1 . Therefore, the payoff

difference is πi(s
′)−πi(s∗) = −|xi−x̂(s′)|+r−c+|xi−x̂(s∗)|− r−c

|Pk(s∗)| = r−c− r−c
|Pk(s∗)| > 0.

Therefore, i deviates leading to a contradiction. Therefore, Pk(s
∗) consists only of the

candidate closest to xM . Similar arguments can be made when there are two candidates

who are closest to xM .

Suppose there are two candidates i1 and i2 closest to xM and Pk(s
∗) = {i1}. Consider

the deviation s′i2 = {i2}. The outcome after the deviation is x̂(s′) =
xi1+xi2

2
= xM .

The payoff difference for i2 is πi2(s
′) − πi1(s∗) = −|xi2 − xM | + r

2
− c + |xi2 − xi1| =

r−2c
2

+ |xi2 − xM |. Therefore, candidate i2 does not deviate if |xi2 − xM | ≤ c− r
2
. Since

|xi2 − xM | = |x(Pk(s
∗))− xM |, we have |x(Pk(s

∗))− xM | ≤ c− r
2
.

(ii) Suppose there exists a unique candidate i closest to xM . We show that |Pk(s∗)| ≤ 3.

Suppose not. Assume w.l.o.g. x(Pk(s
∗)) ≤ xM . There exist two candidates i, j such

that xi < x(Pk(s
∗)) and xj > x(Pk(s

∗)). Consider the deviation s′i = s′j = {0}. The

outcome after the deviation is x̂(s′) = x̂(s∗). Therefore πi(s
′)−πi(s∗) = −|xi− x̂(s′)|+

|xi − x̂(s∗)| − r−c
|Pk(s∗)| = − r−c

|Pk(s∗)| > 0. Similarly, πj(s
′) − πj(s∗) > 0. Therefore {i, j}

deviates, leading to a contradiction. Hence, |Pk(s∗)| ≤ 3. Similarly, we can show that

|Pk(s∗)| ≤ 4 when there are two candidates in Pk(s
∗) both closest to xM .

Let ik be such that xik = x(Pk(s
∗)). Take a candidate i′ such that xi′ > x(Pk(s

∗)). Con-

sider the deviation s′i′ = {0}. The outcome after the deviation is x̂(s′) = x(Pk(s
′)) =

xik−1. Therefore, πi′(s
′)−πi′(s∗) = −|xi′−xik−1|− r−c

|Pk(s∗)| + |xi′− x̂(s′)|. The deviation

is not beneficial if c ≤ |Pk(s∗)||x(Pk(s
∗)) − xik−1| + r. Similarly, we can show that

c ≤ |Pk(s∗)||x(Pk(s
∗))− xik+1|+ r.

Suppose there exists a candidate i whose policy position is closer to xM than x(Pk(s
∗)).

Consider the deviation s′i = {i}. Then x̂(s′) = xi and her payoff from rents and policy

outcome would increase by at most r+2|x(Pk(s
∗))−xM |. Her cost would be c. Suppose

there exists a set of candidates T . Consider the deviation s′ such that s′j = T for all

j ∈ T . The candidates T form a party. Let this party be denoted by P1(s′). Suppose

x̂(s′) = x(P1(s′)). Then the payoff of candidate j ∈ T would increase by at most
r
|T | + 2|x(Pk(s

∗))− xM | and her cost would be c
|T | . In either of the above two cases the

deviation is not beneficial if c > n|x(Pk(s
∗))− xM |+ r.

(iii) Suppose i is the unique candidate closest to xM and i /∈ Pk(s∗). Consider the deviation
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s′i = {i}. The outcome is x̂(s′) = xi. The payoff difference for i is πi(s
′) − πi(s∗) =

−|xi−xi|+|xi−x̂(s∗)| = |xi−x̂(s∗)| > 0. This is a contradiction. Therefore, i ∈ Pk(s∗).

We show that for any Pk(s
∗) no two candidates can leave the party beneficially as was

the case in (ii). Suppose i, j ∈ Pk(s∗) such that xi < x(Pk(s
∗)) and xj > x(Pk(s

∗)).

Consider the deviation si = sj = {0} by two candidates in the party Pk(s
∗). The

outcome after the deviation is x̂(s′) = x̂(s∗). The payoff difference is πi(s
′)− πi(s∗) =

−|xi − x̂(s′)| − r−c
|Pk(s∗)| + |xi − x̂(s∗)| = 0. Therefore, {i, j} does not deviate. Similar

arguments as the ones made in (ii) can be used to show that the conditions in (ii) are

necessary.

�

The one-party equilibrium when benefits exceed costs is identical in the populist and

internally democratic cases. The party consists only of the candidates closest to the voter

median. However, when costs exceed benefits, equilibrium party structures differ. In every

case, the candidate closest to the median is a member of the party. There may be two (or

three in the case where there are two candidates closest to the voter median) others in the

party. Party size in the internally democratic case is greater than the case with populist

parties. This is due to the fact that candidates in internally democratic parties can influence

party policies more than in the populist case. Candidates who are not closest to xM can

nevertheless influence party policies by shifting the party median towards themselves.

3.4.3 Two-party Equilibrium

Two-party equilibria exist as in the populist case. However, the exact characterization is

difficult. As in the populist case, we will identify some key features of the equilibrium and

construct an example to demonstrate its existence.

Proposition 5 (Two-party equilibrium) Let s∗ be an equilibrium with P(s∗) =

{P1(s∗), P2(s∗)} and x(P1(s∗)) < x(P2(s∗)). Then

(i) max{|P1(s∗)|, |P2(s∗)|} > 1.

(ii) r ≥ c. If max{|P1(s∗)|, |P1(s∗)|} ≥ 3 then r ≥ 2c.

(iii) There exists ε > 0 such that xM i.e. x(P1(s∗)) = xM − ε and x(P2(s∗)) = xM + ε.

Proof : Suppose s∗ is an equilibrium as specified in the statement of Proposition 5. Argu-

ments identical to those in the populist parties case can now be used to prove parts (i) and

(iii).
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(ii) Suppose r < c. We first claim that |Pk(s∗)| = 1 for k ∈ {1, 2}. We show this in steps.

First we rule out the case where |Pk(s∗)| ≥ 3 for some k ∈ {1, 2}. Then we show that

|Pk(s∗)| 6= 2.

Suppose |Pk(s∗)| > 2 for some k ∈ {1, 2}. There exist two candidates i, j ∈ Pk(s∗) such

that xi < x(P1(s∗)) and xj > x(P1(s∗)). Consider the deviation to a strategy s′ such

that s′i = s′j = {0}. Let the party P1(s′) = P1(s∗)\{i, j}. The outcome x̂(s′) = x̂(s∗).

Moreover, xi < x̂(s′) < x̂(s∗). Therefore, i strictly prefers x̂(s′) to x̂(s∗). We have

πi(s
′) − πi(s

∗) = −|xi − x̂(s′)| + |xi − x̂(s∗)| − r
2|Pk(s∗)| + c

|Pk(s∗)| > 0. Therefore, i

and j deviate i.e. |Pk(s∗)| < 3 for k ∈ {1, 2}. Assume w.l.o.g. |P1(s∗)| = 2. Let

i ∈ P1(s∗) be such that xi < x(P1(s∗)). Consider the deviation by i: s′i = {0}. After

the deviation the outcome x̂(s′) = x̂(s∗). The payoffs of i are such that πi(s
′)−πi(s∗) =

−|xi − x̂(s′)|+ |xi − x̂(s∗)| − r
2|Pk(s∗)| +

c
|Pk(s∗)| > 0. Therefore, i deviates. Similarly we

can arrive at a contradiction if |P2(s∗)| = 2. Hence, |Pk(s∗)| = 1 for k ∈ {1, 2}.
We show that there is a beneficial deviation where both the independent candidates

form a party. Let i1 and i2 be such that x(P1(s∗)) = xi1 and x(P2(s∗)) = xi2 . Consider

the deviation s′ such that s′i = {i1, i2} for i ∈ {i1, i2}. Then, x̂(s′) = x̂(s∗). For any

i ∈ {i1, i2}, πi(s′)−πi(s∗) = −|xi−x̂(s′)|+ r−c
2

+|xi−x̂(s∗)|− r
2
+c = r−c

2
− r−2c

2
= c

2
> 0.

Therefore, the set of candidates {i1, i2} deviate. Hence, r ≥ c.

Suppose there exists a party Pk(s
∗) such that |Pk(s∗)| ≥ 3. Then there exist two

candidates i, j ∈ Pk(s
∗) such that xi < x(Pk(s

∗)) and xj > x(Pk(s
∗)). Consider the

deviation s′i = s′j = {0}. The outcome after the deviation is x̂(s∗) = x̂(s′). Therefore,

πi(s
′) − πi(s∗) = −|xi − x̂(s′)| + |xi − x̂(s∗)| − 2r

|Pk(s∗)| + c
|Pk(s∗)| . The deviation is not

beneficial only if r ≥ 2c.

�

The structure of two-party equilibria in the populist and internally democratic cases is

similar though not identical. An important difference is that we are arguments used to

establish homogeneity in the populist parties case can no longer be used. We are unable

to show that parties are homogeneous. We conjecture that heterogeneity might exist in

equilibrium.

We demonstrate the existence of two-party equilibrium by means of the example below.

Example 8 Let F be the uniform distribution of voters policy positions over the policy

space X = [0, 1]. Let N = {1, . . . , 5} with x1 = 0.28, x2 = 0.33, x3 = 0.62, x4 = 0.67 and

x5 = 0.72. Let r = 1 and c = 0.01.

Let the strategy s∗ be such that P1(s∗) = {1, 2} and P2(s∗) = {3, 4, 5}. Then x(P1(s∗)) =

x2 = 0.33 and x(P2(s∗)) = x5 = 0.67. Each party gets votes equal to F (0.38+0.67
2

) =

1 − F (0.38+0.67
2

) = 0.5. The expected outcome is x̂(s∗) = 0.38+0.67
2

= 0.5. We show that

s∗ is a two-party equilibrium. We consider all possible types of deviation and show that

none of them are profitable.
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(i) s′i = {0}. Clearly, candidate 1 does not benefit by deviating to s′1 = {0}. If candidate 1

deviates to s′1 = {0}, the set of candidates {4, 5} continue to be a party. The outcome of the

election is same as before. Moreover, candidate 1 loses r
4
− c

2
= 0.245. Therefore, candidate

1 does not deviate. Similar arguments can be made to show that 2 does not deviate to

non-participation.

Suppose candidate 5 deviates to s′5 = {0}. Let the party P2(s′) = {3, 4}. Let P1(s′) =

{1, 2}. Using the properties of uniform distribution, the outcome of the election is x̂(s′) =

x(P2(s′)) = 0.62. We have π5(s′) − π5(s∗) = −|0.72 − 0.62| + |0.72 − 0.5| − r
6

+ c
3

=

−0.1 + 0.22 − 0.1667 + 0.0033 = −0.0434. Similar arguments can be made if candidate 3

deviates to s′3 = {0} or if candidate 4 deviates to s′4 = {0}.
(ii) s′i = {i}. Suppose candidate 1 deviates to s′1 = {1}. The policy positions of the parties

are {0.28, 0.33, 0.67}. Using the properties of uniform distribution, party P2(s′) = P2(s∗)

will win the election. Therefore, x̂(s′) = 0.67 and the payoff difference for candidate 1 is

π1(s′)−π1(s∗) = −|0.28−0.67|+ |0.28−0.5|− r
4

+ c
2

= −0.39+0.22−0.25+0.005 = −0.415.

Therefore, 1 does not deviate. Similar arguments can be made for the other candidates

deviating to non-participation.

(iii) Formation of a new party. Consider the set of candidates T = {2, 3, 4, 5}. Suppose T

deviates to a strategy s′ such that s′i = T for all i ∈ T . Let the parties be P1(s′) = {1}
and P2(s′) = {2, 3, 4, 5}. Party P2(s′) wins the election and x̂(s′) = x(P2(s′)) = 0.62. The

difference in payoffs for candidate 2 is π2(s′)− π2(s∗) = −|0.33− 0.62|+ r−c
4

+ |0.33− 0.5| −
r
4

+ c
2

= −0.29 + 0.2475 + 0.17− 0.25 + 0.005 = −0.1175. Similar arguments can be made to

show that T = {1, 2, 3, 4} or T = {1, 4, 5} will not deviate to form a new party.

Finally, suppose T = {1, 2, 3, 4, 5} deviates to s′: s′i = T for all i ∈ T . Then, there is only

one party P1(s′) = {1, 2, 3, 4, 5}. Hence, x̂(s′) = 0.62. The payoffs difference for candidate 1

is π1(s′)−π1(s∗) = −|0.28−0.62|+ r−c
5

+|0.28−0.5|− r
4
+ c

2
= −0.34+0.198+0.22−0.25+0.05 =

−0.167. Therefore, candidate 1 does not benefit from the deviation. This completes the

argument.

Unfortunately, parties are homogeneous in Example 8 so the question of heterogeneity

remains open.

3.4.4 Three-party Equilibrium

We have already shown the existence three-party equilibrium. These equilibria are even

harder to characterize. Of course, equidistance from the median is not applicable and we are

not able to settle the issue of homogeneity. However, Proposition 6 shows that there cannot

be an equilibrium where three candidates participate independently.

Proposition 6 (Three-party equilibrium) Suppose s∗ is an equilibrium such that

P(s∗) = {P1(s∗), P2(s∗), P3(s∗)} with x(P1(s∗)) < x(P2(s∗)) < x(P3(s∗)). Then
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(i) max{|P1(s∗)|, |P2(s∗)|, |P3(s∗)|} > 1.

(ii) r ≥ c.

Proof : Let s∗ be the strategy that satisfies the conditions in the statement of the Propo-

sition. Let x̂(s∗) be the policy outcome. Then either x(P1(s∗)) < x(P2(s∗)) ≤ x̂(s∗) or

x(P2(s∗)) > x(P3(s∗)) ≥ x̂(s∗). Assume w.l.o.g. that the former is true.

(i) Suppose contrariwise that |Pk(s∗)| = 1 for all k ∈ {1, 2, 3}. Let i1 and i2 be such

that x(P1(s∗)) = xi1 and x(P2(s∗)) = xi2 . Consider the deviation s′i = {i1, i2} for

i ∈ {i1, i2}. The new party P2(s′) = {i1, i2} is such that x(P2(s′)) = xi2 . The votes of

P1(s∗) switch to P2(s′). Therefore, P2(s∗) ∈ W(s∗). Hence x̂(s′) = x(P2(s′)). Both the

deviating candidates prefer x̂(s′) to x̂(s∗). Assume w.l.o.g. P2(s∗) ∈ W(s∗). Then, for

i ∈ {i1, i2} we have ∆Gi(s
′, s∗) = r−c

2
− r

2
+ c = c

2
> 0. Therefore πi(s

′) − πi(s∗) > 0

for i ∈ {i1, i2}.

(ii) Suppose contrariwise that r < c. Consider the set of candidates T = {i ∈
P1(s∗) s.t xi ≤ x(P2(s∗))}. All the members of party P1(s∗) deviate to non-

participation. This makes party P2(s∗) win the election i.e. x̂(s′) = x(P2(s∗)).

Therefore, the each candidate in T is better-off in terms of policy outcome. Moreover

∆Gi(s
′, s∗) = r

W |P1(s∗)| + c
|P1(s∗)| = Wc−r

|P1(s∗)| > 0 i.e. s∗ is not an equilibrium. Therefore

r ≥ c.

�

3.5 Discussion

The results in the populist parties, internally democratic parties and the Osborne and Slivin-

sky (1996) model are summarized in Table 3.1.
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Populist Internally

Democratic

Osborne and

Slivinsky (1996)

One-party

Existence Yes Yes Yes

r > c |Pk| = 1 |Pk| = 1 NA

r < c |Pk| ≤ 2 |Pk| ≤ 4 r ≤ 2c

r = c |Pk| ≥ 1 |Pk| ≥ 1 NA

Two-party

Existence Yes Yes Yes

maxk |Pk| > 1 Yes Yes NA

r ≥ c Yes r ≥ 2c Yes.

If maxk |Pk| > 2

then r ≥ 2c

Yes. r ≥ 2(c− ε)
s.t ε > 0

r < c No No Yes. r ≥ 2(c− ε)
s.t ε > 0

Homogeneity Yes ? NA

Three-party

Existence No Yes Yes

r ≥ c NA Yes Yes. r ≥ 3c

r < c NA No No

maxk |Pk| > 1 NA Yes NA

Table 3.1: Comparison of the results

3.6 Conclusion

In this Chapter we have shown that a network formation model can be fruitfully employed to

gain insights into the process of political party formation. We feel that it would be interesting

to consider alternative assumptions concerning party policy positions and to model electoral

competition where different parties have different rules for forming policy positions.
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Chapter 4

A Model of Electoral Competition

between National and Regional

Parties
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4.1 Introduction

In this Chapter we model the electoral competition between national and regional parties.

National parties have the advantage of garnering votes from constituencies across the regions.

Regional parties, on the other hand, can contest only from one region. The characteristic

feature of regional parties is that voters do not consider regional parties of other regions as

viable options.

Voters have favorite policy positions on a one-dimensional policy space. The policies are

national issues-for instance, the rate of taxation, share of GDP to be spent on education or

health etc. We assume that parties have to choose the policy position of a voter from any

region.1

Parties are constituency-motivated i.e they care only about winning the maximum pos-

sible number of constituencies.2 Moreover, parties maximize given the equilibrium strategy

of voters. Our objective is to study the equilibrium policies of the parties.

We provide a brief empirical background to our results.

4.1.1 Empirical Background

Countries like India, the United Kingdom and Canada have witnessed strong regional parties.

Some of them have affected national politics in a significant way. We note the following facts.

1. In India, multiple regional parties exist like the Trinamool Congress in West Bengal,

AIADMK and DMK in Tamil Nadu, BJD in Orissa, etc. These parties play an impor-

tant role in forming coalitions at the national level (Heath et al. (2005)). India also

has several national parties like the Congress Party and the BJP.

2. Canada has regional parties like the Bloc Québécois which fields candidates from

Québéc, while the Reform Party only runs from regions other than Québéc (Massi-

cotte (2005)). It also has national parties such as the Conservative Party of Canada

and the New Democratic Party.

3. The United Kingdom has regional parties in Northern Island, Scotland, and Wales

which compete with national parties. Even the national parties are mostly effective in

particular regions like the Conservative Party in the ‘South’ and rural areas and the

Labour party in the ‘North’ and urban constituencies (Gallagher and Mitchell, 2005).

1This assumption is only made to avoid delicate issues of equilibrium existence. If additional conditions

are imposed on the distribution of voters to guarantee existence, the same results would hold.
2There are numerous works which model electoral competition with policy-motivated candidates (See

Wittman (1983), Duggan and Fey (2005), Peress (2010) and Casamatta and De Donder (2005)).
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4.1.2 Results

There are two regions. Both regions are divided into constituencies. Each voter belongs

uniquely to a constituency which uniquely belongs to a region. The distribution of voter

policy positions is given and fixed throughout the analysis.

Once the parties have chosen policy positions, voting takes place. A voter in a region can

only vote either for the national party or the regional party pertaining to her region. A party

wins a constituency if at least a majority of voters vote for it. Outcomes are determined on

the basis of constituencies or seats won by the parties.

A key element of our analysis is the Political Outcome Function (P.O.F.). This function

maps the shares of constituencies into a probability distribution over party policy positions.

We use this general formulation in order to capture a wide variety of circumstances. For

example in India and the U.K, the party that wins the largest number of constituencies in a

plurality vote forms the government and implements its policy position. On the other hand,

a coalition government may form where parties share office and one of their policy positions

implemented with some probability.

We show that these P.O.F.s do not induce sincere behaviour from voters. Under these

circumstances, characterizing equilibrium strategic behaviour depends on the exact specifica-

tion of the P.O.F.s. We avoid these difficulties and directly assume sincere voting behaviour.

The consequence of this assumption is that party equilibrium is independent of the P.O.F.

provided that the probability of a party’s policy position being implemented is increasing in

the number of constituencies.

Fix the position of the national party. Since a regional party can only get votes from its

region, it wants to locate “as close as possible” to the national party’s policy as the same side

of the region-wide median by the standard Hotelling argument. In view of this behaviour

of the regional parties, the national party wants to locate in the interval between the policy

positions of the region-wide medians.

The precise location of the national party depends on the structure of isolation sets.

These sets are constructed from the distribution of voter policy positions and have the

following property: by choosing the policy position of a voter in this set, the national party

can “isolate” or “separate” constituencies from their respective region-wide medians. If the

voter distribution is heterogeneous, there are multiple isolation sets. In homogeneous voter

distributions, the smallest interval containing all policy positions of constituency medians for

the two regions are disjoint. As a result, the isolation sets are empty. In the heterogeneous

case the national party locates in a maximal isolation set. In the homogeneous case, the

national party’s policy is the policy position of the region-wide median of the region with

the greater number of constituencies.

The main insight of the paper is the following. For a given P.O.F. and a fixed number of

constituencies, the national party’s performance improves as the degree of voter heterogeneity

increases. In the limit case, where the distribution is homogeneous, the national party can at

61



best do as well as the regional party of the region with the greater number of constituencies.

This result is broadly consistent with intuition and empirical evidence (Bailey and Brady

(1998), Gerber and Lewis (2004)).

There are other papers which consider electoral competition with multiple districts-

Austen-Smith (1984), Austen-Smith (1987), Eyster and Kittsteiner (2007), and Callander

(2005). In most of these papers, parties are implicitly assumed to be national. Our model,

therefore, offers some insights on the influence of regional parties on policy outcomes.

The paper is organised as follows. We describe the model and give definitions in Section

4.2. In Section 4.3 we present the results for sincere voting equilibrium. In Section 4.4 we

present the result and proof in two parts. We conclude with a discussion in Section 4.4.

4.2 The Model

The set of voters is N = {1, 2, ..., n}. The policy space is an interval X ⊂ R. Voter i

has ideal policy position (henceforth policy position) xi ∈ X. We assume for simplicity that

the policy positions are distinct for all voters. The set of regions is R = {R1, R2}. Each

region has a finite number of constituencies. For convenience we assume an odd number of

constituencies in both regions. The set of parties is denoted by P . Let the set of voters’

policy positions be denoted by X. A party l ∈ P can choose a policy position x(l) ∈ X.3

The set of constituencies of Region j is denoted by Rj. The set of voters in a constituency

k ∈ Rj is denoted by Rk
j . For any two distinct regions j and j′, Rj ∩ Rj′ = ∅ and for any

two distinct constituencies k and k′, Rk
j ∩ Rk′

j′ = ∅ for any j , j′ ∈ R. The constituencies

form a region i.e
⋃
k∈j R

k
j = Rj for all j ∈ R and regions form the country as a whole i.e.⋃

j∈R Rj = R. Each voter belongs to a constituency i.e
⋃
j∈R

(
∪k∈j Rk

j

)
= N.

There are two regional parties: Sj, the regional party of Region Rj, j ∈ {1, 2} and one

national party N . The set of parties a voter can vote for is denoted by Ii i.e. Ii = {Sj, N}
if i ∈ Rj for j ∈ {1, 2}. Voters do not consider voting for the regional party from the other

region. Therefore, regional parties can only win votes from their respective regions.

Voters have single-peaked Euclidean preferences represented by utility functions ui : X →
R. If a policy x is implemented then ui(x) = − |x− xi| for all i ∈ N. Therefore, a voter can

get a maximum utility of zero (if her own policy position is implemented). The strategy of

voter i, vi ∈ Ii is a vote for a party l ∈ P .

We use the plurality rule at the constituency level. The party with the most votes in

a constituency wins that constituency. The total number of constituencies won by party

l is Vl ∈ {0, 1, . . . , |R1| + |R2|}. Let V denote the tuple of seat shares i.e. V = {Vl}l∈P .

Let V = {0, 1, . . . , |R1| + |R2|}. A political outcome function is a probability distribution

{Pl(V )}l∈P over the set of policy positions chosen by the parties.

3The results do not depend on this assumption. Parties can be allowed to choose any policy in X.

However, certain additional assumptions need to be made on the distribution of voter policy positions to

guarantee existence of equilibrium.
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Definition 9 (Political outcome function(P.O.F.)) The P.O.F. is a function Pl :

V
3 → [0, 1] such that for all l ∈ P and V ∈ V 3

(i) Pl(V ) ≥ 0.

(ii)
∑

l∈P Pl(V ) = 1.

We consider different outcome functions in this Chapter. These will be described later

in section 4.2.1. Voters choose vi to maximize their expected payoff

πi(vi, v−i) = −
∑
l∈P

Pl(V (vi, v−i)) |x(l)− xi| for all i ∈ N.

Suppose voter i is indifferent between voting for either of the two parties in Ii. We assume

that i votes for either of the two parties with equal probability.

Voters are sincere if they vote for the party whose policy position is closest to their policy

position according to the Euclidean distance norm, di(x(l)) = |xi−x(l)|. Voters are strategic

if they are not sincere.

Definition 10 (Voter equilibrium) A voter strategy v∗(x) is a voter equilibrium if for

all i ∈ N for all v′i ∈ Ii
πi(v

∗
i , v
∗
−i) ≥ πi(v

′
i, v
∗
−i).

We assume that parties are aware of the equilibrium strategies of the voters for a given

tuple x ∈ X3
. For any set of policy positions x the parties calculate their seat shares from the

function v∗(x). Therefore, parties assume that players will play Nash equilibrium strategies

for every policy tuple. Let E(.) denote the expectation function. The payoff of party l is

given by

Πl(x) = E (Vl(v
∗(x)) for all l ∈ P .

Therefore, parties choose policies to maximize the expected number of seats.4

Definition 11 (Party equilibrium) A party strategy x∗ is a party equilibrium if

E (Vl(v
∗(x∗))) ≥ E (Vl(v

∗(x(l)′, x(−l)∗))) for all x(l)′ ∈ X for all l ∈ P .

A party equilibrium is a tuple x∗ from which no party can deviate and get a higher expected

payoff.

A political equilibrium is a strategy profile (v∗(x∗), x∗) such that v∗(x∗) is a voter equi-

librium and x∗ is a party equilibrium.

4This type of formulation is standard in the literature- See Besley and Coate (1997) for example. Laslier

(2005) considers a model with different party objectives.
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4.2.1 Outcome Funtions

We give two natural examples of outcome functions in this Chapter - maximal and coalitional.

We define these below.

Under the maximal outcome function the set of winning parties is the party with the

most number of constituencies. Let the set of winning parties be Wmax(V ) = {l ∈ P| Vl =

maxl′∈P Vl′} and |Wmax(V )| = W .

The P.O.F. is maximal if

Pmax
l (V ) =

{
1
W

if l ∈ Wmax(V )

0 otherwise

for all V ∈ V for all l ∈ P .
A minimal winning coalition or an m.w.c. is a collection of parties C such that (i)∑
l∈C Vl ≥

|R1|+|R2|
2

and (ii)
∑

l∈C, l 6=l′ Vl <
|R1|+|R2|

2
for all l′ ∈ C.5 It is a coalition of parties

that wins at least half the total number of constituencies. In addition, if a coalition partner

drops out, the remaining parties win strictly less than half the total number of constituencies.

The coalition P.O.F. assumes (i) that each m.w.c. can form with equal probabilities and

(ii) the policies of a member of a m.w.c. is implemented with the probability equal to the

share of its constituencies in the total number of constituencies won by the m.w.c.6

Let C be the set of all possible m.w.c.s. For every C ∈ C, let VC =
∑

l∈c Vl. A P.O.F. is

coalitional if

P c
l (V ) =

1

|C|
∑

{C∈C | l∈C}

Vl
VC

for all V ∈ V for all l ∈ P .
It is easy to show that

∑
l∈P P

c
l (V ) = 1.

We abuse notation slightly by using Π1,Π2,ΠN to denote the payoffs and V1, V2, VN to

denote the seat shares of parties S1, S2 and N respectively.

Suppose V1 = 3, V2 = 3, VN = 4. There are three m.w.c.s: {S1, S2}, {S2, N} and {S1, N}.
Then

PC
1 (V ) = PC

2 (V ) =
1

3

(
3

6
+

3

7

)
=

13

42
and PC

N (V ) =
1

3

(
4

7
+

4

7

)
=

8

21
.

The game: The distribution of voters’ policy positions is fixed through the analysis.

Parties choose policies from the set X. Voters vote to maximize expected utility given

the policy positions of parties and actions of other voters. The outcome is determined by

the outcome function. Parties win a constituency if a strict majority of voters vote for it.

The outcome function determines which parties win. The winning party’s policy position is

implemented.

5The concept was introduced formally by Riker (1962).
6This is an implication of Gamson’s Law. See (Browne and Franklin (1973) and Warwick and Druckman

(2001)).
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4.2.2 Sincere vs Strategic Voting

We show that voters need not be sincere under either of the two P.O.F.s described earlier.

Let xmax(v) and xc(v) represent the policy outcomes under maximal and coalition outcome

functions respectively.

Example 9 Let x(S1) = 0.1, x(N) = 0.3 and x(S2) = 0.9. Suppose voter i ∈ R1 has policy

position xi = 0.25 i.e. x(N) �i x(S1) �i x(S2). Let v−i be such that V1 = V2 = VN when i

votes sincerely.

Then Pmax
1 (V ) = Pmax

2 (V ) = Pmax
N (V ) and the expected policy outcome xmax(v) =

0.1+0.3+0.9
3

= 0.433. If i votes strategically for S1, then Pmax
1 (V ′) = 1 > Pmax

2 (V ′) =

Pmax
N (V ′) = 0 i.e. xmax(v′) = x(S1) = 0.1. Voter i benefits by voting strategically since

di(x
max(v)) > di(x

max(v′)).

x(N)
x(S1)+x(N)

4

x(S1)

xmax(v′) xmax(v)

x(S2)

Figure 4.1: Strategic voting

Now consider the coalition outcome function. Suppose Vl = 3 for l ∈ P i.e. P c
l (V ) =

2 × 1
2
× Vl

Vl+Vl′
= 2 × 1

3
× 1

2
= 1

3
for all l ∈ P . As before xc(v) = 0.1+0.3+0.9

3
= 0.433. This is

illustrated in Figure 4.1

If i votes strategically for S1, V ′1 = 4, V ′2 = 3, V ′N = 2 i.e. P c
1 (V ′) = 1

3

(
4
7

+ 4
6

)
=

1
3
(0.571 + 0.667) = 0.412, P c

2 (V ′) = 1
3

(
3
7

+ 3
5

)
= 1

3
(0.429 + 0.6) = 0.343 and P c

N(V ′) =
1
3

(
2
6

+ 2
5

)
= 1

3
(0.33+0.4) = 0.243. Therefore, xc(v′) = 0.412×0.1+0.343×0.9+0.243×0.3 =

0.0412 + 0.3087 + 0.0729 = 0.4228. Once again, voter i benefits by voting strategically since

di(x
c(v)) > di(x

c(v′)).

The example suggests that voters will typically vote strategically. Characterizing equi-

librium behaviour in these circumstances is known to be difficult and may involve the use

of mixed strategies. We choose to avoid these difficulties by assuming for the rest of the

Chapter that voters vote sincerely. This assumption has a significant benefit. The precise

specification of the P.O.F. is no longer important for our results as long as probabilities are

increasing in vote shares.

4.3 Sincere Voting Equilibrium

A sincere voting equilibrium is a political equilibrium where all voters vote sincerely.
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We denote the voter with the median policy position in constituency Rk
j by mk

j and

her ideal policy position as x(mk
j ). The median policy among the constituency medians

{x(mk
j )}k∈Rj

is denoted by x(mj) for both Regions R1 and R2.7 We call mj the region-wide

median of Rj for j ∈ {1, 2}. We provide some necessary conditions for equilibrium.

Proposition 7 Suppose x∗ is a sincere voting equilibrium. Then

(i) For j ∈ {1, 2} we have

(a)
[
x(N)∗ < x(mj)

]
⇒
[
x(N)∗ < x(Sj)

∗].
(b)

[
x(N)∗ > x(mj)

]
⇒
[
x(N)∗ > x(Sj)

∗].
(ii) x(N)∗ ∈ [x(m1), x(m2)].

(iii) Vj ≥ |Rj |
2

for j ∈ {1, 2}.

Proof : Suppose x∗ is a sincere voting equilibrium.

(i) Assume w.l.o.g. that x(m1) < x(m2). We prove the claim by contradiction. Sup-

pose x(N)∗ < x(m1) and x(S1)∗ < x(N)∗. A majority of voters in a majority of

constituencies in Region 1 prefer x(N)∗ to x(S1)∗. Therefore Π1(V ) < |R1|
2
. Consider

the following deviation by S1: x(S1)′ = x(N)∗. Then S1 wins at least |R1|
2

constituen-

cies. Therefore Π1(V ′) − Π1(V ) > 0. Similarly we can show that
[
x(N)∗ > x(m1)

]
⇒
[
x(S1)∗ < x(N)∗

]
.

(ii) We prove the claim by contradiction. Suppose x(N)∗ < x(m1). Using the arguments

in (i), x(S1)∗ > x(N)∗ and x(S2)∗ > x(N)∗. Moreover, x(S1)∗ = x(N)∗ + ε for some

small ε > 0. To see this, suppose ε is large. Then voter m1 will prefer X(N)∗ to x(S1)

and S1 will win less than |R1|
2

constituencies. Therefore, for small ε, S1 wins at least

a majority of constituencies in region R1. Hence, V1 >
|R1|

2
. This implies that N wins

strictly less than |R1|
2

constituencies from R1.

Consider the following deviation by N : x(N)′ = min{x(S1)∗, x(S2)∗}. Assume w.l.o.g.

x(S1)∗ = min{x(S1)∗, x(S2)∗}. The national party wins |R1|
2

constituencies from R1. All

median voters mk
2 ∈ R2 with x(mk

2) ≤ x(N)∗ vote for N . Therefore ΠN(V ′)−ΠN(V ) >

0. Hence, x(N)∗ ≥ x(m1). Using similar arguments we can show that x(N)∗ ≤ x(m2).

Therefore, x(N)∗ ∈ [x(m1), x(m2)].

(iii) Suppose contrariwise that Vj <
|R2|

2
. Consider the deviation x(Sj)

′ = x(N)∗. All the

voters in region Rj are indifferent between voting for Sj and N . Indifferent voters vote

with equal probability for both parties. Therefore, the payoff difference is Π1(V ′) −
Π1(V ) > 0. Hence Vj ≥ |R2|

2
.

7Recall that we assume an odd number of voters in each constituency and an odd number of constituencies

in each region. Therefore, the median voters are unique.
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In any equilibrium where voters are sincere, the national party locates in the interval of

the two region-wide medians. The regional parties on the other hand stay on the same side

of the national party’s policy as their respective region-wide medians. Moreover, the regional

parties win at least half the number of constituencies in expectation.

We introduce the notion of isolation sets to describe the equilibrium. W.l.o.g. assume

xM1 ≤ xM2 . Let {s1, . . . , s|R1|} and {t1, . . . , t|R2|} be two sets of indices. The policy positions

of medians of the constituencies of Regions 1 and 2 can be arranged in the following order:

x(ms1
1 ) < x(ms2

1 ) < . . . < x(m
s|R1|
1 ).

x(mt1
2 ) < x(mt2

2 ) < . . . < x(m
t|R2|
2 ).

A set A(x1, . . . , xn) is an isolation set for (x1, . . . , xn) if there exist sq ∈ {s1, . . . , s|R1|}
and tp ∈ {t1, . . . , t|R2|} such that (i) A(x1, . . . , xn) = [x(m

tp
2 ), x(m

sq
1 )] (ii) x(m

sq
1 ) ≥ x(m1)

and (iii) x(m
tp
2 ) ≤ x(m2).

There may be several or no isolation sets. If the latter is true we abuse notation slightly

to say that the isolation set is empty and write A(x1, . . . , xn) = ∅. We clarify these notions

with some examples.

Example 10 Let R1 = {R1
1, R

2
1, R

3
1} and R2 = {R1

2, R
2
2, R

3
2}. The location of the consi-

tituency medians are shown in the figure below.

x(m1
1) x(m2

1) x(m1
2) x(m2

2) x(m3
1) x(m3

2)

x(m2)x(m1)

Figure 4.2: There are two isolation sets

In Figure 4.2, there are two isolation sets: (i) [x(m1
2), x(m3

1)] and (ii) [x(m2
2), x(m3

1)] .

Example 11 Let R1 = {R1
1, R

2
1, R

3
1} and R2 = {R1

2, R
2
2, R

3
2}. The location of the consi-

tituency medians are shown in Figure 4.3.

In Figure 4.3, there are three isolation sets: (i) [x(m1
2), x(m2

1)], (ii) [x(m1
2), x(m3

1)] and

(iii) [x(m2
2), x(m3

1)].
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x(m1
1) x(m1

2) x(m2
1) x(m2

2) x(m3
1) x(m3

2)

x(m2)x(m1)

Figure 4.3: There are three isolation sets

x(m1
1) x(m2

1) x(m3
1) x(m1

2) x(m2
2) x(m3

2)

x(m2)x(m1)

Figure 4.4: There are no isolation sets

Example 12 Let R1 = {R1
1, R

2
1, R

3
1} and R2 = {R1

2, R
2
2, R

3
2}. The location of the consi-

tituency medians are shown in the figure below.

In Figure 4.4, there are no isolation sets.

A maximal isolation set A(x1, . . . , xn) is an isolation set [x(m
tp
2 ), x(m

sq
1 )] with the prop-

erty that |R1|−sq+1+ tp ≥ |R1|−s′q+1+ t′p for all s′q ∈ {1, . . . , |R1|} and t′p ∈ {1, . . . , |R2|}.
We illustrate the notion of maximal isolation set with an example.

Example 13 Let R1 = {R1
1, . . . , R

5
1} and R2 = {R1

2, . . . , R
7
2}. The location of the consi-

tituency medians are shown in the figure below.

x(m1
1) x(m1

2) x(m2
2) x(m2

1) x(m3
1) x(m3

2) x(m4
1) x(m4

2) x(m5
2) x(m6

2) x(m5
1) x(m7

2)

x(m1) x(m2)

Figure 4.5: There are three maximal isolation sets

There are three maximal isolation sets: (i) [x(m2
2), x(m3

1)] (ii) [x(m3
2), x(m4

1)] and (iii)

[x(m4
2), x(m5

1)] .

A voter policy position distribution (x1, . . . , xn) is homogeneous if A(x1, . . . , xn) = ∅. An

equivalent definition of homogeneity is the following: the smallest interval that contains the

policy positions of medians of Region 1 is disjoint from the smallest interval that contains the
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policy positions of medians for Region 2. The voter distribution is homogeneous in Example

12.

If the voter distribution is not homogeneous, it is heterogeneous. The distributions in

Examples 10, 11 and 13 are heterogeneous.

4.3.1 Homogeneous Regions

In this subsection we describe the equilibrium for homogeneous voter distributions.

Proposition 8 Suppose the following conditions hold:

(i) x(mk
1) <

3x(m1) + x(m2)

4
for all k ∈ R1.

(ii) x(mk
2) >

x(m1) + 3x(m2)

4
for all k ∈ R2.

Then the following strategy x∗ is a sincere voting equilibrium: x(N)∗ = x(mj) if |Rj| ≥
|Rj′ | and x(S∗j ) = x(mj) for all j ∈ {1, 2}.

x(m1) + x(m2)

2

x(m1) + 3x(m2)

4

3x(m1) + x(m2)

4

x(m1) x(m2)

Figure 4.6: Illustration for Proposition 8

Proof : Suppose x∗ is an equilibrium which satisfies the conditions in the statement of the

Proposition. Then A(x1, . . . , xn) = ∅. Assume w.l.o.g. that |R1| ≥ |R2|. We show that the

following strategy is an equilibrium: x(N)∗ = x(S1)∗ = x(m1) and x(S2)∗ = x(m2).

Suppose S1 deviates to x(S1)′. If x(S1)′ < x(m1), then a majority of voters in a majority

of constituencies in R1 will prefer x(N)∗ to x(S1)′. After the deviation S2 wins at most |R1|
2

seats. The payoff difference for S1 is Π1(x(S1)′) − Π1(x∗) = 0. Similar arguments can be

made to show that a deviation to x(S1)′ ≥ x(S1)∗ = x(m1) is not profitable. Therefore, S1

does not deviate.
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The national party N wins |R1|
2

number of constituencies from Region 1. Since x(S1)∗ =

x(m1) any deviation by N leads to its winning less than |R1|
2

of seats. Suppose N devi-

ates to x(N)′ > x(N)∗. By condition (ii), N cannot win any constituencies from R2 if

x′N < x(m1)+x(m2)
2

. Suppose x(N)′ > x(m1)+x(m2)
2

. From condition (i) N cannot gain any

constituencies from R1. Since |R1| ≥ |R2| the payoff difference is ΠN(x(N)′)− ΠN(x∗) ≤ 0.

Therefore, N does not deviate.

By condition (ii) and the fact that x(S2)∗ = x(m2), S2 wins all the constituencies in

region R2. Therefore, S2 cannot win more seats by deviating. Similar arguments can be

made if |R2| ≥ |R1|. �

When the voter distribution is homogeneous, the national party locates at the policy

position of the median voter of the constituency median of the larger region. The regional

parties locate at their respective region-wide medians.

Conditions (i) and (ii) in Proposition 8 require all medians in Region 1 to be located

significantly apart from the medians in Region 2. The example below shows that conditions

(i) and (ii) are necessary.

Example 14 Let R1 = {R1
1, . . . , R

5
1} and R2 = {R1

2, . . . , R
7
2} with the following policy

positions of the medians :

(i) Region 1: x(m1
1) = 0, x(m2

1) = 0.1, x(m3
1) = x(m1) = 0.2, x(m4

1) = 0.35, x(m5
1) = 0.42.

(ii) Region 2: x(m1
2) = 0.45, x(m2

2) = 0.48, x(m3
2) = 0.7, x(m4

2) = x(m2) = 0.8, x(m5
2) =

0.85, x(m6
2) = 0.9 and x(m7

2) = 1. These are illustrated in Figure 4.7.

x(m1
1) x(m2

1) x(m3
1) x(m4

1) x(m5
1) x(m1

2)x(m2
2) x(m3

2) x(m4
2) x(m5

2)x(m6
2)x(m7

2)

x(m1) x(m2)

Figure 4.7: Illustration for Example 14

The distributional assumptions of Proposition 8 are not satisfied since

(i) x(m5
1) = 0.42 >

3x(m1) + x(m2)

4
= 3×0.2+0.8

4
= 0.35.

(ii) x(m1
2) = 0.1 <

x(m1) + 3x(m2)

4
= 0.2+3×0.8

4
= 0.65.

We show that the strategy profile x∗ given in Proposition 8 is not an equilibrium. Let

x(N)∗ = x(S2)∗ = x(m2) and x(S1)∗ = x(m1). The constituencies won by the parties are

V1 = 5, VN = V2 = 3.5.

We show that the national party can deviate beneficially. Consider a deviation by N to

x(N)′ = x(m2
2) = 0.48. It gets votes from a majority of voters in constituencies R4

1, R
5
1, R

1
2

and R2
2. This makes N strictly better-off. Therefore N deviates.
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We show that no other equilibrium exists. Suppose x(N)∗ = x(m3
2), x(S1)∗ = x(m5

1) and

x(S2)∗) = x(m3
2). We have V1 = 5, VN = 3 and V2 = 4. Consider the following deviation

by N : x(N)′ = x(m4
1). Then V ′N = 4 which makes N better-off. Similar arguments can be

used to show that in x(N)∗ /∈ (x(m1), x(m2)). By Proposition 7 and the arguments above,

no other equilibrium can exist.

Hence, additional conditions (i) and (ii) in the statement of Proposition 8 are essential

in characterizing the equilibrium.

4.3.2 Heterogeneous Regions

In this subsection we desribe the equilibrium when the voter distribution is heterogeneous.

Let A1, . . . , AK be the maximal isolation sets for (x1, . . . , xn).

Proposition 9 We consider two cases.

(i) Ak(x1, . . . , xn)∩{x(m1), x(m2)} 6= ∅ for all k ∈ {1, . . . , K}. Note that this can only hold

if there are at most two maximal isolation sets. Let these be denoted by A1(x1, . . . , xn)

and A2(x1, . . . , xn). Let Ak = [x(m
tp
2 ), x(m

sq
1 )] for k ∈ {1, 2}. Suppose the following

conditions hold:

(a) If x(m1) ∈ Ak and x(m2) /∈ Ak. Then

x(m2
tp+1) >

x(m1) + x(m2)

2
and x(m

s|R1|
1 ) <

3x(m1) + x(m2)

4
.

(b) If x(m2) ∈ Ak and x(m1) /∈ Ak. Then

x(m1
sq−1) <

x(m1) + x(m2)

2
and x(m

t|R1|
2 ) >

x(m1) + 3x(m2)

4
.

(c) If x(m2) ∈ Ak and x(m1) ∈ Ak′ . Then either (a) or (b) holds.

The following strategy profile is a sincere voting equilibrium:

x(N)∗ = x(mj) where x(mj) ∈ Ak for some k ∈ {1, 2} and |Rj| ≥ |Rj′| for all j′ ∈
{j | x(mj) ∈ Ak′ for some k′}, x(Sj)

∗ = x(mj) for all j ∈ {1, 2}.

(ii) Suppose exists k ∈ {1 . . . , K} such that Ak(x1, . . . , xn) 6= ∅ and Ak(x1, . . . , xn) ∩
{x(m1), x(m2)} = ∅. There are two subcases.

(A) Suppose the following conditions hold:

(a) |R1| ≥ 2(sq − 1)

(b) |R1| − |R2| ≥ 2(sq − tp)− 1.
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x(m1) + x(m2)

2

x(m1) + 3x(m2)

4

3x(m1) + x(m2)

4

x(m1) x(m2)

Figure 4.8: Illustration for Proposition 9

Then the following strategy is a sincere voting equilibrium:

x(N)∗ ∈ {x(m
sq
1 ), x(m

tp
2 )}, x(S1)∗ = x(m

sq−1
1 ) and x(S2)∗ = x(m

tp+1
1 ).

(B) Suppose the following conditions hold.

(a) sq − tp ≥ |Rj |
2

+ 1

(b) sq ≥ |R1|+|R2|
2

+ 1.

(c) There does not exist k ∈ Rk
2 such that x(mk

2) /∈
(
x(m1), x(m1)+x(m2)

2

)
.

Then the following strategy is a sincere voting equilibrium:

x(N)∗ = x(mj) for some j ∈ {1, 2} and x(Sj′)
∗ = x(mj′) for j′ ∈ {1, 2}.

Proof : By Proposition 7, the national party will choose a policy position x(N)∗ ∈
[x(m1), x(m2)]. The regional parties will stay on the side of the region-wide median from

the national party’s policy. The national party can win at most
|Rj |

2
from each region

Rj, j ∈ {1, 2}. Therefore, by choosing a policy position in the maximal isolation set, the na-

tional party can isolate maximum number of constituencies from both regions. The national

party can isolate at most
|Rj |−1

2
constituencies from each region. Moreover, if x(mj) ∈ Ak,

then it can win at most
|Rj |

2
constituencies from Rj and

|Rj′ |−1

2
constituencies from Rj′

by isolating these constituencies. Therefore, in any equilibrium x(N)∗ ∈ Ak for some

k ∈ {1, . . . , K}. By Proposition 7 and the arguments above we have x(S1)∗ ≤ x(N)∗ and

x(S2)∗ ≥ x(N)∗. We consider three cases separately.

(i) Consider a maximal isolation set Ak(x1, . . . , xn) such that x(mj) ∈ Ak(x1, . . . , xn) and

|Rj| ≥ |Rj′ | for all j ∈ {j | x(mj) ∈ Ak′ for some k′}. Suppose x(m1) ∈ Ak for some

k ∈ {1, . . . , K} and |R1| ≥ |R2|. We show that x(S1)∗ = x(N)∗ = x(m1) and x(S2)∗ =

x(m2) is a sincere voting equilibrium.

Suppose S1 deviates to x(S1)′ 6= x(m1). Then S1 wins less than half the number of

constituencies in R1 i.e. Π1(x(S1)′) < Π1(x∗) = |R1|
2

. Therefore, S1 cannot deviate

beneficially.
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By condition (a), x(m
tp+1
2 ) > x(m1)+x(m2)

2
. Therefore S2 is winning a majority of con-

stituencies. Moreover, all constituencies that the national party is not able to isolate

i.e. |R2| − tp are also obtained by S2. Therefore, after a deviation to x(S2)′, S2 can

get at most |R2| − tp constituencies. The payoff difference is Π2(x(S2)′)− Π2(x∗) ≤ 0.

Therefore, S2 cannot deviate beneficially.

Finally, we show that the national party cannot deviate profitably. By condition (a),

x(m
s|R1|
1 ) <

3(xm1 )+x(m2)

4
and x(m

tp+1
2 ) > x(m1)+x(m2)

2
. Therefore, if N deviates to x(N)′

> x(N)∗, it does not win more constituencies from R2 for all x(N)′ ≤ x(m1)+x(m2)
2

. The

payoff difference is ΠN(x(N)′)− ΠN(x∗) = |R1|
2

+ tp − |R1|
2
− tp ≤ 0.

If N deviates to x(N)′ ≥ x(m1)+x(m2)
2

it wins at most |R2|
2

constituencies from R2 but

loses all from R1. Since |R1| ≥ |R2| the payoff difference is ΠN(x(N)′) − ΠN(x∗) =
|R2|

2
− |R1|

2
− tp ≤ 0. Therefore, N cannot deviate beneficially and the given strategy

profile x∗ is an equilibrium. Similar arguments can be made for cases (b) and (c).

(ii) Suppose there exists k ∈ {1 . . . , K} such that Ak(x1, . . . , xn) 6= ∅ and Ak(x1, . . . , xn)∩
{x(m1), x(m2)} = ∅. We consider the two cases separately.

(A) We first show that both S1 and S2 cannot deviate beneficially. Since there exists

some k ∈ {1, 2} such that Ak(x1, . . . , xn)∩{x(m1), x(m2)} = ∅ we have x(m
sq
1 ) >

x(m1) and x(m
tp
2 ) < x(m2). Therefore, V1 = sq−1 ≥ |R1|+1

2
and V2 = |R2|−tp+1 ≥

|R2|+1
2

. If S1 deviates to x(S1)′ > x(N)∗, then it wins less than |R1|
2

constituencies.

This makes it worse-off. If it deviates to x(S1)′ ≤ x(N)∗ it gets at most V ′1 = V1.

Therefore, S1 does not deviate. Similar arguments can be made to show that S2

does not deviate.

Suppose N deviates to x(N)′ ≤ x(N)∗. It wins at most sq− 1 + tp constituencies.

The payoff difference is ΠN(x(N)′) − ΠN(x∗) = sq − 1 + tp − |R1| + sq − 1 − tp.
By condition (a), |R1| ≥ 2(sq − 1). Therefore ΠN(x(N)′)− ΠN(x∗) ≤ 0.

Suppose N deviates to x(N)′ ≥ x(N)∗. Then it wins at most |R2| − tp + sq
constituencies. The payoff difference is ΠN(x(N)′) − ΠN(x∗) = |R2| − tp + sq −
|R1| + sq − 1 − tp. By condition (b), |R1| − |R2| ≥ 2(sq − tp) − 1. Therefore

ΠN(x(N)′)− ΠN(x∗) ≤ 0. Therefore, N does not deviate.

(B) Assume w.l.o.g. x(N)∗ = x(m1) = x(S1)∗ and x(S2)∗ = x(m2). We first show

that both S1 and S2 cannot deviate beneficially. If S1 deviates to x(S1)′ 6= x(S1)∗,

then it wins less than |R1|
2

constituencies. This makes S1 worse-off. Therefore,

S1 does not deviate. By condition (c) S2 wins all constituencies Rk
2 such that

x(mk
2) > x(m1). If S2 deviates to x(S2)′ 6= x(S2)∗, then its payoff difference is

Π2(x(S2)′)− Π2(x∗) = V ′2 − V2 ≤ 0. Therefore, S2 does not deviate.

There are three possible deviations by N . Suppose N deviates to x(N)′ ∈
Ak(x1, . . . , xn). It wins at most |R1|−sq+1+tp constituencies. Note that N gets at
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least |R1|
2

in equilibrium. Therefore, the payoff difference is ΠN(x(N)′)−ΠN(x∗) =

|R1|−sq+1+tp− |R1|
2

. By condition (a), ΠN(x(N)′)−ΠN(x∗) = |R1|
2

+1−sq+tp ≤ 0.

Suppose N deviates to a policy x(N)′ = x(m2). It wins at most |R2|
2

+ |R1|−sq+1

constituencies. The payoff difference is ΠN(x(N)′)−ΠN(x∗) = |R2|
2

+ |R1| − sq +

1− |R1|
2

. By condition (b), ΠN(x(N)′)− ΠN(x∗) ≤ 0.

For any other deviation by N to x(N)′ 6= x(N)∗, N wins at most |R1|−sq +1+ tp
constituencies. Similar arguments as the ones used earlier can be made to show

that ΠN(x(N)′)− ΠN(x∗) ≤ 0. Therefore, N does not deviate.

�

Proposition 9 describes the equilibrium when regions are heterogeneous. There are two

cases to consider.

Case 1: Suppose all the maximal isolation sets contain the policy position of a region-

wide median. Note that this is only possible when there are at most two maximal isolation

sets, each containing the policy position of a region-wide median. The national party locates

at the policy position of the region-wide median of the region with the greater number of

constituencies if the latter is in a maximal isolation set. The regional parties are located at

their respective region-wide medians.

Case 2: Suppose there exists a maximal isolation set which lies in the interior of the inter-

val containing the two region-wide medians. Then there are two types of possible equilibria.

In the first type, the national party locates in the maximal isolation in the interior of the

interval containing the two region-wide medians. The regional parties locate as close to the

national party’s position on the same side of their respective region-wide medians. In the

second type, the national party locates at the policy position of a region-wide median which

isolates a significant number of constituencies from the other region. The regional parties

choose the policy positions of their respective region-wide medians.

In both cases described above, certain additional conditions (as in Proposition 8) need to

be imposed. If these conditions are not met, then our proposed equilibrium does not exist.

It is quite possible that no pure strategy equilibrium exists. However, we have been unable

to verify non-existence. The following example illustrates these difficulties.

Example 15 Let R1 = {R1
1, . . . , R

5
1} and R2 = {R1

2, . . . , R
7
2}. The median positions are at

equal distance from each other with x(m1
1) = 0, x(m1

2) = 0.091, x(m2
2) = 0.182, x(m2

1) =

0.273, x(m3
1) = 0.364, x(m3

2) = 0.455, x(m4
1) = 0.546, x(m4

2) = 0.637, x(m5
2) = 0.728,

x(m6
2) = 0.819, x(m5

1) = 0.91 and x(m7
2) = 1. This is shown in the figure below.

As shown in Example 13 there are three maximal isolation sets: (i) [x(m2
2), x(m3

1)] (ii)

[x(m3
2), x(m4

1)] (iii) [x(m4
2), x(m5

1)].

We show that the following strategy profile x∗ is not an equilibrium: x(N)∗ = x(S2)∗ =

x(m2) and x(S1)∗ = x(m1). We have V1 = 3, VN = 5.5 and V2 = 3.5.
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Figure 4.9: Illustration for Example 15

We show that S1 can deviate beneficially. Consider deviation x(S1)′ = x(m4
1). The payoff

difference is Π1(V ′)−Π1(V ) = 4− 3 = 1 > 0. Therefore, S1 is better-off after the deviation.

We show that the following strategy profile x∗ is also not an equilibrium: x(N)∗ = x(m4
1),

x(S2)∗ = x(m2) and x(S1)∗ = x(m1). The seat shares are V1 = 3, VN = 5 and V2 = 4.

Suppose N deviates to a policy position x(N)′ = x(m1). After the deviation N will

win 2.5 constituencies (in expectation) from R1 and 3 constituencies from R2. Therefore,

V ′N = 5.5 > VN = 5. This makes N better. Hence x∗ is not an equilibrium.

We give an example to illustrate an equilibrium.

Example 16 Let R1 = {R1
1, . . . , R

5
1} and R2 = {R1

2, . . . , R
7
2}. The location of the consi-

tituency medians are shown in Figure 4.10.

x(m1
1) x(m1

2) x(m2
2)x(m2

1) x(m3
1)x(m3

2) x(m4
1) x(m4

2) x(m5
2) x(m6

2) x(m5
1) x(m7

2)

x(m1) x(m2)

Figure 4.10: Illustration for Example 16

The median positions are as shown in the figure above. There is one maximal isolation

set: (i) [x(m3
2), x(m3

1)].

We show that the following strategy profile x∗ is an equilibrium: x(N)∗ = x(S1)∗ = x(m1)

and x(S2)∗ = x(m2). The expected seat shares are V1 = 2.5, VN = 5.5 and V2 = 4.

Suppose S1 cannot to x(S1)′ 6= x(S1)∗. Then it wins at most 3 constituencies. Therefore

V ′1 − V1 = 2− 2.5 = −0.5. Hence, S1 does not deviate.

Suppose deviates to any policy x(S2)′ 6= x(S2)∗. Then it wins at most 3 constituencies.

We have V ′2 − V2 = 3− 4 = −1. Therefore S2 does not deviate.

Finally, we show that N cannot deviate beneficially. Clearly, any deviation x(N)′ ∈
(x(m1), x(m2)) is not profitable. If N deviates to x(N)′ ≤ x(m1) it wins at most 5 con-

stituencies. Therefore, the payoff difference is V ′N − VN = 5 − 5.5 = −0.5. If it deviates to
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x(N)′ ≥ x(m2) it wins at most 4.5 constituencies. We have V ′N − VN = 4 − 5.5 = −1.5.

Therefore, N does not deviate.

4.4 Discussion

The national party can win a greater number of constituencies from both the regions when

the voter distribution is heterogeneous. Suppose the heterogeneity is maximum i.e. there

exists a maximal isolation set which isolates
|Rj |−1

2
constituencies from both the regions. In

an equilibrium of the nature described in Proposition 9 the national party can win at most

maxj∈{1,2}
|Rj |

2
from one region and

|Rj′−1|
2

from the other region i.e. almost half of both the

regions. However, when regions are homogeneous it can win at most maxj∈R
|Rj |

2
or half the

larger region.

Suppose |R1| ≥ |R2|. Let V hom
N , V het

N be the maximum number of constituencies that the

national party can win in equilibrium when voter distribution is homogeneous and when the

heterogeneity is maximum respectively. Then V het
N −V hom

N = |R1|
2

+ |R2|−1
2
− |R1|

2
= |R2|−1

2
≥ 0.

Hence, V het
N − V hom

N > 0 if |R2| ≥ 2.

Similarly, the regional parties win a greater number of constituencies when the voter

distribution is homogeneous than when it is heterogeneous. When the voter distribution

is homogeneous, the regional party of the region with the smaller number of constituencies

wins all the constituencies from its region. On the other hand, if the voter distribution has

maximum heterogeneity, then the regional party can only win at most
|Rj |−1

2
constituencies

in equilibrium.

4.5 Conclusion

The model can be easily generalized to multiple regions in a straightforward way. The nature

of the competition between regional and national parties will remain the same. The regional

parties will stay on the same side of the national party’s policy as their respective region-wide

medians. The national party will isolate all the constituencies across regions.

It would also be interesting to consider a multidimensional policy space with ceratin

dimensions corresponding to regional issues. Although such a model would be more realistic,

the existence of equilibrium will present significant challenges (See Plott (1967)). We hope

to address these issues in future work.
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